blob: 6a80655c7901199c51dbaf82613f43e5c00bb8e9 [file] [log] [blame]
<!DOCTYPE html PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN">
<!-- Copyright David Abrahams 2006. Distributed under the Boost -->
<!-- Software License, Version 1.0. (See accompanying -->
<!-- file LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt) -->
<html>
<head>
<meta name="generator" content=
"HTML Tidy for Cygwin (vers 1st September 2004), see www.w3.org">
<meta http-equiv="Content-Type" content="text/html">
<link rel="stylesheet" type="text/css" href="boost.css">
<title>Boost.Python - Projects using Boost.Python</title>
</head>
<body link="#0000FF" vlink="#800080">
<table border="0" cellpadding="7" cellspacing="0" width="100%" summary=
"header">
<tr>
<td valign="top" width="300">
<h3><a href="../../../index.htm"><img height="86" width="277" alt=
"C++ Boost" src="../../../boost.png" border="0"></a></h3>
</td>
<td valign="top">
<h1 align="center"><a href="index.html">Boost.Python</a></h1>
<h2 align="center">Projects using Boost.Python</h2>
</td>
</tr>
</table>
<hr>
<h2>Introduction</h2>
<p>This is a partial list of projects using Boost.Python. If you are using
Boost.Python as your Python/C++ binding solution, we'd be proud to list
your project on this page. Just <a href=
"mailto:c++-sig@python.org">post</a> a short description of your project
and how Boost.Python helps you get the job done, and we'll add it to this
page .</p>
<hr>
<h3>Data Analysis</h3>
<dl class="page-index">
<dt><b><a href="http://www.neuralynx.com">NeuraLab</a></b></dt>
<dd>Neuralab is a data analysis environment specifically tailored for
neural data from <a href="http://www.neuralynx.com">Neuralynx</a>
acquisition systems. Neuralab combines presentation quality graphics, a
numerical analysis library, and the <a href=
"http://www.python.org">Python</a> scripting engine in a single
application. With Neuralab, Neuralynx users can perform common analysis
tasks with just a few mouse clicks. More advanced users can create custom
Python scripts, which can optionally be assigned to menus and mouse
clicks.</dd>
</dl>
<dl class="page-index">
<dt><b>TSLib</b> - <a href="http://www.fortressinv.com">Fortress
Investment Group LLC</a></dt>
<dd>
Fortress Investment Group has contracted <a href=
"http://www.boost-consulting.com">Boost Consulting</a> to develop core
internal financial analysis tools in C++ and to prepare Python bindings
for them using Boost.Python.
<p>Tom Barket of Fortress writes:</p>
<blockquote>
We have a large C++ analytical library specialized for research in
finance and economics, built for speed and mission critical
stability. Yet Python offers us the flexibility to test out new ideas
quickly and increase the productivity of our time versus working in
C++. There are several key features which make Python stand out. Its
elegance, stability, and breadth of resources on the web are all
valuable, but the most important is its extensibility, due to its
open source transparency. Boost.Python makes Python extensibility
extremely simple and straightforward, yet preserves a great deal of
power and control.
</blockquote>
</dd>
</dl>
<h3>Educational</h3>
<dl class="page-index">
<dt><a href="http://edu.kde.org/kig"><b>Kig</b></a></dt>
<dd>
<p>KDE Interactive Geometry is a high-school level educational tool,
built for the KDE desktop. It is a nice tool to let students work with
geometrical constructions. It is meant to be the most intuitive, yet
featureful application of its kind.</p>
<p>Versions after 0.6.x (will) support objects built by the user
himself in the Python language. The exporting of the relevant internal
API's were done using Boost.Python, which made the process very
easy.</p>
</dd>
</dl>
<h3>Enterprise Software</h3>
<dl class="page-index">
<dt><b><a href="http://openwbem.sourceforge.net">OpenWBEM</a></b></dt>
<dd>
The OpenWBEM project is an effort to develop an open-source
implementation of Web Based Enterprise Management suitable for
commercial and non-commercial application
<p><a href="mailto:dnuffer@sco.com">Dan Nuffer</a> writes:</p>
<blockquote>
I'm using Boost.Python to wrap the client API of OpenWBEM.This will
make it easier to do rapid prototyping, testing, and scripting when
developing management solutions that use WBEM.
