blob: 847c9daf7c87eeccc2ac217f41f36512fbf95239 [file] [log] [blame]
/*
* A test program for boost/rational.hpp.
* Change the typedef at the beginning of run_tests() to try out different
* integer types. (These tests are designed only for signed integer
* types. They should work for short, int and long.)
*
* (C) Copyright Stephen Silver, 2001. Permission to copy, use, modify, sell
* and distribute this software is granted provided this copyright notice
* appears in all copies. This software is provided "as is" without express or
* implied warranty, and with no claim as to its suitability for any purpose.
*
* Incorporated into the boost rational number library, and modified and
* extended, by Paul Moore, with permission.
*/
// Revision History
// 05 Nov 06 Add testing of zero-valued denominators & divisors; casting with
// types that are not implicitly convertible (Daryle Walker)
// 04 Nov 06 Resolve GCD issue with depreciation (Daryle Walker)
// 02 Nov 06 Add testing for operator<(int_type) w/ unsigneds (Daryle Walker)
// 31 Oct 06 Add testing for operator<(rational) overflow (Daryle Walker)
// 18 Oct 06 Various fixes for old compilers (Joaquín M López Muñoz)
// 27 Dec 05 Add testing for Boolean conversion operator (Daryle Walker)
// 24 Dec 05 Change code to use Boost.Test (Daryle Walker)
// 04 Mar 01 Patches for Intel C++ and GCC (David Abrahams)
#define BOOST_TEST_MAIN "Boost::Rational unit tests"
#include <boost/config.hpp>
#include <boost/mpl/list.hpp>
#include <boost/operators.hpp>
#include <boost/preprocessor/stringize.hpp>
#include <boost/math/common_factor_rt.hpp>
#include <boost/rational.hpp>
#include <boost/test/unit_test.hpp>
#include <boost/test/floating_point_comparison.hpp>
#include <boost/test/test_case_template.hpp>
#include <climits>
#include <iostream>
#include <istream>
#include <limits>
#include <ostream>
#include <sstream>
#include <stdexcept>
#include <string>
// We can override this on the compile, as -DINT_TYPE=short or whatever.
// The default test is against rational<long>.
#ifndef INT_TYPE
#define INT_TYPE long
#endif
namespace {
class MyOverflowingUnsigned;
// This is a trivial user-defined wrapper around the built in int type.
// It can be used as a test type for rational<>
class MyInt : boost::operators<MyInt>
{
friend class MyOverflowingUnsigned;
int val;
public:
MyInt(int n = 0) : val(n) {}
friend MyInt operator+ (const MyInt&);
friend MyInt operator- (const MyInt&);
MyInt& operator+= (const MyInt& rhs) { val += rhs.val; return *this; }
MyInt& operator-= (const MyInt& rhs) { val -= rhs.val; return *this; }
MyInt& operator*= (const MyInt& rhs) { val *= rhs.val; return *this; }
MyInt& operator/= (const MyInt& rhs) { val /= rhs.val; return *this; }
MyInt& operator%= (const MyInt& rhs) { val %= rhs.val; return *this; }
MyInt& operator|= (const MyInt& rhs) { val |= rhs.val; return *this; }
MyInt& operator&= (const MyInt& rhs) { val &= rhs.val; return *this; }
MyInt& operator^= (const MyInt& rhs) { val ^= rhs.val; return *this; }
const MyInt& operator++() { ++val; return *this; }
const MyInt& operator--() { --val; return *this; }
bool operator< (const MyInt& rhs) const { return val < rhs.val; }
bool operator== (const MyInt& rhs) const { return val == rhs.val; }
bool operator! () const { return !val; }
friend std::istream& operator>>(std::istream&, MyInt&);
friend std::ostream& operator<<(std::ostream&, const MyInt&);
};
inline MyInt operator+(const MyInt& rhs) { return rhs; }
inline MyInt operator-(const MyInt& rhs) { return MyInt(-rhs.val); }
inline std::istream& operator>>(std::istream& is, MyInt& i) { is >> i.val; return is; }
inline std::ostream& operator<<(std::ostream& os, const MyInt& i) { os << i.val; return os; }
inline MyInt abs(MyInt rhs) { if (rhs < MyInt()) rhs = -rhs; return rhs; }
// This is an "unsigned" wrapper, that throws on overflow. It can be used to
// test rational<> when an operation goes out of bounds.
