blob: 9462e6fd3d6c46bdefb3665da90efaf26566440e [file] [log] [blame]
/* statistic_tests.hpp header file
*
* Copyright Jens Maurer 2000
* Distributed under the Boost Software License, Version 1.0. (See
* accompanying file LICENSE_1_0.txt or copy at
* http://www.boost.org/LICENSE_1_0.txt)
*
* $Id: statistic_tests.hpp 60755 2010-03-22 00:45:06Z steven_watanabe $
*
*/
#ifndef STATISTIC_TESTS_HPP
#define STATISTIC_TESTS_HPP
#include <stdexcept>
#include <iterator>
#include <vector>
#include <boost/limits.hpp>
#include <algorithm>
#include <cmath>
#include <boost/random.hpp>
#include <boost/config.hpp>
#include <boost/bind.hpp>
#include "integrate.hpp"
#if defined(BOOST_MSVC) && BOOST_MSVC <= 1300
namespace std
{
inline double pow(double a, double b) { return ::pow(a,b); }
inline double ceil(double x) { return ::ceil(x); }
} // namespace std
#endif
template<class T>
inline T fac(int k)
{
T result = 1;
for(T i = 2; i <= k; ++i)
result *= i;
return result;
}
template<class T>
T binomial(int n, int k)
{
if(k < n/2)
k = n-k;
T result = 1;
for(int i = k+1; i<= n; ++i)
result *= i;
return result / fac<T>(n-k);
}
template<class T>
T stirling2(int n, int m)
{
T sum = 0;
for(int k = 0; k <= m; ++k)
sum += binomial<T>(m, k) * std::pow(double(k), n) *
( (m-k)%2 == 0 ? 1 : -1);
return sum / fac<T>(m);
}
/*
* Experiments which create an empirical distribution in classes,
* suitable for the chi-square test.
*/
// std::floor(gen() * classes)
class experiment_base
{
public:
experiment_base(int cls) : _classes(cls) { }
unsigned int classes() const { return _classes; }
protected:
unsigned int _classes;
};
class equidistribution_experiment : public experiment_base
{
public:
explicit equidistribution_experiment(unsigned int classes)
: experiment_base(classes) { }
template<class NumberGenerator, class Counter>
void run(NumberGenerator & f, Counter & count, int n) const
{
assert((f.min)() == 0 &&
static_cast<unsigned int>((f.max)()) == classes()-1);
for(int i = 0; i < n; ++i)
count(f());
}
double probability(int i) const { return 1.0/classes(); }
};
// two-dimensional equidistribution experiment
class equidistribution_2d_experiment : public equidistribution_experiment
{
public:
explicit equidistribution_2d_experiment(unsigned int classes)
: equidistribution_experiment(classes) { }
template<class NumberGenerator, class Counter>
void run(NumberGenerator & f, Counter & count, int n) const
{
unsigned int range = (f.max)()+1;
assert((f.min)() == 0 && range*range == classes());
for(int i = 0; i < n; ++i) {
int y1 = f();
int y2 = f();
count(y1 + range * y2);
}
}
};
// distribution experiment: assume a probability density and
// count events so that an equidistribution results.
class distribution_experiment : public equidistribution_experiment
{
public:
template<class Distribution>
distribution_experiment(Distribution dist , unsigned int classes)
: equidistribution_experiment(classes), limit(classes)
{
for(unsigned int i = 0; i < classes-1; ++i)
limit[i] = quantile(dist, (i+1)*0.05);
limit[classes-1] = std::numeric_limits<double>::infinity();
if(limit[classes-1] < (std::numeric_limits<double>::max)())
limit[classes-1] = (std::numeric_limits<double>::max)();
#if 0
std::cout << __PRETTY_FUNCTION__ << ": ";
for(unsigned int i = 0; i < classes; ++i)
std::cout << limit[i] << " ";
std::cout << std::endl;
#endif
}
template<class NumberGenerator, class Counter>
void run(NumberGenerator & f, Counter & count, int n) const
{
for(int i = 0; i < n; ++i) {
limits_type::const_iterator it =
std::lower_bound(limit.begin(), limit.end(), f());
count(it-limit.begin());
}
}
private:
typedef std::vector<double> limits_type;
limits_type limit;
};
template<bool up, bool is_float>
struct runs_direction_helper
{
template<class T>
static T init(T)
{
return (std::numeric_limits<T>::max)();
}
};
template<>
struct runs_direction_helper<true, true>
{
template<class T>
static T init(T)
{
return -(std::numeric_limits<T>::max)();
}
};
template<>
struct runs_direction_helper<true, false>
{
template<class T>
static T init(T)
{
return (std::numeric_limits<T>::min)();
}
};
// runs-up/runs-down experiment
template<bool up>
class runs_experiment : public experiment_base
{
public:
explicit runs_experiment(unsigned int classes) : experiment_base(classes) { }