</blockquote>
</dd>
<dt><b><a href="http://www.transversal.com">Metafaq</a></b></dt>
<dd>
Metafaq, from <a href="http://www.transversal.com">Transversal,
Inc.</a>, is an enterprise level online knowledge base management
system.
<p><a href="mailto:ben.young-at-transversal.com">Ben Young</a>
writes:</p>
<blockquote>
Boost.Python is used in an automated process to generate python
bindings to our api which is exposed though multiple backends and
frontends. This allows us to write quick tests and bespoke scripts to
perform one off tasks without having to go through the full
compilation cycle.
</blockquote>
</dd>
</dl>
<h3>Games</h3>
<dl>
<dt><b><a href="http://www.firaxis.com">Civilization IV</a></b></dt>
</dl>
<blockquote>
&ldquo;The fourth game in the PC strategy series that has sold over five
million copies, Sid Meier's Civilization IV is a bold step forward for
the franchise, with spectacular new 3D graphics and all-new single and
multiplayer content. Civilization IV will also set a new standard for
user-modification, allowing gamers to create their own add-ons using
Python and XML.
<p>Sid Meier's Civilization IV will be released for PC in late 2005. For
more information please visit <a href=
"http://www.firaxis.com">http://www.firaxis.com</a> or write <a href=
"mailto:kgilmore@firaxis.com">kgilmore@firaxis.com</a>&rdquo;</p>
</blockquote>
<p>Boost.Python is used as the interface layer between the C++ game code
and Python. Python is used for many purposes in the game, including map
generation, interface screens, game events, tools, tutorials, etc. Most
high-level game operations have been exposed to Python in order to give
modders the power they need to customize the game.</p>
<blockquote>
-Mustafa Thamer, Civ4 Lead Programmer
</blockquote>
<dl class="page-index">
<dt><b><a href="http://vegastrike.sourceforge.net">Vega
Strike</a></b></dt>
<dd>
<a href="http://vegastrike.sourceforge.net">Vega Strike</a> is the 3D
Space Simulator that allows you to trade and bounty hunt in a vast
universe. Players face dangers, decisions, piracy, and aliens.
<p><a href="http://vegastrike.sourceforge.net">Vega Strike</a> has
decided to base its scripting on python, using boost as the layer
between the class hierarchy in python and the class hierarchy in C++.
The result is a very flexible scripting system that treats units as
native python classes when designing missions or writing AI's.</p>
<p>A large economic and planetary simulation is currently being run in
the background in python and the results are returned back into C++ in
the form of various factions' spaceships appearing near worlds that
they are simulated to be near in python if the player is in the general
neighborhood.</p>
</dd>
</dl>
<h3>Graphics</h3>
<dl class="page-index">
<dt><b><a href="http://sourceforge.net/projects/pyosg">OpenSceneGraph
Bindings</a></b></dt>
<dd><a href="mailto:gideon@computer.org">Gideon May</a> has created a set
of bindings for <a href=
"http://www.openscenegraph.org">OpenSceneGraph</a>, a cross-platform
C++/OpenGL library for the real-time visualization.<br>
&nbsp;</dd>
<dt><b><a href=
"http://www.slac.stanford.edu/grp/ek/hippodraw/index.html">HippoDraw</a></b></dt>
<dd>
HippoDraw is a data analysis environment consisting of a canvas upon
which graphs such as histograms, scattter plots, etc, are prsented. It
has a highly interactive GUI interface, but some things you need to do
with scripts. HippoDraw can be run as Python extension module so that
all the manipulation can be done from either Python or the GUI.
<p>Before the web page came online, <a href=
"mailto:Paul_Kunz@SLAC.Stanford.EDU">Paul F. Kunz</a> wrote:</p>
<blockquote>
Don't have a web page for the project, but the organization's is
<a href=
"http://www.slac.stanford.edu">http://www.slac.stanford.edu</a> (the
first web server site in America, I installed it).