class MyOverflowingUnsigned
: private boost::unit_steppable<MyOverflowingUnsigned>
, private boost::ordered_euclidian_ring_operators1<MyOverflowingUnsigned>
{
// Helper type-aliases
typedef MyOverflowingUnsigned self_type;
typedef unsigned self_type::* bool_type;
// Member data
unsigned v_;
public:
// Exception base class
class exception_base { protected: virtual ~exception_base() throw() {} };
// Divide-by-zero exception class
class divide_by_0_error
: public virtual exception_base
, public std::domain_error
{
public:
explicit divide_by_0_error( std::string const &w )
: std::domain_error( w ) {}
virtual ~divide_by_0_error() throw() {}
};
// Overflow exception class
class overflowing_error
: public virtual exception_base
, public std::overflow_error
{
public:
explicit overflowing_error( std::string const &w )
: std::overflow_error( w ) {}
virtual ~overflowing_error() throw() {}
};
// Lifetime management (use automatic dtr & copy-ctr)
MyOverflowingUnsigned( unsigned v = 0 ) : v_( v ) {}
explicit MyOverflowingUnsigned( MyInt const &m ) : v_( m.val ) {}
// Operators (use automatic copy-assignment); arithmetic & comparison only
self_type & operator ++()
{
if ( this->v_ == UINT_MAX ) throw overflowing_error( "increment" );
else ++this->v_;
return *this;
}
self_type & operator --()
{
if ( !this->v_ ) throw overflowing_error( "decrement" );
else --this->v_;
return *this;
}
operator bool_type() const { return this->v_ ? &self_type::v_ : 0; }
bool operator !() const { return !this->v_; }
self_type operator +() const { return self_type( +this->v_ ); }
self_type operator -() const { return self_type( -this->v_ ); }
bool operator <(self_type const &r) const { return this->v_ < r.v_; }
bool operator ==(self_type const &r) const { return this->v_ == r.v_; }
self_type & operator *=( self_type const &r )
{
if ( r.v_ && this->v_ > UINT_MAX / r.v_ )
{
throw overflowing_error( "oversized factors" );
}
this->v_ *= r.v_;
return *this;
}
self_type & operator /=( self_type const &r )
{
if ( !r.v_ ) throw divide_by_0_error( "division" );
this->v_ /= r.v_;
return *this;
}
self_type & operator %=( self_type const &r )
{
if ( !r.v_ ) throw divide_by_0_error( "modulus" );
this->v_ %= r.v_;
return *this;
}
self_type & operator +=( self_type const &r )
{
if ( this->v_ > UINT_MAX - r.v_ )
{
throw overflowing_error( "oversized addends" );
}
this->v_ += r.v_;
return *this;
}
self_type & operator -=( self_type const &r )
{
if ( this->v_ < r.v_ )
{
throw overflowing_error( "oversized subtrahend" );
}
this->v_ -= r.v_;
return *this;
}
// Input & output
template < typename Ch, class Tr >
friend std::basic_istream<Ch, Tr> &
operator >>( std::basic_istream<Ch, Tr> &i, self_type &x )
{ return i >> x.v_; }
template < typename Ch, class Tr >
friend std::basic_ostream<Ch, Tr> &
operator <<( std::basic_ostream<Ch, Tr> &o, self_type const &x )
{ return o << x.v_; }
}; // MyOverflowingUnsigned
inline MyOverflowingUnsigned abs( MyOverflowingUnsigned const &x ) { return x; }
} // namespace
// Specialize numeric_limits for the custom types
namespace std
{
template < >
class numeric_limits< MyInt >
{
typedef numeric_limits<int> limits_type;
public:
static const bool is_specialized = limits_type::is_specialized;
static MyInt min BOOST_PREVENT_MACRO_SUBSTITUTION () throw() { return (limits_type::min)(); }
static MyInt max BOOST_PREVENT_MACRO_SUBSTITUTION () throw() { return (limits_type::max)(); }
static const int digits = limits_type::digits;
static const int digits10 = limits_type::digits10;
static const bool is_signed = limits_type::is_signed;
static const bool is_integer = limits_type::is_integer;
static const bool is_exact = limits_type::is_exact;
static const int radix = limits_type::radix;
static MyInt epsilon() throw() { return limits_type::epsilon(); }
static MyInt round_error() throw() { return limits_type::round_error(); }
static const int min_exponent = limits_type::min_exponent;
static const int min_exponent10 = limits_type::min_exponent10;
static const int max_exponent = limits_type::max_exponent;
static const int max_exponent10 = limits_type::max_exponent10;
static const bool has_infinity = limits_type::has_infinity;
static const bool has_quiet_NaN = limits_type::has_quiet_NaN;
static const bool has_signaling_NaN = limits_type::has_signaling_NaN;
static const float_denorm_style has_denorm = limits_type::has_denorm;
static const bool has_denorm_loss = limits_type::has_denorm_loss;
static MyInt infinity() throw() { return limits_type::infinity(); }
static MyInt quiet_NaN() throw() { return limits_type::quiet_NaN(); }
static MyInt signaling_NaN() throw() {return limits_type::signaling_NaN();}
static MyInt denorm_min() throw() { return limits_type::denorm_min(); }
static const bool is_iec559 = limits_type::is_iec559;
static const bool is_bounded = limits_type::is_bounded;
static const bool is_modulo = limits_type::is_modulo;
static const bool traps = limits_type::traps;
