blob: c1f50bd284a81926ccc22d430184a14406e65830 [file] [log] [blame]
[library Boost.TR1
[quickbook 1.4]
[copyright 2005 John Maddock]
[purpose An implementation of the C++ Technical Report on Standard Library Extensions]
[license
Distributed under the Boost Software License, Version 1.0.
(See accompanying file LICENSE_1_0.txt or copy at
[@http://www.boost.org/LICENSE_1_0.txt])]
[authors [Maddock, John]]
[category misc]
[last-revision $Date: 2009-02-04 10:53:20 -0500 (Wed, 04 Feb 2009) $]
]
[section:intro Introduction]
The TR1 library provides an implementation of the C++ Technical Report on Standard Library Extensions.
This library does not itself implement the TR1 components, rather it's a thin wrapper that will
include your standard library's TR1 implementation (if it has one), otherwise it will include the Boost
Library equivalents, and import them into namespace `std::tr1`.
[endsect]
[section:usage Usage]
There are two things you need to decide before using the Boost.TR1 library:
whether to use your standard library's native TR1 implementation (if it has one),
and which include style to use.
[section:native Whether to use Your Native TR1 Library]
If your standard library implements the TR1, and you want to make
use of it, rather than use the Boost equivalents, then you will need to
take some explicit action to enable it: this may be a pre-processor
define, a special compiler switch, or a different include path.
You will need to consult your compilers documentation to find out
which of these
actions you need to take.
Provided Boost is [link boost_tr1.config correctly configured],
everything should
now "just work", and code written to use Boost.TR1 will include
your standard library's native headers rather than the Boost ones.
[endsect]
[section:include_style Header Include Style]
There are two ways you can include the Boost.TR1 headers,
for example if you are interested in shared_ptr then you can either use:
#include <boost/tr1/memory.hpp>
or:
#include <memory>
The first option is the preferred method for other Boost libraries
to use. The second option is standard-conforming, but requires that you
add `boost-install-path/boost/tr1/tr1` to your compiler's include search path.
Note that you must not copy the headers in boost/tr1/tr1 into a directory
called "include", doing so will cause them to cease working.
[blurb [*Important Note #1]
The include path order is very important if you want this library to work
correctly. If you get compiler errors then suspect the include paths. The
correct order is:
1) boost-root/boost/tr1/tr1\n
2) boost-root\n
3) Any other standard library replacements (STLport for example).\n
4) Your regular standard library.\n
]
[blurb [*Important Note #2: GNU C++ Users]
Normally this library should "just work" with the GNU C++ compiler.
However, if Boost is installed in `/usr/include` then you may get an error
message of the form:
``In file included from /usr/include/boost/tr1/tuple.hpp:5,
from boost-failure.cxx:1:
/usr/include/boost/tr1/detail/config.hpp:60:26: error: no include path in which to search for utility``
In this case try defining the macro `BOOST_TR1_DISABLE_INCLUDE_NEXT` when building,
and if that doesn't work, define the macro `BOOST_TR1_GCC_INCLUDE_PATH` to the
name of the directory containing gcc's include files: this is likely to be
something like "g++-v4" but unfortunately varies from distribution
to distribution.
]
[blurb [*Important Note #3: Borland C++ Users]
Borland's compiler has a particularly broken form of `#include`, that
will actually look for a file named `array.h` if you `#include <array>`.
In order to make this library work with Borland's compiler you will need to
set up the include paths as follows:
1) boost-root/boost/tr1/tr1/bcc32\n
2) boost-root/boost/tr1/tr1\n
3) boost-root\n
4) Any other standard library replacements (STLport for example).\n
5) Your regular standard library.\n
]
[blurb [*Important Note #4: Sun C++ Users]
Sun's compiler has a particularly interesting form of `#include`, that
will actually look for a file named `array.SUNWCCh` if you `#include <array>`.
What's more it won't include a standard header file that it thinks it's
already seen.
In order to make this library work with Sun's compiler you can either
pass the undocumented compiler switch ['"-Qoption ccfe -nosunwcch"] to
the compiler, or else you will need to
set up the include paths as follows:
1) boost-root/boost/tr1/tr1/sun\n
2) boost-root/boost/tr1/tr1\n
3) boost-root\n
4) Any other standard library replacements (STLport for example).\n
5) Your regular standard library.\n
]
[endsect]
[section:writing_code Writing Code]
Regardless of how the includes are setup, user code written to work
with Boost.TR1 is exactly the same as code written to use a native
tr1 implementation. That is, references to classes and functions
need to explicitly use the `std::tr1` namespace or a `using std::tr1`
statement. For example,
std::tr1::tuple<int, std::string> t = std::tr1::make_tuple(10, "hello");
or
using std::tr1;
tuple<int, std::string> t = make_tuple(10, "hello");
[endsect]
[endsect]
[section:config Configuration]
Configuring Boost.TR1 is no different to configuring any other part of
Boost; in the majority of cases you shouldn't actually need to do anything at all.
However, because Boost.TR1 will inject Boost components into namespace std::tr1
it is more than usually sensitive to an incorrect configuration.
The intention is that
[@../../libs/config/index.html Boost.Config]
will automatically define the configuration
macros used by this library, so that if your standard library is set up to
support TR1 (note that few are at present) then this will be detected and Boost.TR1
will use your standard library versions of these components rather than the
Boost ones.