template<class NumberGenerator, class Counter>
void run(NumberGenerator & f, Counter & count, int n) const
{
typedef typename NumberGenerator::result_type result_type;
result_type init =
runs_direction_helper<
up,
!std::numeric_limits<result_type>::is_integer
>::init(result_type());
result_type previous = init;
unsigned int length = 0;
for(int i = 0; i < n; ++i) {
result_type val = f();
if(up ? previous <= val : previous >= val) {
previous = val;
++length;
} else {
count((std::min)(length, classes())-1);
length = 0;
previous = init;
// don't use this value, so that runs are independent
}
}
}
double probability(unsigned int r) const
{
if(r == classes()-1)
return 1.0/fac<double>(classes());
else
return static_cast<double>(r+1)/fac<double>(r+2);
}
};
// gap length experiment
class gap_experiment : public experiment_base
{
public:
template<class Dist>
gap_experiment(unsigned int classes, const Dist & dist, double alpha, double beta)
: experiment_base(classes), alpha(alpha), beta(beta), low(quantile(dist, alpha)), high(quantile(dist, beta)) {}
template<class NumberGenerator, class Counter>
void run(NumberGenerator & f, Counter & count, int n) const
{
typedef typename NumberGenerator::result_type result_type;
unsigned int length = 0;
for(int i = 0; i < n; ) {
result_type value = f();
if(value < low || value > high)
++length;
else {
count((std::min)(length, classes()-1));
length = 0;
++i;
}
}
}
double probability(unsigned int r) const
{
double p = beta-alpha;
if(r == classes()-1)
return std::pow(1-p, static_cast<double>(r));
else
return p * std::pow(1-p, static_cast<double>(r));
}
private:
double alpha, beta;
double low, high;
};
// poker experiment
class poker_experiment : public experiment_base
{
public:
poker_experiment(unsigned int d, unsigned int k)
: experiment_base(k), range(d)
{
assert(range > 1);
}
template<class UniformRandomNumberGenerator, class Counter>
void run(UniformRandomNumberGenerator & f, Counter & count, int n) const
{
typedef typename UniformRandomNumberGenerator::result_type result_type;
assert(std::numeric_limits<result_type>::is_integer);
assert((f.min)() == 0);
assert((f.max)() == static_cast<result_type>(range-1));
std::vector<result_type> v(classes());
for(int i = 0; i < n; ++i) {
for(unsigned int j = 0; j < classes(); ++j)
v[j] = f();
std::sort(v.begin(), v.end());
result_type prev = v[0];
int r = 1; // count different values in v
for(unsigned int i = 1; i < classes(); ++i) {
if(prev != v[i]) {
prev = v[i];
++r;
}
}
count(r-1);
}
}
double probability(unsigned int r) const
{
++r; // transform to 1 <= r <= 5
double result = range;
for(unsigned int i = 1; i < r; ++i)
result *= range-i;
return result / std::pow(range, static_cast<double>(classes())) *
stirling2<double>(classes(), r);
}
private:
unsigned int range;
};
// coupon collector experiment
class coupon_collector_experiment : public experiment_base
{
public:
coupon_collector_experiment(unsigned int d, unsigned int cls)
: experiment_base(cls), d(d)
{
assert(d > 1);
}
template<class UniformRandomNumberGenerator, class Counter>
void run(UniformRandomNumberGenerator & f, Counter & count, int n) const
{
typedef typename UniformRandomNumberGenerator::result_type result_type;
assert(std::numeric_limits<result_type>::is_integer);
assert((f.min)() == 0);
assert((f.max)() == static_cast<result_type>(d-1));
std::vector<bool> occurs(d);
for(int i = 0; i < n; ++i) {
occurs.assign(d, false);
unsigned int r = 0; // length of current sequence
int q = 0; // number of non-duplicates in current set
for(;;) {
result_type val = f();
++r;
if(!occurs[val]) { // new set element
occurs[val] = true;
++q;
if(q == d)
break; // one complete set
}
}
count((std::min)(r-d, classes()-1));
}
}
double probability(unsigned int r) const
{
if(r == classes()-1)
return 1-fac<double>(d)/std::pow(d, static_cast<double>(d+classes()-2))*
stirling2<double>(d+classes()-2, d);
else
return fac<double>(d)/std::pow(d, static_cast<double>(d+r)) *
stirling2<double>(d+r-1, d-1);
}
private:
int d;
};
// permutation test
class permutation_experiment : public equidistribution_experiment
{
public:
permutation_experiment(unsigned int t)
: equidistribution_experiment(fac<int>(t)), t(t)
{
assert(t > 1);
}