static const bool tinyness_before = limits_type::tinyness_before;
static const float_round_style round_style = limits_type::round_style;
}; // std::numeric_limits<MyInt>
template < >
class numeric_limits< MyOverflowingUnsigned >
{
typedef numeric_limits<unsigned> limits_type;
public:
static const bool is_specialized = limits_type::is_specialized;
static MyOverflowingUnsigned min BOOST_PREVENT_MACRO_SUBSTITUTION () throw() { return (limits_type::min)(); }
static MyOverflowingUnsigned max BOOST_PREVENT_MACRO_SUBSTITUTION () throw() { return (limits_type::max)(); }
static const int digits = limits_type::digits;
static const int digits10 = limits_type::digits10;
static const bool is_signed = limits_type::is_signed;
static const bool is_integer = limits_type::is_integer;
static const bool is_exact = limits_type::is_exact;
static const int radix = limits_type::radix;
static MyOverflowingUnsigned epsilon() throw()
{ return limits_type::epsilon(); }
static MyOverflowingUnsigned round_error() throw()
{return limits_type::round_error();}
static const int min_exponent = limits_type::min_exponent;
static const int min_exponent10 = limits_type::min_exponent10;
static const int max_exponent = limits_type::max_exponent;
static const int max_exponent10 = limits_type::max_exponent10;
static const bool has_infinity = limits_type::has_infinity;
static const bool has_quiet_NaN = limits_type::has_quiet_NaN;
static const bool has_signaling_NaN = limits_type::has_signaling_NaN;
static const float_denorm_style has_denorm = limits_type::has_denorm;
static const bool has_denorm_loss = limits_type::has_denorm_loss;
static MyOverflowingUnsigned infinity() throw()
{ return limits_type::infinity(); }
static MyOverflowingUnsigned quiet_NaN() throw()
{ return limits_type::quiet_NaN(); }
static MyOverflowingUnsigned signaling_NaN() throw()
{ return limits_type::signaling_NaN(); }
static MyOverflowingUnsigned denorm_min() throw()
{ return limits_type::denorm_min(); }
static const bool is_iec559 = limits_type::is_iec559;
static const bool is_bounded = limits_type::is_bounded;
static const bool is_modulo = limits_type::is_modulo;
static const bool traps = limits_type::traps;
static const bool tinyness_before = limits_type::tinyness_before;
static const float_round_style round_style = limits_type::round_style;
}; // std::numeric_limits<MyOverflowingUnsigned>
} // namespace std
namespace {
// This fixture replaces the check of rational's packing at the start of main.
class rational_size_check
{
typedef INT_TYPE int_type;
typedef ::boost::rational<int_type> rational_type;
public:
rational_size_check()
{
using ::std::cout;
char const * const int_name = BOOST_PP_STRINGIZE( INT_TYPE );
cout << "Running tests for boost::rational<" << int_name << ">\n\n";
cout << "Implementation issue: the minimal size for a rational\n"
<< "is twice the size of the underlying integer type.\n\n";
cout << "Checking to see if space is being wasted.\n"
<< "\tsizeof(" << int_name << ") == " << sizeof( int_type )
<< "\n";
cout << "\tsizeof(boost::rational<" << int_name << ">) == "
<< sizeof( rational_type ) << "\n\n";
cout << "Implementation has "
<< (
(sizeof( rational_type ) > 2u * sizeof( int_type ))
? "included padding bytes"
: "minimal size"
)
<< "\n\n";
}
};
// This fixture groups all the common settings.
class my_configuration
{
public:
template < typename T >
class hook
{
public:
typedef ::boost::rational<T> rational_type;
private:
struct parts { rational_type parts_[ 9 ]; };
static parts generate_rationals()
{
rational_type r1, r2( 0 ), r3( 1 ), r4( -3 ), r5( 7, 2 ),
r6( 5, 15 ), r7( 14, -21 ), r8( -4, 6 ),
r9( -14, -70 );
parts result;
result.parts_[0] = r1;
result.parts_[1] = r2;
result.parts_[2] = r3;
result.parts_[3] = r4;
result.parts_[4] = r5;
result.parts_[5] = r6;
result.parts_[6] = r7;
result.parts_[7] = r8;
result.parts_[8] = r9;
return result;
}
parts p_; // Order Dependency
public:
rational_type ( &r_ )[ 9 ]; // Order Dependency
hook() : p_( generate_rationals() ), r_( p_.parts_ ) {}
};
};
// Instead of controlling the integer type needed with a #define, use a list of
// all available types. Since the headers #included don't change because of the
// integer #define, only the built-in types and MyInt are available. (Any other
// arbitrary integer type introduced by the #define would get compiler errors
// because its header can't be #included.)
typedef ::boost::mpl::list<short, int, long> builtin_signed_test_types;
typedef ::boost::mpl::list<short, int, long, MyInt> all_signed_test_types;
// Without these explicit instantiations, MSVC++ 6.5/7.0 does not find
// some friend operators in certain contexts.
::boost::rational<short> dummy1;
::boost::rational<int> dummy2;
::boost::rational<long> dummy3;
::boost::rational<MyInt> dummy4;
::boost::rational<MyOverflowingUnsigned> dummy5;
// Should there be regular tests with unsigned integer types?