If you would prefer to use the Boost versions of the TR1 conponents rather than
your standard library, then either: include the Boost headers directly
#include <boost/regex.hpp>
boost::regex e("myregex"); //etc
Or else don't enable TR1 in your standard library: since TR1 is not part of
the current standard, there should be some option to disable it in your
compiler or standard library.
The configuration macros used by each TR1 component are documented in each
library section (and all together in the
[@../../libs/config/index.html Boost.Config]
documentation), but defining BOOST_HAS_TR1 will turn on native TR1 support
for everything (if your standard library has it), which can act as a
convenient shortcut.
[blurb [*Note for gcc users]\n\n
Boost.TR1 does not currently enable gcc's native TR1 implementation
as this is currently in an early stage of development. However, you may
choose to do so by defining BOOST_HAS_GCC_TR1.]
[endsect]
[section:subject_list TR1 By Subject]
[section:ref Reference Wrappers.]
#include <boost/tr1/functional.hpp>
or
#include <functional>
The Ref library is a small library that is useful for passing
references to function templates (algorithms) that would usually
take copies of their arguments. It defines the class template
`reference_wrapper<T>`,
and the two functions
`ref` and `cref` that return
instances of `reference_wrapper<T>`.
[@../../doc/html/ref.html Refer to Boost.Bind for more information.]
namespace std {
namespace tr1 {
template <class T> class reference_wrapper;
template <class T> reference_wrapper<T> ref(T&);
template <class T> reference_wrapper<const T> cref(const T&);
template <class T> reference_wrapper<T> ref(reference_wrapper<T>);
template <class T> reference_wrapper<const T> cref(reference_wrapper<T>);
} // namespace tr1
} // namespace std
[*Configuration:]
[@../../libs/config/index.html Boost.Config] should (automatically) define
the macro BOOST_HAS_TR1_REFERENCE_WRAPPER if your
standard library implements this part of TR1.
[*Standard Conformity:]
The Boost version of this this component does not currently support
function call invocation (2.1.2.4), or derivation from std::unary_function
or std::binary_function (2.1.2 paragraphs 3 and 4).
The Boost version is not implicitly convertible to T& as the TR requires.
[endsect]
[section:ptrs Smart Pointers.]
#include <boost/tr1/memory.hpp>
or
#include <memory>
The `shared_ptr` class template stores a pointer to a dynamically allocated
object, typically with a C++ new-expression. The object pointed to is
guaranteed to be deleted when the last `shared_ptr` pointing to it is
destroyed or reset. For more information refer to the
[@../../libs/smart_ptr/shared_ptr.htm shared_ptr]
and [@../../libs/smart_ptr/weak_ptr.htm weak_ptr] documentation.
namespace std {
namespace tr1 {
class bad_weak_ptr;
// [2.2.3] Class template shared_ptr
template<class T> class shared_ptr;
// [2.2.3.6] shared_ptr comparisons
template<class T, class U> bool operator==(shared_ptr<T> const& a, shared_ptr<U> const& b);
template<class T, class U> bool operator!=(shared_ptr<T> const& a, shared_ptr<U> const& b);
template<class T, class U> bool operator<(shared_ptr<T> const& a, shared_ptr<U> const& b);
// [2.2.3.8] shared_ptr specialized algorithms
template<class T> void swap(shared_ptr<T>& a, shared_ptr<T>& b);
// [2.2.3.9] shared_ptr casts
template<class T, class U> shared_ptr<T> static_pointer_cast(shared_ptr<U> const& r);
template<class T, class U> shared_ptr<T> dynamic_pointer_cast(shared_ptr<U> const& r);
template<class T, class U> shared_ptr<T> const_pointer_cast(shared_ptr<U> const& r);
// [2.2.3.7] shared_ptr I/O
template<class E, class T, class Y>
basic_ostream<E, T>& operator<< (basic_ostream<E, T>& os, shared_ptr<Y> const& p);
// [2.2.3.10] shared_ptr get_deleter
template<class D, class T> D * get_deleter(shared_ptr<T> const& p);
// [2.2.4] Class template weak_ptr
template<class T> class weak_ptr;
// [2.2.4.6] weak_ptr comparison
template<class T, class U> bool operator<(weak_ptr<T> const& a, weak_ptr<U> const& b);
// [2.2.4.7] weak_ptr specialized algorithms
template<class T> void swap(weak_ptr<T>& a, weak_ptr<T>& b);
// [2.2.5] Class enable_shared_from_this
template<class T> class enable_shared_from_this;
} // namespace tr1
} // namespace std
[*Configuration:]
[@../../libs/config/index.html Boost.Config] should (automatically) define
the macro BOOST_HAS_TR1_SHARED_PTR if your
standard library implements this part of TR1.
[*Standard Conformity:] There are no known deviations from the standard when
using the Boost version of this component.
[endsect]
[section:result_of Class template result_of.]
#include <boost/tr1/functional.hpp>
or
#include <functional>
The class template
`result_of` helps determine the type of a
call expression. Given an lvalue `f` of
type `F` and lvalues `t1`,
`t2, ..., tN` of
types `T1, T2, ..., TN`, respectively, the type
`result_of<F(T1, T2, ..., TN)>::type` defines the result type
of the expression `f(t1, t2, ...,tN)`. The implementation permits
the type `F` to be a function pointer,
function reference, member function pointer, or class
type. For more information
[@../../libs/utility/utility.htm#result_of refer to the Boost.Utility documentation.]
namespace std {
namespace tr1 {
template <class T>
struct result_of
{
typedef unspecified type;
};
} // namespace tr1
} // namespace std
[*Configuration:]
[@../../libs/config/index.html Boost.Config] should (automatically) define
the macro BOOST_HAS_TR1_RESULT_OF if your
standard library implements this part of TR1.