</blockquote>Which was just too cool a piece of trivia to omit.<br>
&nbsp;
</dd>
<dt><a href="http://www.iplt.org"><b>IPLT</b></a></dt>
<dd>
<a href="mailto:ansgar.philippsen-at-unibas.ch">Ansgar Philippsen</a>
writes:
<blockquote>
IPLT is an image processing library and toolbox for the structural
biology electron microscopy community. I would call it a
budding/evolving project, since it is currently not in production
stage, but rather under heavy development. Python is used as the main
scripting/interaction level, but also for rapid prototyping, since
the underlying C++ class library is pretty much fully exposed via
boost.python (at least the high-level interface). The combined power
of C++ and Python for this project turned out to be just awesome.
</blockquote><br>
&nbsp;
</dd>
<dt><a href=
"http://www.procoders.net/pythonmagick"><b>PythonMagick</b></a></dt>
<dd>PythonMagick binds the <a href=
"http://www.graphicsmagick.org">GraphicsMagick</a> image manipulation
library to Python.<br>
&nbsp;</dd>
<dt><a href="http://www.vpython.org"><b>VPython</b></a></dt>
<dd>
<a href="mailto:Bruce_Sherwood-at-ncsu.edu">Bruce Sherwood</a> writes:
<blockquote>
VPython is an extension for Python that makes it easy to create
navigable 3D animations, which are generated as a side effect of
computational code. VPython is used in education for various
purposes, including teaching physics and programming, but it has also
been used by research scientists to visualize systems or data in 3D.
</blockquote><br>
&nbsp;
</dd>
</dl>
<h3>Scientific Computing</h3>
<dl class="page index">
<dt><a href="http://camfr.sourceforge.net"><b>CAMFR</b></a></dt>
<dd>
CAMFR is a photonics and electromagnetics modelling tool. Python is
used for computational steering.
<p><a href="mailto:Peter.Bienstman@rug.ac.be">Peter Bienstman</a>
writes:</p>
<blockquote>
Thanks for providing such a great tool!
</blockquote>
</dd>
<dt><a href="http://cctbx.sourceforge.net"><b>cctbx - Computational
Crystallography Toolbox</b></a></dt>
<dd>
Computational Crystallography is concerned with the derivation of
atomic models of crystal structures, given experimental X-ray
diffraction data. The cctbx is an open-source library of fundamental
algorithms for crystallographic computations. The core algorithms are
implemented in C++ and accessed through higher-level Python interfaces.
<p>The cctbx grew together with Boost.Python and is designed from the
ground up as a hybrid Python/C++ system. With one minor exception,
run-time polymorphism is completely handled by Python. C++ compile-time
polymorphism is used to implement performance critical algorithms. The
Python and C++ layers are seamlessly integrated using Boost.Python.</p>
<p>The SourceForge cctbx project is organized in modules to facilitate
use in non-crystallographic applications. The scitbx module implements
a general purpose array family for scientific applications and pure C++
ports of FFTPACK and the L-BFGS quasi-Newton minimizer.</p>
</dd>
<dt><a href="http://www.llnl.gov/CASC/emsolve"><b>EMSolve</b></a></dt>
<dd>EMSolve is a provably stable, charge conserving, and energy
conserving solver for Maxwell's equations.<br>
&nbsp;</dd>
<dt><b><a href="http://cern.ch/gaudi">Gaudi</a></b> and <b><a href=
"http://cern.ch/Gaudi/RootPython/">RootPython</a></b></dt>
<dd>
Gaudi is a framework for particle physics collision data processing
applications developed in the context of the LHCb and ATLAS experiments
at CERN.
<p><a href="mailto:Pere.Mato@cern.ch">Pere Mato Vila</a> writes:</p>
<blockquote>
We are using Boost.Python to provide scripting/interactive capability
to our framework. We have a module called "GaudiPython" implemented
using Boost.Python that allows the interaction with any framework
service or algorithm from python. RootPython also uses Boost.Python
to provide a generic "gateway" between the <a href=
"http://root.cern.ch">ROOT</a> framework and python
<p>Boost.Python is great. We managed very quickly to interface our
framework to python, which is great language. We are trying to
facilitate to our physicists (end-users) a rapid analysis application
development environment based on python. For that, Boost.Python plays
and essential role.</p>
</blockquote>
</dd>
<dt><b><a href="http://www.esss.com.br">ESSS</a></b></dt>
<dd>
ESSS (Engineering Simulation and Scientific Software) is a company that
provides engineering solutions and acts in the brazilian and
south-american market providing products and services related to
Computational Fluid Dynamics and Image Analysis.