} // namespace
// Check if rational is the smallest size possible
BOOST_GLOBAL_FIXTURE( rational_size_check )
#if BOOST_CONTROL_RATIONAL_HAS_GCD
// The factoring function template suite
BOOST_AUTO_TEST_SUITE( factoring_suite )
// GCD tests
BOOST_AUTO_TEST_CASE_TEMPLATE( gcd_test, T, all_signed_test_types )
{
BOOST_CHECK_EQUAL( boost::gcd<T>( 1, -1), static_cast<T>( 1) );
BOOST_CHECK_EQUAL( boost::gcd<T>( -1, 1), static_cast<T>( 1) );
BOOST_CHECK_EQUAL( boost::gcd<T>( 1, 1), static_cast<T>( 1) );
BOOST_CHECK_EQUAL( boost::gcd<T>( -1, -1), static_cast<T>( 1) );
BOOST_CHECK_EQUAL( boost::gcd<T>( 0, 0), static_cast<T>( 0) );
BOOST_CHECK_EQUAL( boost::gcd<T>( 7, 0), static_cast<T>( 7) );
BOOST_CHECK_EQUAL( boost::gcd<T>( 0, 9), static_cast<T>( 9) );
BOOST_CHECK_EQUAL( boost::gcd<T>( -7, 0), static_cast<T>( 7) );
BOOST_CHECK_EQUAL( boost::gcd<T>( 0, -9), static_cast<T>( 9) );
BOOST_CHECK_EQUAL( boost::gcd<T>( 42, 30), static_cast<T>( 6) );
BOOST_CHECK_EQUAL( boost::gcd<T>( 6, -9), static_cast<T>( 3) );
BOOST_CHECK_EQUAL( boost::gcd<T>(-10, -10), static_cast<T>(10) );
BOOST_CHECK_EQUAL( boost::gcd<T>(-25, -10), static_cast<T>( 5) );
}
// LCM tests
BOOST_AUTO_TEST_CASE_TEMPLATE( lcm_test, T, all_signed_test_types )
{
BOOST_CHECK_EQUAL( boost::lcm<T>( 1, -1), static_cast<T>( 1) );
BOOST_CHECK_EQUAL( boost::lcm<T>( -1, 1), static_cast<T>( 1) );
BOOST_CHECK_EQUAL( boost::lcm<T>( 1, 1), static_cast<T>( 1) );
BOOST_CHECK_EQUAL( boost::lcm<T>( -1, -1), static_cast<T>( 1) );
BOOST_CHECK_EQUAL( boost::lcm<T>( 0, 0), static_cast<T>( 0) );
BOOST_CHECK_EQUAL( boost::lcm<T>( 6, 0), static_cast<T>( 0) );
BOOST_CHECK_EQUAL( boost::lcm<T>( 0, 7), static_cast<T>( 0) );
BOOST_CHECK_EQUAL( boost::lcm<T>( -5, 0), static_cast<T>( 0) );
BOOST_CHECK_EQUAL( boost::lcm<T>( 0, -4), static_cast<T>( 0) );
BOOST_CHECK_EQUAL( boost::lcm<T>( 18, 30), static_cast<T>(90) );
BOOST_CHECK_EQUAL( boost::lcm<T>( -6, 9), static_cast<T>(18) );
BOOST_CHECK_EQUAL( boost::lcm<T>(-10, -10), static_cast<T>(10) );
BOOST_CHECK_EQUAL( boost::lcm<T>( 25, -10), static_cast<T>(50) );
}
BOOST_AUTO_TEST_SUITE_END()
#endif // BOOST_CONTROL_RATIONAL_HAS_GCD
// The basic test suite
BOOST_FIXTURE_TEST_SUITE( basic_rational_suite, my_configuration )
// Initialization tests
BOOST_AUTO_TEST_CASE_TEMPLATE( rational_initialization_test, T,
all_signed_test_types )
{
my_configuration::hook<T> h;
boost::rational<T> &r1 = h.r_[ 0 ], &r2 = h.r_[ 1 ], &r3 = h.r_[ 2 ],
&r4 = h.r_[ 3 ], &r5 = h.r_[ 4 ], &r6 = h.r_[ 5 ],
&r7 = h.r_[ 6 ], &r8 = h.r_[ 7 ], &r9 = h.r_[ 8 ];
BOOST_CHECK_EQUAL( r1.numerator(), static_cast<T>( 0) );
BOOST_CHECK_EQUAL( r2.numerator(), static_cast<T>( 0) );
BOOST_CHECK_EQUAL( r3.numerator(), static_cast<T>( 1) );
BOOST_CHECK_EQUAL( r4.numerator(), static_cast<T>(-3) );
BOOST_CHECK_EQUAL( r5.numerator(), static_cast<T>( 7) );
BOOST_CHECK_EQUAL( r6.numerator(), static_cast<T>( 1) );
BOOST_CHECK_EQUAL( r7.numerator(), static_cast<T>(-2) );
BOOST_CHECK_EQUAL( r8.numerator(), static_cast<T>(-2) );
BOOST_CHECK_EQUAL( r9.numerator(), static_cast<T>( 1) );
BOOST_CHECK_EQUAL( r1.denominator(), static_cast<T>(1) );
BOOST_CHECK_EQUAL( r2.denominator(), static_cast<T>(1) );
BOOST_CHECK_EQUAL( r3.denominator(), static_cast<T>(1) );
BOOST_CHECK_EQUAL( r4.denominator(), static_cast<T>(1) );
BOOST_CHECK_EQUAL( r5.denominator(), static_cast<T>(2) );
BOOST_CHECK_EQUAL( r6.denominator(), static_cast<T>(3) );
