blob: 790df0c208e2fc6a87e3e30df24610ae140f564c [file] [log] [blame]
// Copyright 2002 The Trustees of Indiana University.
// Use, modification and distribution is subject to the Boost Software
// License, Version 1.0. (See accompanying file LICENSE_1_0.txt or copy at
// http://www.boost.org/LICENSE_1_0.txt)
// Boost.MultiArray Library
// Authors: Ronald Garcia
// Jeremy Siek
// Andrew Lumsdaine
// See http://www.boost.org/libs/multi_array for documentation.
//
// constructors.cpp - Testing out the various constructor options
//
#include "boost/test/minimal.hpp"
#include "boost/multi_array.hpp"
#include <algorithm>
#include <list>
void check_shape(const double&, std::size_t*, int*, unsigned int)
{}
template <class Array>
void check_shape(const Array& A,
std::size_t* sizes,
int* strides,
unsigned int num_elements)
{
BOOST_CHECK(A.num_elements() == num_elements);
BOOST_CHECK(A.size() == *sizes);
BOOST_CHECK(std::equal(sizes, sizes + A.num_dimensions(), A.shape()));
BOOST_CHECK(std::equal(strides, strides + A.num_dimensions(), A.strides()));
check_shape(A[0], ++sizes, ++strides, num_elements / A.size());
}
bool equal(const double& a, const double& b)
{
return a == b;
}
template <typename ArrayA, typename ArrayB>
bool equal(const ArrayA& A, const ArrayB& B)
{
typename ArrayA::const_iterator ia;
typename ArrayB::const_iterator ib = B.begin();
for (ia = A.begin(); ia != A.end(); ++ia, ++ib)
if (!::equal(*ia, *ib))
return false;
return true;
}
int
test_main(int, char*[])
{
typedef boost::multi_array<double, 3>::size_type size_type;
boost::array<size_type,3> sizes = { { 3, 3, 3 } };
int strides[] = { 9, 3, 1 };
size_type num_elements = 27;
// Default multi_array constructor
{
boost::multi_array<double, 3> A;
}
// Constructor 1, default storage order and allocator
{
boost::multi_array<double, 3> A(sizes);
check_shape(A, &sizes[0], strides, num_elements);
double* ptr = 0;
boost::multi_array_ref<double,3> B(ptr,sizes);
check_shape(B, &sizes[0], strides, num_elements);
const double* cptr = ptr;
boost::const_multi_array_ref<double,3> C(cptr,sizes);
check_shape(C, &sizes[0], strides, num_elements);
}
// Constructor 1, fortran storage order and user-supplied allocator
{
typedef boost::multi_array<double, 3,
std::allocator<double> >::size_type size_type;
size_type num_elements = 27;
int col_strides[] = { 1, 3, 9 };
boost::multi_array<double, 3,
std::allocator<double> > A(sizes,boost::fortran_storage_order());
check_shape(A, &sizes[0], col_strides, num_elements);
double *ptr=0;
boost::multi_array_ref<double, 3>
B(ptr,sizes,boost::fortran_storage_order());
check_shape(B, &sizes[0], col_strides, num_elements);
const double *cptr=ptr;
boost::const_multi_array_ref<double, 3>
C(cptr,sizes,boost::fortran_storage_order());
check_shape(C, &sizes[0], col_strides, num_elements);
}
// Constructor 2, default storage order and allocator
{
typedef boost::multi_array<double, 3>::size_type size_type;
size_type num_elements = 27;
boost::multi_array<double, 3>::extent_gen extents;
boost::multi_array<double, 3> A(extents[3][3][3]);
check_shape(A, &sizes[0], strides, num_elements);
double *ptr=0;
boost::multi_array_ref<double, 3> B(ptr,extents[3][3][3]);
check_shape(B, &sizes[0], strides, num_elements);
const double *cptr=ptr;
boost::const_multi_array_ref<double, 3> C(cptr,extents[3][3][3]);
check_shape(C, &sizes[0], strides, num_elements);
}
// Copy Constructors
{
typedef boost::multi_array<double, 3>::size_type size_type;
size_type num_elements = 27;
std::vector<double> vals(27, 4.5);
boost::multi_array<double, 3> A(sizes);
A.assign(vals.begin(),vals.end());
boost::multi_array<double, 3> B(A);
check_shape(B, &sizes[0], strides, num_elements);
BOOST_CHECK(::equal(A, B));
double ptr[27];
boost::multi_array_ref<double, 3> C(ptr,sizes);
A.assign(vals.begin(),vals.end());
boost::multi_array_ref<double, 3> D(C);
check_shape(D, &sizes[0], strides, num_elements);
BOOST_CHECK(C.data() == D.data());
const double* cptr = ptr;
boost::const_multi_array_ref<double, 3> E(cptr,sizes);
boost::const_multi_array_ref<double, 3> F(E);
check_shape(F, &sizes[0], strides, num_elements);
BOOST_CHECK(E.data() == F.data());
}
// Conversion construction
{
typedef boost::multi_array<double, 3>::size_type size_type;
size_type num_elements = 27;
std::vector<double> vals(27, 4.5);
boost::multi_array<double, 3> A(sizes);
A.assign(vals.begin(),vals.end());
boost::multi_array_ref<double, 3> B(A);
boost::const_multi_array_ref<double, 3> C(A);
check_shape(B, &sizes[0], strides, num_elements);
check_shape(C, &sizes[0], strides, num_elements);
BOOST_CHECK(B.data() == A.data());
BOOST_CHECK(C.data() == A.data());
double ptr[27];
boost::multi_array_ref<double, 3> D(ptr,sizes);
D.assign(vals.begin(),vals.end());
boost::const_multi_array_ref<double, 3> E(D);
check_shape(E, &sizes[0], strides, num_elements);
BOOST_CHECK(E.data() == D.data());
}
// Assignment Operator
{
typedef boost::multi_array<double, 3>::size_type size_type;
size_type num_elements = 27;
std::vector<double> vals(27, 4.5);
boost::multi_array<double, 3> A(sizes), B(sizes);
A.assign(vals.begin(),vals.end());
B = A;
check_shape(B, &sizes[0], strides, num_elements);
BOOST_CHECK(::equal(A, B));
double ptr1[27];
double ptr2[27];
boost::multi_array_ref<double, 3> C(ptr1,sizes), D(ptr2,sizes);
C.assign(vals.begin(),vals.end());
D = C;
check_shape(D, &sizes[0], strides, num_elements);
BOOST_CHECK(::equal(C,D));
}
// subarray value_type is multi_array
{
typedef boost::multi_array<double,3> array;
typedef array::size_type size_type;
size_type num_elements = 27;
std::vector<double> vals(num_elements, 4.5);
boost::multi_array<double, 3> A(sizes);
A.assign(vals.begin(),vals.end());
typedef array::subarray<2>::type subarray;
subarray B = A[1];
subarray::value_type C = B[0];
// should comparisons between the types work?
BOOST_CHECK(::equal(A[1][0],C));
BOOST_CHECK(::equal(B[0],C));
}
return boost::exit_success;
}