blob: 4d790aea92aaec324f5b1da10249a969e45f74f2 [file] [log] [blame]
//[ Lambda
///////////////////////////////////////////////////////////////////////////////
// Copyright 2008 Eric Niebler. Distributed under the Boost
// Software License, Version 1.0. (See accompanying file
// LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt)
//
// This example builds a simple but functional lambda library using Proto.
#include <iostream>
#include <algorithm>
#include <boost/mpl/int.hpp>
#include <boost/mpl/min_max.hpp>
#include <boost/mpl/eval_if.hpp>
#include <boost/mpl/identity.hpp>
#include <boost/mpl/next_prior.hpp>
#include <boost/fusion/tuple.hpp>
#include <boost/typeof/typeof.hpp>
#include <boost/typeof/std/ostream.hpp>
#include <boost/typeof/std/iostream.hpp>
#include <boost/proto/core.hpp>
#include <boost/proto/context.hpp>
#include <boost/proto/transform.hpp>
namespace mpl = boost::mpl;
namespace proto = boost::proto;
namespace fusion = boost::fusion;
using proto::_;
// Forward declaration of the lambda expression wrapper
template<typename T>
struct lambda;
struct lambda_domain
: proto::domain<proto::pod_generator<lambda> >
{};
template<typename I>
struct placeholder
{
typedef I arity;
};
template<typename T>
struct placeholder_arity
{
typedef typename T::arity type;
};
// The lambda grammar, with the transforms for calculating the max arity
struct lambda_arity
: proto::or_<
proto::when<
proto::terminal< placeholder<_> >
, mpl::next<placeholder_arity<proto::_value> >()
>
, proto::when< proto::terminal<_>
, mpl::int_<0>()
>
, proto::when<
proto::nary_expr<_, proto::vararg<_> >
, proto::fold<_, mpl::int_<0>(), mpl::max<lambda_arity, proto::_state>()>
>
>
{};
// The lambda context is the same as the default context
// with the addition of special handling for lambda placeholders
template<typename Tuple>
struct lambda_context
: proto::callable_context<lambda_context<Tuple> const>
{
lambda_context(Tuple const &args)
: args_(args)
{}
template<typename Sig>
struct result;
template<typename This, typename I>
struct result<This(proto::tag::terminal, placeholder<I> const &)>
: fusion::result_of::at<Tuple, I>
{};
template<typename I>
typename fusion::result_of::at<Tuple, I>::type
operator ()(proto::tag::terminal, placeholder<I> const &) const
{
return fusion::at<I>(this->args_);
}
Tuple args_;
};
// The lambda<> expression wrapper makes expressions polymorphic
// function objects
template<typename T>
struct lambda
{
BOOST_PROTO_BASIC_EXTENDS(T, lambda<T>, lambda_domain)
BOOST_PROTO_EXTENDS_ASSIGN()
BOOST_PROTO_EXTENDS_SUBSCRIPT()
// Calculate the arity of this lambda expression
static int const arity = boost::result_of<lambda_arity(T)>::type::value;
template<typename Sig>
struct result;
// Define nested result<> specializations to calculate the return
// type of this lambda expression. But be careful not to evaluate
// the return type of the nullary function unless we have a nullary
// lambda!
template<typename This>
struct result<This()>
: mpl::eval_if_c<
0 == arity
, proto::result_of::eval<T const, lambda_context<fusion::tuple<> > >
, mpl::identity<void>
>
{};
template<typename This, typename A0>
struct result<This(A0)>
: proto::result_of::eval<T const, lambda_context<fusion::tuple<A0> > >
{};
template<typename This, typename A0, typename A1>
struct result<This(A0, A1)>
: proto::result_of::eval<T const, lambda_context<fusion::tuple<A0, A1> > >
{};
// Define our operator () that evaluates the lambda expression.