template<class UniformRandomNumberGenerator, class Counter>
void run(UniformRandomNumberGenerator & f, Counter & count, int n) const
{
typedef typename UniformRandomNumberGenerator::result_type result_type;
std::vector<result_type> v(t);
for(int i = 0; i < n; ++i) {
for(int j = 0; j < t; ++j) {
v[j] = f();
}
int x = 0;
for(int r = t-1; r > 0; r--) {
typename std::vector<result_type>::iterator it =
std::max_element(v.begin(), v.begin()+r+1);
x = (r+1)*x + (it-v.begin());
std::iter_swap(it, v.begin()+r);
}
count(x);
}
}
private:
int t;
};
// birthday spacing experiment test
class birthday_spacing_experiment : public experiment_base
{
public:
birthday_spacing_experiment(unsigned int d, int n, int m)
: experiment_base(d), n(n), m(m)
{
}
template<class UniformRandomNumberGenerator, class Counter>
void run(UniformRandomNumberGenerator & f, Counter & count, int n_total) const
{
typedef typename UniformRandomNumberGenerator::result_type result_type;
assert(std::numeric_limits<result_type>::is_integer);
assert((f.min)() == 0);
assert((f.max)() == static_cast<result_type>(m-1));
for(int j = 0; j < n_total; j++) {
std::vector<result_type> v(n);
std::generate_n(v.begin(), n, f);
std::sort(v.begin(), v.end());
std::vector<result_type> spacing(n);
for(int i = 0; i < n-1; i++)
spacing[i] = v[i+1]-v[i];
spacing[n-1] = v[0] + m - v[n-1];
std::sort(spacing.begin(), spacing.end());
unsigned int k = 0;
for(int i = 0; i < n-1; ++i) {
if(spacing[i] == spacing[i+1])
++k;
}
count((std::min)(k, classes()-1));
}
}
double probability(unsigned int r) const
{
assert(classes() == 4);
assert(m == (1<<25));
assert(n == 512);
static const double prob[] = { 0.368801577, 0.369035243, 0.183471182,
0.078691997 };
return prob[r];
}
private:
int n, m;
};
/*
* Misc. helper functions.
*/
template<class Float>
struct distribution_function
{
typedef Float result_type;
typedef Float argument_type;
typedef Float first_argument_type;
typedef Float second_argument_type;
};
// computes P(K_n <= t) or P(t1 <= K_n <= t2). See Knuth, 3.3.1
class kolmogorov_smirnov_probability : public distribution_function<double>
{
public:
kolmogorov_smirnov_probability(int n)
: approx(n > 50), n(n), sqrt_n(std::sqrt(double(n)))
{
if(!approx)
n_n = std::pow(static_cast<double>(n), n);
}
double cdf(double t) const
{
if(approx) {
return 1-std::exp(-2*t*t)*(1-2.0/3.0*t/sqrt_n);
} else {
t *= sqrt_n;
double sum = 0;
for(int k = static_cast<int>(std::ceil(t)); k <= n; k++)
sum += binomial<double>(n, k) * std::pow(k-t, k) *
std::pow(t+n-k, n-k-1);
return 1 - t/n_n * sum;
}
}
//double operator()(double t1, double t2) const
//{ return operator()(t2) - operator()(t1); }
private:
bool approx;
int n;
double sqrt_n;
double n_n;
};
inline double cdf(const kolmogorov_smirnov_probability& dist, double val)
{
return dist.cdf(val);
}
inline double quantile(const kolmogorov_smirnov_probability& dist, double val)
{
return invert_monotone_inc(boost::bind(&cdf, dist, _1), val, 0.0, 1000.0);
}
/*
* Experiments for generators with continuous distribution functions
*/
class kolmogorov_experiment
{
public:
kolmogorov_experiment(int n) : n(n), ksp(n) { }
template<class NumberGenerator, class Distribution>
double run(NumberGenerator & gen, Distribution distrib) const
{
const int m = n;
typedef std::vector<double> saved_temp;
saved_temp a(m,1.0), b(m,0);
std::vector<int> c(m,0);
for(int i = 0; i < n; ++i) {
double val = static_cast<double>(gen());
double y = cdf(distrib, val);
int k = static_cast<int>(std::floor(m*y));
if(k >= m)
--k; // should not happen
a[k] = (std::min)(a[k], y);
b[k] = (std::max)(b[k], y);
++c[k];
}
double kplus = 0, kminus = 0;
int j = 0;
for(int k = 0; k < m; ++k) {
if(c[k] > 0) {
kminus = (std::max)(kminus, a[k]-j/static_cast<double>(n));
j += c[k];
kplus = (std::max)(kplus, j/static_cast<double>(n) - b[k]);
}
}
kplus *= std::sqrt(double(n));
kminus *= std::sqrt(double(n));
// std::cout << "k+ " << kplus << " k- " << kminus << std::endl;
return kplus;
}
double probability(double x) const
{
return cdf(ksp, x);
}
private:
int n;
kolmogorov_smirnov_probability ksp;
};
struct power_distribution
{
power_distribution(double t) : t(t) {}
double t;
};
double cdf(const power_distribution& dist, double val)
{
return std::pow(val, dist.t);
}
// maximum-of-t test (KS-based)
