blob: 8f095f01027154fbd2a87aff0ce837a51f9f5678 [file] [log] [blame]
<?xml version="1.0" encoding="utf-8"?>
<header name="boost/proto/domain.hpp">
<para>
Contains definition of the <computeroutput><classname alt="boost::proto::domain">proto::domain&lt;&gt;</classname>
</computeroutput> class template and helpers for defining domains with a generator for customizing expression
construction and a grammar for controlling operator overloading.
</para>
<namespace name="boost">
<namespace name="proto">
<!-- proto::domain<> -->
<struct name="domain">
<template>
<template-type-parameter name="Generator">
<default><classname>proto::default_generator</classname></default>
</template-type-parameter>
<template-type-parameter name="Grammar">
<default><classname>proto::_</classname></default>
</template-type-parameter>
<template-type-parameter name="Super">
<default><replaceable>unspecified</replaceable></default>
</template-type-parameter>
</template>
<inherit><type>Generator</type></inherit>
<purpose>For use in defining domain tags to be used with <computeroutput>
<classname alt="proto::extends">proto::extends&lt;&gt;</classname></computeroutput>,
<computeroutput><macroname>BOOST_PROTO_EXTENDS</macroname>()</computeroutput> and
<computeroutput><macroname>BOOST_PROTO_DEFINE_OPERATORS</macroname>()</computeroutput>.
A <emphasis>domain</emphasis> associates an expression type with a <emphasis>generator</emphasis>,
and optionally a <emphasis>grammar</emphasis>. It may also have a super-domain. Expressions
in a sub-domain are interoperable (i.e. can be combined freely with) expressions in a
super-domain. Finally, domains control how non-Proto objects are turned into Proto
expressions and how they are combined to form larger Proto expressions.
</purpose>
<description>
<para>
The Generator parameter determines how new expressions in the domain are post-processed. Typically, a generator
wraps all new expressions in a wrapper that imparts domain-specific behaviors to expressions within
its domain. (See <computeroutput><classname alt="proto::extends">proto::extends&lt;&gt;</classname></computeroutput>.)
</para>
<para>
The Grammar parameter determines whether a given expression is valid within the domain, and automatically
disables any operator overloads which would cause an invalid expression to be created. By default,
the Grammar parameter defaults to the wildcard, <computeroutput><classname>proto::_</classname>
</computeroutput>, which makes all expressions valid within the domain.
</para>
<para>
The Super parameter declares the domain currently being defined to be a sub-domain of Super. An expression in
a sub-domain can be freely combined with expressions in its super-domain (and <emphasis>its</emphasis>
super-domain, etc.).
</para>
<para>
Example: <programlisting> template&lt;typename Expr&gt;
struct MyExpr;
struct MyGrammar
: <classname>proto::or_</classname>&lt; <classname>proto::terminal</classname>&lt;_&gt;, <classname>proto::plus</classname>&lt;MyGrammar, MyGrammar&gt; &gt;
{};
// Define MyDomain, in which all expressions are
// wrapped in MyExpr&lt;&gt; and only expressions that
// conform to MyGrammar are allowed.
struct MyDomain
: <classname>proto::domain</classname>&lt;<classname>proto::generator</classname>&lt;MyExpr&gt;, MyGrammar&gt;
{};
// Use MyDomain to define MyExpr
template&lt;typename Expr&gt;
struct MyExpr
: <classname>proto::extends</classname>&lt;Expr, MyExpr&lt;Expr&gt;, MyDomain&gt;
{
// ...
};
</programlisting>
</para>
<para>
The <computeroutput><classname>domain::as_expr</classname>&lt;&gt;</computeroutput> and
<computeroutput><classname>domain::as_child</classname>&lt;&gt;</computeroutput> member
templates define how non-Proto objects are turned into Proto terminals and how Proto
expressions should be processed before they are combined to form larger expressions.
They can be overridden in a derived domain for customization. See their descriptions to
understand how Proto uses these two templates and what their default behavior is.
</para>
</description>
<typedef name="proto_grammar">
<type>Grammar</type>
</typedef>
<typedef name="proto_generator">
<type>Generator</type>
</typedef>
<typedef name="proto_super_domain">
<type>Super</type>
</typedef>
<struct name="as_expr">
<template>
<template-type-parameter name="T"/>
</template>
<inherit><type><classname>proto::callable</classname></type></inherit>
<purpose>
A callable unary MonomorphicFunctionObject that specifies how objects are turned into
Proto expressions in this domain. The resulting expression object is suitable for storage
in a local variable.
</purpose>
<description>
<para>
A unary MonomorphicFunctionObject that specifies how objects are turned into Proto
expressions in this domain. The resulting expression object is suitable for storage
in a local variable. In that scenario, it is usually preferable to return
expressions by value; and, in the case of objects that are not yet Proto expressions,
to wrap them by value (if possible) in a new Proto terminal expression. (Contrast
this description with the description for
<computeroutput><classname>proto::domain::as_child</classname></computeroutput>.)