[*Standard Conformity:] No known problems.
[endsect]
[section:mem_fn Function template mem_fn.]
#include <boost/tr1/functional.hpp>
or
#include <functional>
`std::tr1::mem_fn` is a generalization of the standard functions `std::mem_fun`
and `std::mem_fun_ref`. It supports member function pointers with more
than one argument, and the returned function object can take a pointer, a
reference, or a smart pointer to an object instance as its first argument. `mem_fn`
also supports pointers to data members by treating them as functions taking no
arguments and returning a (const) reference to the member.
For more information refer to the [@../../libs/bind/mem_fn.html
Boost.Mem_fn documentation].
namespace std {
namespace tr1 {
template <class R, class T> unspecified mem_fn(R T::* pm);
} // namespace tr1
} // namespace std
[*Configuration:]
[@../../libs/config/index.html Boost.Config] should (automatically) define
the macro BOOST_HAS_TR1_MEM_FN if your
standard library implements this part of TR1.
[*Standard Conformity:]
The Boost implementation does not produce functors that inherit from
`std::unary_function` or `std::binary_function`, nor does it function
correctly with pointers to volatile member functions (these should
be extremely rare in practice however).
[endsect]
[section:bind Function Object Binders.]
#include <boost/tr1/functional.hpp>
or
#include <functional>
`std::tr1::bind` is a generalization of the standard functions `std::bind1st`
and `std::bind2nd`. It supports arbitrary function objects, functions,
function pointers, and member function pointers, and is able to bind any
argument to a specific value or route input arguments into arbitrary positions. `bind`
does not place any requirements on the function object; in particular, it does
not need the `result_type`, `first_argument_type` and `second_argument_type`
standard typedefs.
For more information refer to the [@../../libs/bind/bind.html
Boost.Bind documentation].
namespace std {
namespace tr1 {
// [3.6] Function object binders
template<class T> struct is_bind_expression;
template<class T> struct is_placeholder;
template<class F, class T1, ..., class Tn > unspecified bind(F f, T1 t1, ..., Tn tn );
template<class R, class F, class T1, ..., class Tn > unspecified bind(F f, T1 t1, ..., Tn tn );
namespace placeholders {
// M is the implementation-defined number of placeholders
extern unspecified _1;
extern unspecified _2;
.
.
.
extern unspecified _M;
}
} // namespace tr1
} // namespace std
[*Configuration:]
[@../../libs/config/index.html Boost.Config] should (automatically) define
the macro BOOST_HAS_TR1_BIND if your
standard library implements this part of TR1.
[*Standard Conformity:]
The traits classes `is_placeholder` and `is_bind_expression` are not supported
by the Boost implementation.
The named return value syntax isn't supported if the object being bound is a
function pointer, for example:
std::tr1::bind(&my_proc, arg1, arg2 /* etc */); // works OK.
std::tr1::bind<double>(&my_proc, arg1, arg2 /* etc */); // causes compiler error.
std::tr1::bind<double>(my_function_object, arg1, arg2 /* etc */); // works OK.
On the other hand, the Boost implementation does work with pointers to overloaded
functions, and optionally with function pointers with non-standard
calling conventions.
[endsect]
[section:function Polymorphic function wrappers.]
#include <boost/tr1/functional.hpp>
or
#include <functional>
The polymorphic function wrappers are a family of class templates
that may be used as a generalized callback mechanism.
A polymorphic function wrapper shares features with function pointers, in
that both define a call interface (for example a function taking two integer
arguments and returning a floating-point value) through which some
arbitrary code may be called. However a polymorphic function wrapper can call
any callable object with a compatible call signature, this could be a function
pointer, or it could be a function object produced by std::tr1::bind, or some
other mechanism. For more information see the [@../../doc/html/function.html
Boost.Function documentation].
namespace std {
namespace tr1 {
// [3.7] polymorphic function wrappers
class bad_function_call;
template<class Function>
class function;
template<class Function>
void swap(function<Function>&, function<Function>&);
template<class Function1, class Function2>
void operator==(const function<Function1>&, const function<Function2>&);
template<class Function1, class Function2>
void operator!=(const function<Function1>&, const function<Function2>&);
template <class Function>
bool operator==(const function<Function>&, unspecified-null-pointer-type );
template <class Function>
bool operator==(unspecified-null-pointer-type , const function<Function>&);
template <class Function>
bool operator!=(const function<Function>&, unspecified-null-pointer-type );
template <class Function>
bool operator!=(unspecified-null-pointer-type , const function<Function>&);
} // namespace tr1
} // namespace std
[*Configuration:]
[@../../libs/config/index.html Boost.Config] should (automatically) define
the macro BOOST_HAS_TR1_FUNCTION if your
standard library implements this part of TR1.
[*Standard Conformity:]
The Boost version of `std::tr1::function` lacks the member function
`target_type()` and does not inherit from `std::unary_function`
or `std::binary_function` when applicable. The member function
target() can only access pointer-to-member targets when they
have been wrapped in mem_fn.