<p><a href="mailto:bruno@esss.com.br">Bruno da Silva de Oliveira</a>
writes:</p>
<blockquote>
Recently we moved our work from working exclusively with C++ to an
hybrid-language approach, using Python and C++, with Boost.Python
providing the layer between the two. The results are great so far!
</blockquote>
<p>Two projects have been developed so far with this technology:</p>
<p><b><a href=
"http://www.esss.com.br/index.php?pg=dev_projetos">Simba</a></b>
provides 3D visualization of geological formations gattered from the
simulation of the evolution of oil systems, allowing the user to
analyse various aspects of the simulation, like deformation, pressure
and fluids, along the time of the simulation.</p>
<p><b><a href=
"http://www.esss.com.br/index.php?pg=dev_projetos">Aero</a></b> aims to
construct a CFD with brazilian technology, which involves various
companies and universities. ESSS is responsible for various of the
application modules, including GUI and post-processing of results.</p>
</dd>
<dt><b><a href="http://polybori.sourceforge.net/">PolyBoRi</a></b></dt>
<dd>
<p><a href="mailto:brickenstein@mfo.de"
>Michael Brickenstein</a> writes:</p>
<blockquote>
<p>The core of PolyBoRi is a C++ library, which provides
high-level data types for Boolean polynomials and monomials,
exponent vectors, as well as for the underlying polynomial
rings and subsets of the powerset of the Boolean variables. As
a unique approach, binary decision diagrams are used as
internal storage type for polynomial structures. On top of
this C++-library we provide a Python interface. This allows
parsing of complex polynomial systems, as well as sophisticated
and extendable strategies for Gr&ouml;bner basis computation.
Boost.Python has helped us to create this interface in a
very clean way.</p>
</blockquote>
</dd>
<dt><b><a href="http://www.rationaldiscovery.com">Rational Discovery
LLC</a></b></dt>
<dd>
Rational Discovery provides computational modeling, combinatorial
library design and custom software development services to the
pharmaceutical, biotech and chemical industries. We do a substantial
amount of internal research to develop new approaches for applying
machine-learning techniques to solve chemical problems. Because we're a
small organization and chemistry is a large and complex field, it is
essential that we be able to quickly and easily prototype and test new
algorithms.
<p>For our internal software, we implement core data structures in C
and expose them to Python using Boost.Python. Algorithm development is
done in Python and then translated to C if required (often it's not).
This hybrid development approach not only greatly increases our
productivity, but it also allows "non-developers" (people without C
experience) to take part in method development. Learning C is a
daunting task, but "Python fits your brain." (Thanks to Bruce Eckel for
the quote.)</p>
</dd>
</dl>
<h3>Systems Libraries</h3>
<dl>
<dt><a href="http://itamarst.org/software"><b>Fusion</b></a></dt>
<dd>
<p>Fusion is a library that supports implementing protocols in C++ for
use with Twisted, allowing control over memory allocation strategies,
fast method calls internally, etc.. Fusion supports TCP, UDP and
multicast, and is implemented using the Boost.Python python
bindings.</p>
<p>Fusion is licensed under the MIT license, and available for download
from <a href=
"http://itamarst.org/software">http://itamarst.org/software</a>.</p>
</dd>
</dl>
<h3>Tools</h3>
<dl>
<dt><a href="http://www.jayacard.org"><b>Jayacard</b></a></dt>
<dd>
Jayacard aims at developing a secure portable open source operating
system for contactless smart cards and a complete suite of high quality
development tools to ease smart card OS and application development.
<p>The core of the smart card reader management is written in C++ but
all the development tools are written in the friendly Python language.
Boost plays the fundamental role of binding the tools to our core smart
card reader library.</p>
</dd>
</dl>
<hr>
<p>Revised
<!--webbot bot="Timestamp" S-Type="EDITED" S-Format="%d %B, %Y" startspan -->
29 May, 2008</p>
<p><i>&copy; Copyright <a href="http://www.boost.org/people/dave_abrahams.htm">Dave
Abrahams</a> 2002-2008.</i></p>
</body>
</html>