</para>
<para>
The <computeroutput>as_expr</computeroutput> function object turns objects into
Proto expressions, if they are not already, by making them Proto terminals held by
value if possible. Objects that are already Proto expressions are simply returned
by value. If
<computeroutput>wants_basic_expr&lt;Generator&gt;::value</computeroutput> is true,
then let <emphasis>E</emphasis> be
<computeroutput><classname>proto::basic_expr</classname></computeroutput>;
otherwise, let <emphasis>E</emphasis> be
<computeroutput><classname>proto::expr</classname></computeroutput>.
Given an lvalue <computeroutput>t</computeroutput> of type
<computeroutput>T</computeroutput>:
<itemizedlist>
<listitem>
If <computeroutput>T</computeroutput> is not a Proto expression type, the resulting
terminal is calculated as follows:
<itemizedlist>
<listitem>
If <computeroutput>T</computeroutput> is a function type, an abstract type, or
a type derived from <computeroutput>std::ios_base</computeroutput>, let
<replaceable>A</replaceable> be <computeroutput>T &amp;</computeroutput>.
</listitem>
<listitem>
Otherwise, let <replaceable>A</replaceable> be the type
<computeroutput>T</computeroutput> stripped of cv-qualifiers.
</listitem>
</itemizedlist>
Then, the result of <computeroutput>as_expr&lt;T&gt;()(t)</computeroutput> is
<computeroutput>Generator()(<replaceable>E</replaceable>&lt;tag::terminal,
term&lt; <replaceable>A</replaceable> &gt; &gt;::make(t))</computeroutput>.
</listitem>
<listitem>
Otherwise, the result is <computeroutput>t</computeroutput> converted to an
(un-const) rvalue.
</listitem>
</itemizedlist>
</para>
</description>
<typedef name="result_type">
<type><replaceable>see-below</replaceable></type>
</typedef>
<method-group name="public member functions">
<method name="operator()" cv="const">
<type>result_type</type>
<parameter name="t">
<paramtype>T &amp;</paramtype>
<description>
<para>The object to wrap.</para>
</description>
</parameter>
</method>
</method-group>
</struct>
<struct name="as_child">
<template>
<template-type-parameter name="T"/>
</template>
<inherit><type><classname>proto::callable</classname></type></inherit>
<purpose>
A callable unary MonomorphicFunctionObject that specifies how objects are turned into
Proto expressions in this domain, for use in scenarios where the resulting expression is
intended to be made a child of another expression.
</purpose>
<description>
<para>
A unary MonomorphicFunctionObject that specifies how objects are turned into Proto
expressions in this domain. The resulting expression object is suitable for storage
as a child of another expression. In that scenario, it is usually
preferable to store child expressions by reference; or, in the case of objects that
are not yet Proto expressions, to wrap them by reference in a new Proto terminal
expression. (Contrast this description with the description for
<computeroutput><classname>proto::domain::as_expr</classname></computeroutput>.)
</para>
<para>
The <computeroutput>as_child</computeroutput> function object turns objects into
Proto expressions, if they are not already, by making them Proto terminals held by
reference. Objects that are already Proto expressions are simply returned by
reference. If
<computeroutput>wants_basic_expr&lt;Generator&gt;::value</computeroutput> is true,
then let <emphasis>E</emphasis> be
<computeroutput><classname>proto::basic_expr</classname></computeroutput>;
otherwise, let <emphasis>E</emphasis> be
<computeroutput><classname>proto::expr</classname></computeroutput>.
Given an lvalue <computeroutput>t</computeroutput> of type
<computeroutput>T</computeroutput>:
<itemizedlist>
<listitem>
If <computeroutput>T</computeroutput> is not a Proto expression type, the resulting
terminal is
<computeroutput>Generator()(<replaceable>E</replaceable>&lt;tag::terminal,
term&lt; <computeroutput>T &amp;</computeroutput> &gt; &gt;::make(t))</computeroutput>.
</listitem>
<listitem>
Otherwise, the result is the lvalue <computeroutput>t</computeroutput>.
</listitem>
</itemizedlist>
</para>
</description>
<typedef name="result_type">
<type><replaceable>see-below</replaceable></type>
</typedef>
<method-group name="public member functions">
<method name="operator()" cv="const">
<type>result_type</type>
<parameter name="t">
<paramtype>T &amp;</paramtype>
<description>
<para>The object to wrap.</para>
</description>
</parameter>
</method>
</method-group>
</struct>
</struct>
<!-- proto::default_domain -->
<struct name="default_domain">
<inherit><classname>proto::domain</classname>&lt;&gt;</inherit>
<purpose>The domain expressions have by default, if <computeroutput>
<classname alt="proto::extends">proto::extends&lt;&gt;</classname></computeroutput> has not been used
to associate a domain with an expression.</purpose>
</struct>
<!-- proto::deduce_domain -->
<struct name="deduce_domain">
<purpose>A pseudo-domain for use in functions and metafunctions that require a domain parameter.