[endsect]
[section:type_traits Type Traits.]
#include <boost/tr1/type_traits.hpp>
or
#include <type_traits>
Type traits enable generic code to access the fundamental properties
of a type, to determine the relationship between two types, or to
transform one type into another related type. For more information
refer to the [@../../libs/type_traits/index.html Boost.Type_traits documentation].
namespace std {
namespace tr1 {
template <class T, T v> struct integral_constant;
typedef integral_constant<bool, true> true_type;
typedef integral_constant<bool, false> false_type;
// [4.5.1] primary type categories:
template <class T> struct is_void;
template <class T> struct is_integral;
template <class T> struct is_floating_point;
template <class T> struct is_array;
template <class T> struct is_pointer;
template <class T> struct is_reference;
template <class T> struct is_member_object_pointer;
template <class T> struct is_member_function_pointer;
template <class T> struct is_enum;
template <class T> struct is_union;
template <class T> struct is_class;
template <class T> struct is_function;
// [4.5.2] composite type categories:
template <class T> struct is_arithmetic;
template <class T> struct is_fundamental;
template <class T> struct is_object;
template <class T> struct is_scalar;
template <class T> struct is_compound;
template <class T> struct is_member_pointer;
// [4.5.3] type properties:
template <class T> struct is_const;
template <class T> struct is_volatile;
template <class T> struct is_pod;
template <class T> struct is_empty;
template <class T> struct is_polymorphic;
template <class T> struct is_abstract;
template <class T> struct has_trivial_constructor;
template <class T> struct has_trivial_copy;
template <class T> struct has_trivial_assign;
template <class T> struct has_trivial_destructor;
template <class T> struct has_nothrow_constructor;
template <class T> struct has_nothrow_copy;
template <class T> struct has_nothrow_assign;
template <class T> struct has_virtual_destructor;
template <class T> struct is_signed;
template <class T> struct is_unsigned;
template <class T> struct alignment_of;
template <class T> struct rank;
template <class T, unsigned I = 0> struct extent;
// [4.6] type relations:
template <class T, class U> struct is_same;
template <class Base, class Derived> struct is_base_of;
template <class From, class To> struct is_convertible;
// [4.7.1] const-volatile modifications:
template <class T> struct remove_const;
template <class T> struct remove_volatile;
template <class T> struct remove_cv;
template <class T> struct add_const;
template <class T> struct add_volatile;
template <class T> struct add_cv;
// [4.7.2] reference modifications:
template <class T> struct remove_reference;
template <class T> struct add_reference;
// [4.7.3] array modifications:
template <class T> struct remove_extent;
template <class T> struct remove_all_extents;
// [4.7.4] pointer modifications:
template <class T> struct remove_pointer;
template <class T> struct add_pointer;
// [4.8] other transformations:
template <std::size_t Len, std::size_t Align> struct aligned_storage;
} // namespace tr1
} // namespace std
[*Configuration:]
[@../../libs/config/index.html Boost.Config] should (automatically) define
the macro BOOST_HAS_TR1_TYPE_TRAITS if your
standard library implements this part of TR1.
[*Standard Conformity:]
No known problems.
[endsect]
[section:random Random Number Generators and Distributions.]
#include <boost/tr1/random.hpp>
or
#include <random>
The random number library is divided into three parts:
[@../../libs/random/random-generators.html generators], which
are nullary functors producing uniform random number distributions.
[@../../libs/random/random-distributions.html Distributions], which are unary
functors that adapt a generator to some
specific kind of distribution. And the class template
[@../../libs/random/random-variate.html variate_generator]
which combines a generator with a distribution, to create a new generator.
For more information see the [@../../libs/random/index.html Boost.Random documentation].
namespace std {
namespace tr1 {
// [5.1.3] Class template variate_generator
template<class UniformRandomNumberGenerator, class Distribution>
class variate_generator;
// [5.1.4.1] Class template linear_congruential
template<class IntType, IntType a, IntType c, IntType m>
class linear_congruential;
// [5.1.4.2] Class template mersenne_twister
template<class UIntType, int w, int n, int m, int r,
UIntType a, int u, int s, UIntType b, int t, UIntType c, int l>
class mersenne_twister;
// [5.1.4.3] Class template substract_with_carry
template<class IntType, IntType m, int s, int r>
class subtract_with_carry;
// [5.1.4.4] Class template substract_with_carry_01
template<class RealType, int w, int s, int r>
class subtract_with_carry_01;
// [5.1.4.5] Class template discard_block
template<class UniformRandomNumberGenerator, int p, int r>
class discard_block;
// [5.1.4.6] Class template xor_combine
template<class UniformRandomNumberGenerator1, int s1,
class UniformRandomNumberGenerator2, int s2>
class xor_combine;
// [5.1.5] Predefined generators
typedef linear_congruential<
implementation-defined ,
16807,
0,
2147483647> minstd_rand0;
typedef linear_congruential<
implementation-defined ,
48271,
0,
2147483647> minstd_rand;
typedef mersenne_twister<
implementation-defined ,
32, 624, 397, 31,
0x9908b0df, 11, 7,
0x9d2c5680, 15,