typename result<lambda()>::type
operator ()() const
{
fusion::tuple<> args;
lambda_context<fusion::tuple<> > ctx(args);
return proto::eval(*this, ctx);
}
template<typename A0>
typename result<lambda(A0 const &)>::type
operator ()(A0 const &a0) const
{
fusion::tuple<A0 const &> args(a0);
lambda_context<fusion::tuple<A0 const &> > ctx(args);
return proto::eval(*this, ctx);
}
template<typename A0, typename A1>
typename result<lambda(A0 const &, A1 const &)>::type
operator ()(A0 const &a0, A1 const &a1) const
{
fusion::tuple<A0 const &, A1 const &> args(a0, a1);
lambda_context<fusion::tuple<A0 const &, A1 const &> > ctx(args);
return proto::eval(*this, ctx);
}
};
// Define some lambda placeholders
lambda<proto::terminal<placeholder<mpl::int_<0> > >::type> const _1 = {{}};
lambda<proto::terminal<placeholder<mpl::int_<1> > >::type> const _2 = {{}};
template<typename T>
lambda<typename proto::terminal<T>::type> const val(T const &t)
{
lambda<typename proto::terminal<T>::type> that = {{t}};
return that;
}
template<typename T>
lambda<typename proto::terminal<T &>::type> const var(T &t)
{
lambda<typename proto::terminal<T &>::type> that = {{t}};
return that;
}
template<typename T>
struct construct_helper
{
typedef T result_type; // for TR1 result_of
T operator()() const
{ return T(); }
// Generate BOOST_PROTO_MAX_ARITY overloads of the
// followig function call operator.
#define BOOST_PROTO_LOCAL_MACRO(N, typename_A, A_const_ref, A_const_ref_a, a)\
template<typename_A(N)> \
T operator()(A_const_ref_a(N)) const \
{ return T(a(N)); }
#define BOOST_PROTO_LOCAL_a BOOST_PROTO_a
#include BOOST_PROTO_LOCAL_ITERATE()
};
// Generate BOOST_PROTO_MAX_ARITY-1 overloads of the
// following construct() function template.
#define M0(N, typename_A, A_const_ref, A_const_ref_a, ref_a) \
template<typename T, typename_A(N)> \
typename proto::result_of::make_expr< \
proto::tag::function \
, lambda_domain \
, construct_helper<T> \
, A_const_ref(N) \
>::type const \
construct(A_const_ref_a(N)) \
{ \
return proto::make_expr< \
proto::tag::function \
, lambda_domain \
>( \
construct_helper<T>() \
, ref_a(N) \
); \
}
BOOST_PROTO_REPEAT_FROM_TO(1, BOOST_PROTO_MAX_ARITY, M0)
#undef M0
struct S
{
S() {}
S(int i, char c)
{
std::cout << "S(" << i << "," << c << ")\n";
}
};
int main()
{
// Create some lambda objects and immediately
// invoke them by applying their operator():
int i = ( (_1 + 2) / 4 )(42);
std::cout << i << std::endl; // prints 11
int j = ( (-(_1 + 2)) / 4 )(42);
std::cout << j << std::endl; // prints -11
double d = ( (4 - _2) * 3 )(42, 3.14);
std::cout << d << std::endl; // prints 2.58
// check non-const ref terminals
(std::cout << _1 << " -- " << _2 << '\n')(42, "Life, the Universe and Everything!");
// prints "42 -- Life, the Universe and Everything!"
// "Nullary" lambdas work too
int k = (val(1) + val(2))();
std::cout << k << std::endl; // prints 3
// check array indexing for kicks
int integers[5] = {0};
(var(integers)[2] = 2)();
(var(integers)[_1] = _1)(3);
std::cout << integers[2] << std::endl; // prints 2
std::cout << integers[3] << std::endl; // prints 3
// Now use a lambda with an STL algorithm!
int rgi[4] = {1,2,3,4};
char rgc[4] = {'a','b','c','d'};
S rgs[4];
std::transform(rgi, rgi+4, rgc, rgs, construct<S>(_1, _2));
return 0;
}
//]