It indicates that the domain of the parent node should be inferred from the domains of the child nodes.</purpose>
<description>
<para>
When <computeroutput>proto::deduce_domain</computeroutput> is used as a domain &#x2014; either
explicitly or implicitly by
<computeroutput><functionname>proto::make_expr</functionname>()</computeroutput>,
<computeroutput><functionname>proto::unpack_expr</functionname>()</computeroutput>,
or Proto's operator overloads &#x2014; Proto will use the domains of the child expressions to
compute the domain of the parent. It is done in such a way that (A) expressions in domains
that share a common super-domain are interoperable, and (B) expressions that are in
the default domain (or a sub-domain thereof) are interoperable with <emphasis>all</emphasis>
expressions. The rules are as follows:
<itemizedlist>
<listitem>
A sub-domain is <emphasis>stronger</emphasis> than its super-domain.
</listitem>
<listitem>
<computeroutput><classname>proto::default_domain</classname></computeroutput>
and all its sub-domains are <emphasis>weaker</emphasis> than all other domains.
</listitem>
<listitem>
For each child, define a set of domains <emphasis>S<subscript>N</subscript></emphasis>
that includes the child's domain and all its super-domains.
</listitem>
<listitem>
Define a set <emphasis>I<subscript>S</subscript></emphasis> that is the intersection of
all the individual sets <emphasis>S<subscript>N</subscript></emphasis> that don't contain
<computeroutput><classname>proto::default_domain</classname></computeroutput>.
</listitem>
<listitem>
Define a set <emphasis>I<subscript>W</subscript></emphasis> that is the intersection of
all the individual sets <emphasis>S<subscript>N</subscript></emphasis> that contain
<computeroutput><classname>proto::default_domain</classname></computeroutput>.
</listitem>
<listitem>
Define a set <emphasis>P</emphasis> that is the union of
<emphasis>I<subscript>S</subscript></emphasis> and
<emphasis>I<subscript>W</subscript></emphasis>.
</listitem>
<listitem>
The common domain is the strongest domain in set <emphasis>P</emphasis>, with the
following caveat.
</listitem>
<listitem>
Let <emphasis>U</emphasis> be the union of all sets
<emphasis>S<subscript>N</subscript></emphasis>. If the result is
<computeroutput><classname>proto::default_domain</classname></computeroutput>
and <emphasis>U</emphasis> contains an element that is <emphasis>not </emphasis>
<computeroutput><classname>proto::default_domain</classname></computeroutput>,
it is an error.
</listitem>
</itemizedlist>
</para>
<para>
Note: the above description sounds like it would be expensive to compute at compile time.
In fact, it can all be done using C++ function overloading.
</para>
</description>
</struct>
<!-- proto::is_domain -->
<struct name="is_domain">
<template>
<template-type-parameter name="T"/>
</template>
<inherit>
<type>mpl::bool_&lt; <replaceable>true-or-false</replaceable> &gt;</type>
</inherit>
<description>
<para>
A metafunction that returns <computeroutput>mpl::true_</computeroutput> if the type
<computeroutput>T</computeroutput> is the type of a Proto domain;
<computeroutput>mpl::false_</computeroutput> otherwise. If <computeroutput>T</computeroutput>
inherits from <computeroutput><classname alt="proto::domain">proto::domain&lt;&gt;</classname></computeroutput>,
<computeroutput>is_domain&lt;T&gt;</computeroutput> is <computeroutput>mpl::true_</computeroutput>.
</para>
</description>
</struct>
<!-- proto::domain_of -->
<struct name="domain_of">
<template>
<template-type-parameter name="T"/>
</template>
<description>
<para>
A metafunction that returns the domain of a given type. If <computeroutput>T</computeroutput> is a Proto
expression type, it returns that expression's associated domain. If not, it returns
<computeroutput><classname>proto::default_domain</classname></computeroutput>.
</para>
</description>
<typedef name="type">
<type><replaceable>domain-of-T</replaceable></type>
</typedef>
</struct>
<!-- proto::base_expr --><!--
<struct name="base_expr">
<template>
<template-type-parameter name="Domain"/>
<template-type-parameter name="Tag"/>
<template-type-parameter name="Args"/>
</template>
<description>
<para>
Given a domain, a tag type and an argument list,
compute the type of the expression to generate. This is
either an instance of
<computeroutput><classname>proto::basic_expr</classname>&lt;&gt;</computeroutput> or
<computeroutput><classname>proto::expr</classname>&lt;&gt;</computeroutput>.
</para>
</description>
<typedef name="A">
<purpose>For exposition only</purpose>
<type><classname>proto::basic_expr</classname>&lt; Tag, Args &gt;</type>
</typedef>
<typedef name="B">
<purpose>For exposition only</purpose>
<type><classname>proto::expr</classname>&lt; Tag, Args &gt;</type>
</typedef>
<typedef name="type">
<type>typename mpl::if_&lt;<classname>proto::wants_basic_expr</classname>&lt; Domain &gt;, A, B&gt;::type</type>
</typedef>
</struct>-->
</namespace>
</namespace>
</header>