0xefc60000, 18> mt19937;
typedef subtract_with_carry_01<
float,
24,
10,
24> ranlux_base_01;
typedef subtract_with_carry_01<
double,
48,
10,
24> ranlux64_base_01;
typedef discard_block<
subtract_with_carry<
implementation-defined ,
(1<<24),
10,
24>,
223,
24> ranlux3;
typedef discard_block<
subtract_with_carry<
implementation-defined,
(1<<24),
10,
24>,
389,
24> ranlux4;
typedef discard_block<
subtract_with_carry_01<
float,
24,
10,
24>,
223,
24> ranlux3_01;
typedef discard_block<
subtract_with_carry_01<
float,
24,
10,
24>,
389,
24> ranlux4_01;
// [5.1.6] Class random_device
class random_device;
// [5.1.7.1] Class template uniform_int
template<class IntType = int>
class uniform_int;
// [5.1.7.2] Class bernoulli_distribution
class bernoulli_distribution;
// [5.1.7.3] Class template geometric_distribution
template<class IntType = int, class RealType = double>
class geometric_distribution;
// [5.1.7.4] Class template poisson_distribution
template<class IntType = int, class RealType = double>
class poisson_distribution;
// [5.1.7.5] Class template binomial_distribution
template<class IntType = int, class RealType = double>
class binomial_distribution;
// [5.1.7.6] Class template uniform_real
template<class RealType = double>
class uniform_real;
// [5.1.7.7] Class template exponential_distribution
template<class RealType = double>
class exponential_distribution;
// [5.1.7.8] Class template normal_distribution
template<class RealType = double>
class normal_distribution;
// [5.1.7.9] Class template gamma_distribution
template<class RealType = double>
class gamma_distribution;
} // namespace tr1
} // namespace std
[*Configuration:]
[@../../libs/config/index.html Boost.Config] should (automatically) define
the macro BOOST_HAS_TR1_RANDOM if your
standard library implements this part of TR1.
[*Standard Conformity:]
The Boost implementation has the following limitations:
*The linear_congruential generator is fully supported for
signed integer types only (unsigned types probably only work when
the modulus is zero).
*The subtract_with_carry template does not support a modulus of zero.
*Not all of the standard generator types have Boost documentation yet, they are
none the less supported however.
*Class template variate_generator does not have a template unary function call operator(),
only the non-template nullary version.
Note also that most of the Random number generators have been re-implemented
as thin wrappers around the Boost versions in order to
provide a standard conforming interface (the Boost versions all take an additional,
redundant, template parameter, and are initialized by iterators rather than functors).
[endsect]
[section:tuple Tuples.]
#include <boost/tr1/tuple.hpp>
or
#include <tuple>
A tuple is a fixed size collection of elements.
Pairs, triples, quadruples etc. are tuples.
In a programming language, a tuple is a data object containing other objects as elements.
These element objects may be of different types.
Tuples are convenient in many circumstances.
For instance, tuples make it easy to define functions that return more than one value.
Some programming languages, such as ML, Python and Haskell, have built-in tuple constructs.
Unfortunately C++ does not.
To compensate for this "deficiency", the TR1 Tuple Library implements a tuple construct using templates.
For more information see the [@../../libs/tuple/index.html Boost Tuple Library Documentation].
namespace std {
namespace tr1 {
// [6.1.3] Class template tuple
template <class T1 = unspecified ,
class T2 = unspecified ,
...,
class TM = unspecified > class tuple;
// [6.1.3.2] Tuple creation functions
const unspecified ignore;
template<class T1, class T2, ..., class TN>
tuple<V1, V2, ..., VN> make_tuple(const T1&, const T2& , ..., const TN&);
// [6.1] Tuple types Containers
template<class T1, class T2, ..., class TN>
tuple<T1&, T2&, ..., TN&> tie(T1&, T2& , ..., TN&);
// [6.1.3.3] Tuple helper classes
template <class T> class tuple_size;
template <int I, class T> class tuple_element;
// [6.1.3.4] Element access
template <int I, class T1, class T2, ..., class TN>
RI get(tuple<T1, T2, ..., TN>&);
template <int I, class T1, class T2, ..., class TN>
PI get(const tuple<T1, T2, ..., TN>&);
// [6.1.3.5] relational operators
template<class T1, class T2, ..., class TM, class U1, class U2, ..., class UM>
bool operator==(const tuple<T1, T2, ..., TM>&, const tuple<U1, U2, ..., UM>&);
template<class T1, class T2, ..., class TM, class U1, class U2, ..., class UM>
bool operator<(const tuple<T1, T2, ..., TM>&, const tuple<U1, U2, ..., UM>&);
template<class T1, class T2, ..., class TM, class U1, class U2, ..., class UM>
bool operator!=(const tuple<T1, T2, ..., TM>&, const tuple<U1, U2, ..., UM>&);
template<class T1, class T2, ..., class TM, class U1, class U2, ..., class UM>
bool operator>(const tuple<T1, T2, ..., TM>&, const tuple<U1, U2, ..., UM>&);
template<class T1, class T2, ..., class TM, class U1, class U2, ..., class UM>
bool operator<=(const tuple<T1, T2, ..., TM>&, const tuple<U1, U2, ..., UM>&);
template<class T1, class T2, ..., class TM, class U1, class U2, ..., class UM>
bool operator>=(const tuple<T1, T2, ..., TM>&, const tuple<U1, U2, ..., UM>&);
} // namespace tr1
} // namespace std
[*Configuration:]
[@../../libs/config/index.html Boost.Config] should (automatically) define
the macro BOOST_HAS_TR1_TUPLE if your
standard library implements this part of TR1.