BOOST_CHECK_EQUAL( r7.denominator(), static_cast<T>(3) );
BOOST_CHECK_EQUAL( r8.denominator(), static_cast<T>(3) );
BOOST_CHECK_EQUAL( r9.denominator(), static_cast<T>(5) );
BOOST_CHECK_THROW( boost::rational<T>( 3, 0), boost::bad_rational );
BOOST_CHECK_THROW( boost::rational<T>(-2, 0), boost::bad_rational );
BOOST_CHECK_THROW( boost::rational<T>( 0, 0), boost::bad_rational );
}
// Assignment (non-operator) tests
BOOST_AUTO_TEST_CASE_TEMPLATE( rational_assign_test, T, all_signed_test_types )
{
my_configuration::hook<T> h;
boost::rational<T> & r = h.r_[ 0 ];
r.assign( 6, 8 );
BOOST_CHECK_EQUAL( r.numerator(), static_cast<T>(3) );
BOOST_CHECK_EQUAL( r.denominator(), static_cast<T>(4) );
r.assign( 0, -7 );
BOOST_CHECK_EQUAL( r.numerator(), static_cast<T>(0) );
BOOST_CHECK_EQUAL( r.denominator(), static_cast<T>(1) );
BOOST_CHECK_THROW( r.assign( 4, 0), boost::bad_rational );
BOOST_CHECK_THROW( r.assign( 0, 0), boost::bad_rational );
BOOST_CHECK_THROW( r.assign(-7, 0), boost::bad_rational );
}
// Comparison tests
BOOST_AUTO_TEST_CASE_TEMPLATE( rational_comparison_test, T,
all_signed_test_types )
{
my_configuration::hook<T> h;
boost::rational<T> &r1 = h.r_[ 0 ], &r2 = h.r_[ 1 ], &r3 = h.r_[ 2 ],
&r4 = h.r_[ 3 ], &r5 = h.r_[ 4 ], &r6 = h.r_[ 5 ],
&r7 = h.r_[ 6 ], &r8 = h.r_[ 7 ], &r9 = h.r_[ 8 ];
BOOST_CHECK( r1 == r2 );
BOOST_CHECK( r2 != r3 );
BOOST_CHECK( r4 < r3 );
BOOST_CHECK( r4 <= r5 );
BOOST_CHECK( r1 <= r2 );
BOOST_CHECK( r5 > r6 );
BOOST_CHECK( r5 >= r6 );
BOOST_CHECK( r7 >= r8 );
BOOST_CHECK( !(r3 == r2) );
BOOST_CHECK( !(r1 != r2) );
BOOST_CHECK( !(r1 < r2) );
BOOST_CHECK( !(r5 < r6) );
BOOST_CHECK( !(r9 <= r2) );
BOOST_CHECK( !(r8 > r7) );
BOOST_CHECK( !(r8 > r2) );
BOOST_CHECK( !(r4 >= r6) );
BOOST_CHECK( r1 == static_cast<T>( 0) );
BOOST_CHECK( r2 != static_cast<T>(-1) );
BOOST_CHECK( r3 < static_cast<T>( 2) );
BOOST_CHECK( r4 <= static_cast<T>(-3) );
BOOST_CHECK( r5 > static_cast<T>( 3) );
BOOST_CHECK( r6 >= static_cast<T>( 0) );
BOOST_CHECK( static_cast<T>( 0) == r2 );
BOOST_CHECK( static_cast<T>( 0) != r7 );
BOOST_CHECK( static_cast<T>(-1) < r8 );
BOOST_CHECK( static_cast<T>(-2) <= r9 );
BOOST_CHECK( static_cast<T>( 1) > r1 );
BOOST_CHECK( static_cast<T>( 1) >= r3 );
// Extra tests with values close in continued-fraction notation
boost::rational<T> const x1( static_cast<T>(9), static_cast<T>(4) );
boost::rational<T> const x2( static_cast<T>(61), static_cast<T>(27) );
boost::rational<T> const x3( static_cast<T>(52), static_cast<T>(23) );
boost::rational<T> const x4( static_cast<T>(70), static_cast<T>(31) );
BOOST_CHECK( x1 < x2 );
BOOST_CHECK( !(x1 < x1) );
BOOST_CHECK( !(x2 < x2) );
BOOST_CHECK( !(x2 < x1) );
BOOST_CHECK( x2 < x3 );
BOOST_CHECK( x4 < x2 );
BOOST_CHECK( !(x3 < x4) );
BOOST_CHECK( r7 < x1 ); // not actually close; wanted -ve v. +ve instead
BOOST_CHECK( !(x2 < r7) );
}
// Increment & decrement tests
BOOST_AUTO_TEST_CASE_TEMPLATE( rational_1step_test, T, all_signed_test_types )
{
my_configuration::hook<T> h;
boost::rational<T> &r1 = h.r_[ 0 ], &r2 = h.r_[ 1 ], &r3 = h.r_[ 2 ],
&r7 = h.r_[ 6 ], &r8 = h.r_[ 7 ];
BOOST_CHECK( r1++ == r2 );
BOOST_CHECK( r1 != r2 );
BOOST_CHECK( r1 == r3 );
BOOST_CHECK( --r1 == r2 );
BOOST_CHECK( r8-- == r7 );
BOOST_CHECK( r8 != r7 );
BOOST_CHECK( ++r8 == r7 );
}
// Absolute value tests
BOOST_AUTO_TEST_CASE_TEMPLATE( rational_abs_test, T, all_signed_test_types )