template<class UniformRandomNumberGenerator>
class maximum_experiment
{
public:
typedef UniformRandomNumberGenerator base_type;
maximum_experiment(base_type & f, int n, int t) : f(f), ke(n), t(t)
{ }
double operator()() const
{
generator gen(f, t);
return ke.run(gen, power_distribution(t));
}
private:
struct generator {
generator(base_type & f, int t) : f(f, boost::uniform_01<>()), t(t) { }
double operator()()
{
double mx = f();
for(int i = 1; i < t; ++i)
mx = (std::max)(mx, f());
return mx;
}
private:
boost::variate_generator<base_type&, boost::uniform_01<> > f;
int t;
};
base_type & f;
kolmogorov_experiment ke;
int t;
};
// compute a chi-square value for the distribution approximation error
template<class ForwardIterator, class UnaryFunction>
typename UnaryFunction::result_type
chi_square_value(ForwardIterator first, ForwardIterator last,
UnaryFunction probability)
{
typedef std::iterator_traits<ForwardIterator> iter_traits;
typedef typename iter_traits::value_type counter_type;
typedef typename UnaryFunction::result_type result_type;
unsigned int classes = std::distance(first, last);
result_type sum = 0;
counter_type n = 0;
for(unsigned int i = 0; i < classes; ++first, ++i) {
counter_type count = *first;
n += count;
sum += (count/probability(i)) * count; // avoid overflow
}
#if 0
for(unsigned int i = 0; i < classes; ++i) {
// std::cout << (n*probability(i)) << " ";
if(n * probability(i) < 5)
std::cerr << "Not enough test runs for slot " << i
<< " p=" << probability(i) << ", n=" << n
<< std::endl;
}
#endif
// std::cout << std::endl;
// throw std::invalid_argument("not enough test runs");
return sum/n - n;
}
template<class RandomAccessContainer>
class generic_counter
{
public:
explicit generic_counter(unsigned int classes) : container(classes, 0) { }
void operator()(int i)
{
assert(i >= 0);
assert(static_cast<unsigned int>(i) < container.size());
++container[i];
}
typename RandomAccessContainer::const_iterator begin() const
{ return container.begin(); }
typename RandomAccessContainer::const_iterator end() const
{ return container.end(); }
private:
RandomAccessContainer container;
};
// chi_square test
template<class Experiment, class Generator>
double run_experiment(const Experiment & experiment, Generator & gen, int n)
{
generic_counter<std::vector<int> > v(experiment.classes());
experiment.run(gen, v, n);
return chi_square_value(v.begin(), v.end(),
std::bind1st(std::mem_fun_ref(&Experiment::probability),
experiment));
}
// chi_square test
template<class Experiment, class Generator>
double run_experiment(const Experiment & experiment, const Generator & gen, int n)
{
generic_counter<std::vector<int> > v(experiment.classes());
experiment.run(gen, v, n);
return chi_square_value(v.begin(), v.end(),
std::bind1st(std::mem_fun_ref(&Experiment::probability),
experiment));
}
// number generator with experiment results (for nesting)
template<class Experiment, class Generator>
class experiment_generator_t
{
public:
experiment_generator_t(const Experiment & exper, Generator & gen, int n)
: experiment(exper), generator(gen), n(n) { }
double operator()() const { return run_experiment(experiment, generator, n); }
private:
const Experiment & experiment;
Generator & generator;
int n;
};
template<class Experiment, class Generator>
experiment_generator_t<Experiment, Generator>
experiment_generator(const Experiment & e, Generator & gen, int n)
{
return experiment_generator_t<Experiment, Generator>(e, gen, n);
}
template<class Experiment, class Generator, class Distribution>
class ks_experiment_generator_t
{
public:
ks_experiment_generator_t(const Experiment & exper, Generator & gen,
const Distribution & distrib)
: experiment(exper), generator(gen), distribution(distrib) { }
double operator()() const { return experiment.run(generator, distribution); }
private:
const Experiment & experiment;
Generator & generator;
Distribution distribution;
};
template<class Experiment, class Generator, class Distribution>
ks_experiment_generator_t<Experiment, Generator, Distribution>
ks_experiment_generator(const Experiment & e, Generator & gen,
const Distribution & distrib)
{
return ks_experiment_generator_t<Experiment, Generator, Distribution>
(e, gen, distrib);
}
#endif /* STATISTIC_TESTS_HPP */