[*Standard Conformity:]
No known issues for conforming compilers.
[endsect]
[section:utility Tuple Interface to std::pair.]
#include <boost/tr1/utility.hpp>
or
#include <utility>
The existing class template std::pair, can also be accessed using the
[link boost_tr1.subject_list.tuple tuple interface].
namespace std {
namespace tr1 {
template <class T> class tuple_size; // forward declaration
template <int I, class T> class tuple_element; // forward declaration
template <class T1, class T2> struct tuple_size<std::pair<T1, T2> >;
template <class T1, class T2> struct tuple_element<0, std::pair<T2, T2> >;
template <class T1, class T2> struct tuple_element<1, std::pair<T2, T2> >;
// see below for definition of "P".
template<int I, class T1, class T2> P& get(std::pair<T1, T2>&);
template<int I, class T1, class T2> const P& get(const std::pair<T1, T2>&);
} // namespace tr1
} // namespace std
[*Configuration:]
[@../../libs/config/index.html Boost.Config] should (automatically) define
the macro BOOST_HAS_TR1_UTILITY if your
standard library implements this part of TR1.
[*Standard Conformity:]
No known problems.
[endsect]
[section:array Fixed Size Array.]
#include <boost/tr1/array.hpp>
or
#include <array>
Class template array is a fixed size array that is safer than and no
less efficient than a C style array. Class array fulfils almost all of the
requirements of a reversible-container (see Section 23.1,
[lib.container.requirements] of the C++ Standard). For more information refer
to the [@../../libs/array/index.html Boost.Array documentation].
namespace std {
namespace tr1 {
// [6.2.2] Class template array
template <class T, size_t N > struct array;
// Array comparisons
template <class T, size_t N> bool operator== (const array<T,N>& x, const array<T,N>& y);
template <class T, size_t N> bool operator< (const array<T,N>& x, const array<T,N>& y);
template <class T, size_t N> bool operator!= (const array<T,N>& x, const array<T,N>& y);
template <class T, size_t N> bool operator> (const array<T,N>& x, const array<T,N>& y);
template <class T, size_t N> bool operator>= (const array<T,N>& x, const array<T,N>& y);
template <class T, size_t N> bool operator<= (const array<T,N>& x, const array<T,N>& y);
// [6.2.2.2] Specialized algorithms
template <class T, size_t N > void swap(array<T,N>& x, array<T,N>& y);
// [6.2.2.5] Tuple interface to class template array
template <class T> class tuple_size; // forward declaration
template <int I, class T> class tuple_element; // forward declaration
template <class T, size_t N> struct tuple_size<array<T, N> >;
template <int I, class T, size_t N> struct tuple_element<I, array<T, N> >;
template <int I, class T, size_t N> T& get( array<T, N>&);
template <int I, class T, size_t N> const T& get(const array<T, N>&);
} // namespace tr1
} // namespace std
[*Configuration:]
[@../../libs/config/index.html Boost.Config] should (automatically) define
the macro BOOST_HAS_TR1_ARRAY if your
standard library implements this part of TR1.
[*Standard Conformity:]
No known issues as of Boost-1.34 onwards.
[endsect]
[section:hash Hash Function Objects.]
#include <boost/tr1/functional.hpp>
or
#include <functional>
Class template std::hash is a unary-functor that converts some type T
into a hash-value,
specializations of std::hash are provided for integer, character, floating point,
and pointer types, plus the two string types std::string and std::wstring.
See the [@../../libs/functional/hash/index.html Boost.Hash]
documentation for more information.
namespace std {
namespace tr1 {
template <class T>
struct hash : public unary_function<T, size_t>
{
size_t operator()(T val)const;
};
// Hash function specializations
template <> struct hash<bool>;
template <> struct hash<char>;
template <> struct hash<signed char>;
template <> struct hash<unsigned char>;
template <> struct hash<wchar_t>;
template <> struct hash<short>;
template <> struct hash<int>;
template <> struct hash<long>;
template <> struct hash<unsigned short>;
template <> struct hash<unsigned int>;
template <> struct hash<unsigned long>;
template <> struct hash<float>;
template <> struct hash<double>;
template <> struct hash<long double>;
template<class T> struct hash<T*>;
template <> struct hash<std::string>;
template <> struct hash<std::wstring>;
} // namespace tr1
} // namespace std
[*Configuration:]
[@../../libs/config/index.html Boost.Config] should (automatically) define
the macro BOOST_HAS_TR1_HASH if your
standard library implements this part of TR1.
[*Standard Conformity:]
Boost.Hash adds specialisations of std::hash for a wider range of types
than those required by TR1: Boost.Hash acts as a testbed for issue 6.18
in the [@http://www.open-std.org/JTC1/SC22/WG21/docs/papers/2005/n1756.pdf
Library Extension Technical Report Issues List].
[endsect]
[section:regex Regular Expressions.]