{
typedef my_configuration::hook<T> hook_type;
typedef typename hook_type::rational_type rational_type;
hook_type h;
rational_type &r2 = h.r_[ 1 ], &r5 = h.r_[ 4 ], &r8 = h.r_[ 7 ];
#ifdef BOOST_NO_ARGUMENT_DEPENDENT_LOOKUP
// This is a nasty hack, required because some compilers do not implement
// "Koenig Lookup." Basically, if I call abs(r), the C++ standard says that
// the compiler should look for a definition of abs in the namespace which
// contains r's class (in this case boost)--among other places.
using boost::abs;
#endif
BOOST_CHECK_EQUAL( abs(r2), r2 );
BOOST_CHECK_EQUAL( abs(r5), r5 );
BOOST_CHECK_EQUAL( abs(r8), rational_type(2, 3) );
}
// Unary operator tests
BOOST_AUTO_TEST_CASE_TEMPLATE( rational_unary_test, T, all_signed_test_types )
{
my_configuration::hook<T> h;
boost::rational<T> &r2 = h.r_[ 1 ], &r3 = h.r_[ 2 ],
&r4 = h.r_[ 3 ], &r5 = h.r_[ 4 ];
BOOST_CHECK_EQUAL( +r5, r5 );
BOOST_CHECK( -r3 != r3 );
BOOST_CHECK_EQUAL( -(-r3), r3 );
BOOST_CHECK_EQUAL( -r4, static_cast<T>(3) );
BOOST_CHECK( !r2 );
BOOST_CHECK( !!r3 );
BOOST_CHECK( ! static_cast<bool>(r2) );
BOOST_CHECK( r3 );
}
BOOST_AUTO_TEST_SUITE_END()
// The rational arithmetic operations suite
BOOST_AUTO_TEST_SUITE( rational_arithmetic_suite )
// Addition & subtraction tests
BOOST_AUTO_TEST_CASE_TEMPLATE( rational_additive_test, T,
all_signed_test_types )
{
typedef boost::rational<T> rational_type;
BOOST_CHECK_EQUAL( rational_type( 1, 2) + rational_type(1, 2),
static_cast<T>(1) );
BOOST_CHECK_EQUAL( rational_type(11, 3) + rational_type(1, 2),
rational_type( 25, 6) );
BOOST_CHECK_EQUAL( rational_type(-8, 3) + rational_type(1, 5),
rational_type(-37, 15) );
BOOST_CHECK_EQUAL( rational_type(-7, 6) + rational_type(1, 7),
rational_type( 1, 7) - rational_type(7, 6) );
BOOST_CHECK_EQUAL( rational_type(13, 5) - rational_type(1, 2),
rational_type( 21, 10) );
BOOST_CHECK_EQUAL( rational_type(22, 3) + static_cast<T>(1),
rational_type( 25, 3) );
BOOST_CHECK_EQUAL( rational_type(12, 7) - static_cast<T>(2),
rational_type( -2, 7) );
BOOST_CHECK_EQUAL( static_cast<T>(3) + rational_type(4, 5),
rational_type( 19, 5) );
BOOST_CHECK_EQUAL( static_cast<T>(4) - rational_type(9, 2),
rational_type( -1, 2) );
rational_type r( 11 );
r -= rational_type( 20, 3 );
BOOST_CHECK_EQUAL( r, rational_type(13, 3) );
r += rational_type( 1, 2 );
BOOST_CHECK_EQUAL( r, rational_type(29, 6) );
r -= static_cast<T>( 5 );
BOOST_CHECK_EQUAL( r, rational_type( 1, -6) );
r += rational_type( 1, 5 );
BOOST_CHECK_EQUAL( r, rational_type( 1, 30) );
r += static_cast<T>( 2 );
BOOST_CHECK_EQUAL( r, rational_type(61, 30) );
}
// Assignment tests
BOOST_AUTO_TEST_CASE_TEMPLATE( rational_assignment_test, T,
all_signed_test_types )
{
typedef boost::rational<T> rational_type;
rational_type r;
r = rational_type( 1, 10 );
BOOST_CHECK_EQUAL( r, rational_type( 1, 10) );
r = static_cast<T>( -9 );
BOOST_CHECK_EQUAL( r, rational_type(-9, 1) );
}
// Multiplication tests
BOOST_AUTO_TEST_CASE_TEMPLATE( rational_multiplication_test, T,
all_signed_test_types )
{
typedef boost::rational<T> rational_type;
BOOST_CHECK_EQUAL( rational_type(1, 3) * rational_type(-3, 4),
rational_type(-1, 4) );
BOOST_CHECK_EQUAL( rational_type(2, 5) * static_cast<T>(7),
rational_type(14, 5) );
BOOST_CHECK_EQUAL( static_cast<T>(-2) * rational_type(1, 6),
rational_type(-1, 3) );
rational_type r = rational_type( 3, 7 );