#include <boost/tr1/regex.hpp>
or
#include <regex>
This library provides comprehensive support for regular expressions,
including either iterator or string based matching, searching, search-and-replace,
iteration, and tokenization. Both POSIX and ECMAScript (JavaScript) regular
expressions are supported. For more information see the [@../../libs/regex/index.html
Boost.Regex documentation].
namespace std {
namespace tr1 {
// [7.5] Regex constants
namespace regex_constants {
typedef bitmask_type syntax_option_type;
typedef bitmask_type match_flag_type;
typedef implementation-defined error_type;
} // namespace regex_constants
// [7.6] Class regex_error
class regex_error;
// [7.7] Class template regex_traits
template <class charT> struct regex_traits;
// [7.8] Class template basic_regex
template <class charT, class traits = regex_traits<charT> >
class basic_regex;
typedef basic_regex<char> regex;
typedef basic_regex<wchar_t> wregex;
// [7.8.6] basic_regex swap
template <class charT, class traits>
void swap(basic_regex<charT, traits>& e1,
basic_regex<charT, traits>& e2);
// [7.9] Class template sub_match
template <class BidirectionalIterator>
class sub_match;
typedef sub_match<const char*> csub_match;
typedef sub_match<const wchar_t*> wcsub_match;
typedef sub_match<string::const_iterator> ssub_match;
typedef sub_match<wstring::const_iterator> wssub_match;
// [7.9.2] sub_match non-member operators
/* Comparison operators omitted for clarity.... */
template <class charT, class ST, class BiIter>
basic_ostream<charT, ST>&
operator<<(basic_ostream<charT, ST>& os,
const sub_match<BiIter>& m);
// [7.10] Class template match_results
template <class BidirectionalIterator,
class Allocator = allocator<sub_match<BidirectionalIterator> > >
class match_results;
typedef match_results<const char*> cmatch;
typedef match_results<const wchar_t*> wcmatch;
typedef match_results<string::const_iterator> smatch;
typedef match_results<wstring::const_iterator> wsmatch;
// match_results comparisons
template <class BidirectionalIterator, class Allocator>
bool operator== (const match_results<BidirectionalIterator, Allocator>& m1,
const match_results<BidirectionalIterator, Allocator>& m2);
template <class BidirectionalIterator, class Allocator>
bool operator!= (const match_results<BidirectionalIterator, Allocator>& m1,
const match_results<BidirectionalIterator, Allocator>& m2);
// [7.10.6] match_results swap
template <class BidirectionalIterator, class Allocator>
void swap(match_results<BidirectionalIterator, Allocator>& m1,
match_results<BidirectionalIterator, Allocator>& m2);
// [7.11.2] Function template regex_match
template <class BidirectionalIterator, class Allocator, class charT, class traits>
bool regex_match(BidirectionalIterator first,
BidirectionalIterator last,
match_results<BidirectionalIterator, Allocator>& m,
const basic_regex<charT, traits>& e,
regex_constants::match_flag_type flags = regex_constants::match_default);
template <class BidirectionalIterator, class charT, class traits>
bool regex_match(BidirectionalIterator first,
BidirectionalIterator last,
const basic_regex<charT, traits>& e,
regex_constants::match_flag_type flags = regex_constants::match_default);
template <class charT, class Allocator, class traits>
bool regex_match(const charT* str,
match_results<const charT*, Allocator>& m,
const basic_regex<charT, traits>& e,
regex_constants::match_flag_type flags = regex_constants::match_default);
template <class ST, class SA, class Allocator, class charT, class traits>
bool regex_match(const basic_string<charT, ST, SA>& s,
match_results<typename basic_string<charT, ST, SA>::const_iterator,Allocator>& m,
const basic_regex<charT, traits>& e,
regex_constants::match_flag_type flags = regex_constants::match_default);
template <class charT, class traits>
bool regex_match(const charT* str,
const basic_regex<charT, traits>& e,
regex_constants::match_flag_type flags = regex_constants::match_default);
template <class ST, class SA, class charT, class traits>
bool regex_match(const basic_string<charT, ST, SA>& s,
const basic_regex<charT, traits>& e,
regex_constants::match_flag_type flags = regex_constants::match_default);
// [7.11.3] Function template regex_search
template <class BidirectionalIterator, class Allocator, class charT, class traits>
bool regex_search(BidirectionalIterator first,
BidirectionalIterator last,
match_results<BidirectionalIterator, Allocator>& m,
const basic_regex<charT, traits>& e,
regex_constants::match_flag_type flags = regex_constants::match_default);
template <class BidirectionalIterator, class charT, class traits>
bool regex_search(BidirectionalIterator first,
BidirectionalIterator last,
const basic_regex<charT, traits>& e,
regex_constants::match_flag_type flags = regex_constants::match_default);
template <class charT, class Allocator, class traits>
bool regex_search(const charT* str,
match_results<const charT*, Allocator>& m,
const basic_regex<charT, traits>& e,
regex_constants::match_flag_type flags = regex_constants::match_default);
template <class charT, class traits>
bool regex_search(const charT* str,
const basic_regex<charT, traits>& e,
regex_constants::match_flag_type flags = regex_constants::match_default);
template <class ST, class SA, class charT, class traits>
bool regex_search(const basic_string<charT, ST, SA>& s,
const basic_regex<charT, traits>& e,
regex_constants::match_flag_type flags = regex_constants::match_default);
template <class ST, class SA, class Allocator, class charT, class traits>