r *= static_cast<T>( 14 );
BOOST_CHECK_EQUAL( r, static_cast<T>(6) );
r *= rational_type( 3, 8 );
BOOST_CHECK_EQUAL( r, rational_type(9, 4) );
}
// Division tests
BOOST_AUTO_TEST_CASE_TEMPLATE( rational_division_test, T,
all_signed_test_types )
{
typedef boost::rational<T> rational_type;
BOOST_CHECK_EQUAL( rational_type(-1, 20) / rational_type(4, 5),
rational_type(-1, 16) );
BOOST_CHECK_EQUAL( rational_type( 5, 6) / static_cast<T>(7),
rational_type( 5, 42) );
BOOST_CHECK_EQUAL( static_cast<T>(8) / rational_type(2, 7),
static_cast<T>(28) );
BOOST_CHECK_THROW( rational_type(23, 17) / rational_type(),
boost::bad_rational );
BOOST_CHECK_THROW( rational_type( 4, 15) / static_cast<T>(0),
boost::bad_rational );
rational_type r = rational_type( 4, 3 );
r /= rational_type( 5, 4 );
BOOST_CHECK_EQUAL( r, rational_type(16, 15) );
r /= static_cast<T>( 4 );
BOOST_CHECK_EQUAL( r, rational_type( 4, 15) );
BOOST_CHECK_THROW( r /= rational_type(), boost::bad_rational );
BOOST_CHECK_THROW( r /= static_cast<T>(0), boost::bad_rational );
BOOST_CHECK_EQUAL( rational_type(-1) / rational_type(-3),
rational_type(1, 3) );
}
// Tests for operations on self
BOOST_AUTO_TEST_CASE_TEMPLATE( rational_self_operations_test, T,
all_signed_test_types )
{
typedef boost::rational<T> rational_type;
rational_type r = rational_type( 4, 3 );
r += r;
BOOST_CHECK_EQUAL( r, rational_type( 8, 3) );
r *= r;
BOOST_CHECK_EQUAL( r, rational_type(64, 9) );
r /= r;
BOOST_CHECK_EQUAL( r, rational_type( 1, 1) );
r -= r;
BOOST_CHECK_EQUAL( r, rational_type( 0, 1) );
BOOST_CHECK_THROW( r /= r, boost::bad_rational );
}
BOOST_AUTO_TEST_SUITE_END()
// The non-basic rational operations suite
BOOST_AUTO_TEST_SUITE( rational_extras_suite )
// Output test
BOOST_AUTO_TEST_CASE_TEMPLATE( rational_output_test, T, all_signed_test_types )
{
std::ostringstream oss;
oss << boost::rational<T>( 44, 14 );
BOOST_CHECK_EQUAL( oss.str(), "22/7" );
}
// Input test, failing
BOOST_AUTO_TEST_CASE_TEMPLATE( rational_input_failing_test, T,
all_signed_test_types )
{
std::istringstream iss( "" );
boost::rational<T> r;
iss >> r;
BOOST_CHECK( !iss );
iss.clear();
iss.str( "42" );
iss >> r;
BOOST_CHECK( !iss );
iss.clear();
iss.str( "57A" );
iss >> r;
BOOST_CHECK( !iss );
iss.clear();
iss.str( "20-20" );
iss >> r;
BOOST_CHECK( !iss );
iss.clear();
iss.str( "1/" );
iss >> r;
BOOST_CHECK( !iss );
iss.clear();
iss.str( "1/ 2" );
iss >> r;
BOOST_CHECK( !iss );
iss.clear();
iss.str( "1 /2" );
iss >> r;
BOOST_CHECK( !iss );
}
// Input test, passing
BOOST_AUTO_TEST_CASE_TEMPLATE( rational_input_passing_test, T,
all_signed_test_types )
{
typedef boost::rational<T> rational_type;
std::istringstream iss( "1/2 12" );
rational_type r;
int n = 0;
BOOST_CHECK( iss >> r >> n );
BOOST_CHECK_EQUAL( r, rational_type(1, 2) );
BOOST_CHECK_EQUAL( n, 12 );
iss.clear();
iss.str( "34/67" );
BOOST_CHECK( iss >> r );
BOOST_CHECK_EQUAL( r, rational_type(34, 67) );
iss.clear();
iss.str( "-3/-6" );
BOOST_CHECK( iss >> r );
BOOST_CHECK_EQUAL( r, rational_type(1, 2) );
}
// Conversion test
BOOST_AUTO_TEST_CASE( rational_cast_test )
{
// Note that these are not generic. The problem is that rational_cast<T>
// requires a conversion from IntType to T. However, for a user-defined
// IntType, it is not possible to define such a conversion except as an
// "operator T()". This causes problems with overloading resolution.
boost::rational<int> const half( 1, 2 );
BOOST_CHECK_CLOSE( boost::rational_cast<double>(half), 0.5, 0.01 );
BOOST_CHECK_EQUAL( boost::rational_cast<int>(half), 0 );
BOOST_CHECK_EQUAL( boost::rational_cast<MyInt>(half), MyInt() );
BOOST_CHECK_EQUAL( boost::rational_cast<boost::rational<MyInt> >(half),
boost::rational<MyInt>(1, 2) );
// Conversions via explicit-marked constructors
// (Note that the "explicit" mark prevents conversion to
// boost::rational<MyOverflowingUnsigned>.)
boost::rational<MyInt> const threehalves( 3, 2 );
BOOST_CHECK_EQUAL( boost::rational_cast<MyOverflowingUnsigned>(threehalves),
MyOverflowingUnsigned(1u) );
}
// Dice tests (a non-main test)
BOOST_AUTO_TEST_CASE_TEMPLATE( dice_roll_test, T, all_signed_test_types )
{
typedef boost::rational<T> rational_type;
// Determine the mean number of times a fair six-sided die
// must be thrown until each side has appeared at least once.
rational_type r = T( 0 );
for ( int i = 1 ; i <= 6 ; ++i )
{
r += rational_type( 1, i );
}
r *= static_cast<T>( 6 );
BOOST_CHECK_EQUAL( r, rational_type(147, 10) );
}
BOOST_AUTO_TEST_SUITE_END()
// The bugs, patches, and requests checking suite
BOOST_AUTO_TEST_SUITE( bug_patch_request_suite )
// "rational operator< can overflow"
BOOST_AUTO_TEST_CASE( bug_798357_test )
{
// Choose values such that rational-number comparisons will overflow if
// the multiplication method (n1/d1 ? n2/d2 == n1*d2 ? n2*d1) is used.
// (And make sure that the large components are relatively prime, so they
// won't partially cancel to make smaller, more reasonable, values.)
unsigned const n1 = UINT_MAX - 2u, d1 = UINT_MAX - 1u;
unsigned const n2 = d1, d2 = UINT_MAX;
boost::rational<MyOverflowingUnsigned> const r1( n1, d1 ), r2( n2, d2 );
BOOST_REQUIRE_EQUAL( boost::math::gcd(n1, d1), 1u );
BOOST_REQUIRE_EQUAL( boost::math::gcd(n2, d2), 1u );
BOOST_REQUIRE( n1 > UINT_MAX / d2 );
BOOST_REQUIRE( n2 > UINT_MAX / d1 );
BOOST_CHECK( r1 < r2 );
BOOST_CHECK( !(r1 < r1) );
BOOST_CHECK( !(r2 < r1) );
}
// "rational::operator< fails for unsigned value types"
BOOST_AUTO_TEST_CASE( patch_1434821_test )
{
// If a zero-rational v. positive-integer comparison involves negation, then
// it may fail with unsigned types, which wrap around (for built-ins) or
// throw/be-undefined (for user-defined types).
boost::rational<unsigned> const r( 0u );
BOOST_CHECK( r < 1u );
}
// "rational.hpp::gcd returns a negative value sometimes"
BOOST_AUTO_TEST_CASE( patch_1438626_test )
{
// The issue only manifests with 2's-complement integers that use their
// entire range of bits. [This means that ln(-INT_MIN)/ln(2) is an integer
// and INT_MAX + INT_MIN == -1.] The common computer platforms match this.
#if (INT_MAX + INT_MIN == -1) && ((INT_MAX ^ INT_MIN) == -1)
// If a GCD routine takes the absolute value of an argument only before
// processing, it won't realize that -INT_MIN -> INT_MIN (i.e. no change
// from negation) and will propagate a negative sign to its result.
BOOST_REQUIRE_EQUAL( boost::math::gcd(INT_MIN, 6), 2 );
// That is bad if the rational number type does not check for that
// possibility during normalization.
boost::rational<int> const r1( INT_MIN / 2 + 3, 6 ),
r2( INT_MIN / 2 - 3, 6 ), r3 = r1 + r2;
// If the error happens, the signs of the components will be switched.
// (The numerators' sum is INT_MIN, and its GCD with 6 would be negated.)
BOOST_CHECK_EQUAL( r3.numerator(), INT_MIN / 2 );
BOOST_CHECK_EQUAL( r3.denominator(), 3 );
#endif
}
BOOST_AUTO_TEST_SUITE_END()