bool regex_search(const basic_string<charT, ST, SA>& s,
match_results<typename basic_string<charT, ST, SA>::const_iterator, Allocator>& m,
const basic_regex<charT, traits>& e,
regex_constants::match_flag_type flags = regex_constants::match_default);
// [7.11.4] Function template regex_replace
template <class OutputIterator, class BidirectionalIterator, class traits, class charT>
OutputIterator regex_replace(OutputIterator out,
BidirectionalIterator first,
BidirectionalIterator last,
const basic_regex<charT, traits>& e,
const basic_string<charT>& fmt,
regex_constants::match_flag_type flags = regex_constants::match_default);
template <class traits, class charT>
basic_string<charT> regex_replace(const basic_string<charT>& s,
const basic_regex<charT, traits>& e,
const basic_string<charT>& fmt,
regex_constants::match_flag_type flags = regex_constants::match_default);
// [7.12.1] Class template regex_iterator
template <class BidirectionalIterator,
class charT = typename iterator_traits<BidirectionalIterator>::value_type,
class traits = regex_traits<charT> >
class regex_iterator;
typedef regex_iterator<const char*> cregex_iterator;
typedef regex_iterator<const wchar_t*> wcregex_iterator;
typedef regex_iterator<string::const_iterator> sregex_iterator;
typedef regex_iterator<wstring::const_iterator> wsregex_iterator;
// [7.12.2] Class template regex_token_iterator
template <class BidirectionalIterator,
class charT = typename iterator_traits<BidirectionalIterator>::value_type,
class traits = regex_traits<charT> >
class regex_token_iterator;
typedef regex_token_iterator<const char*> cregex_token_iterator;
typedef regex_token_iterator<const wchar_t*> wcregex_token_iterator;
typedef regex_token_iterator<string::const_iterator> sregex_token_iterator;
typedef regex_token_iterator<wstring::const_iterator> wsregex_token_iterator;
} // namespace tr1
} // namespace std
[*Configuration:]
[@../../libs/config/index.html Boost.Config] should (automatically) define
the macro BOOST_HAS_TR1_REGEX if your
standard library implements this part of TR1.
[*Standard Conformity:]
No known problems.
[endsect]
[section:complex Complex Number Algorithm Overloads.]
#include <boost/tr1/complex.hpp>
or
#include <complex>
The following function templates have additional overloads:
`arg`, `norm`, `conj`, `polar`, `imag`, and `real`.
The additional
overloads are sufficient to ensure:
*If the argument has type `long double`, then the overload behaves as if
the argument had been cast to `std::complex<long double>`.
*Otherwise, if the argument has type `double` or is an integer type,
then the overload behaves as if
the argument had been cast to `std::complex<double>`.
*Otherwise, if the argument has type `float`, then the overload
behaves as if
the argument had been cast to `std::complex<float>`.
The function template `pow` has additional overloads sufficient to ensure,
for a call with at least one argument of type `std::complex<T>`:
*If either argument has type `complex<long double>` or type
`long double`, then the overload behaves as if both arguments were cast
to `std::complex<long double>`
*Otherwise, if either argument has type `complex<double>`, `double`,
or an integer type, then the overload behaves as if both arguments were cast
to `std::complex<double>`
*Otherwise, if either argument has type `complex<float>` or `float`,
then the overload behaves as if both arguments were cast
to `std::complex<float>`
In the following synopsis, `Real` is a floating point type,
`Arithmetic` is an integer or floating point type, and `
PROMOTE(X1 ... XN)` is the largest floating point type in the list
X1 to XN, after any non-floating point types in the list have been replaced by
the type `double`.
template <class Arithmetic>
PROMOTE(Arithmetic) arg(const Arithmetic& t);
template <class Arithmetic>
PROMOTE(Arithmetic) norm(const Arithmetic& t);
template <class Arithmetic>
complex<PROMOTE(Arithmetic)> conj(const Arithmetic& t);
template <class Arithmetic1, class Arithmetic2>
complex<PROMOTE(Arithmetic1,Arithmetic2)> polar(const Arithmetic1& rho, const Arithmetic2& theta = 0);
template <class Arithmetic>
PROMOTE(Arithmetic) imag(const Arithmetic& );
template <class Arithmetic>
PROMOTE(Arithmetic) real(const Arithmetic& t);
template<class Real1, class Real2>
complex<PROMOTE(Real1, Real2)>
pow(const complex<Real1>& x, const complex<Real2>& y);
template<class Real, class Arithmetic>
complex<PROMOTE(Real, Arithmetic)>
pow (const complex<Real>& x, const Arithmetic& y);
template<class Arithmetic, class Real>
complex<PROMOTE(Real, Arithmetic)>
pow (const Arithmetic& x, const complex<Real>& y);
[*Configuration:]
[@../../libs/config/index.html Boost.Config] should (automatically) define
the macro BOOST_HAS_TR1_COMPLEX_OVERLOADS if your
standard library implements the additional overloads for the existing
complex arithmetic functions.
[*Standard Conformity:]
No known problems.
[endsect]
[section:complex_trig Complex Number Additional Algorithms.]
#include <boost/tr1/complex.hpp>
or
#include <complex>
The algorithms `acos`, `asin`, `atan`,
`acosh`, `asinh`, `atanh` and `fabs`
are overloaded
for arguments of type `std::complex<T>`.
These algorithms are entirely
classical, and behave as specified in the C99 standard section 7.3.5.
See the [@../../libs/math/doc/complex/html/complex_number_tr1_algorithms/inverse_complex.html
Boost.Math documentation for more information].
namespace std {
namespace tr1 {
template<class T> complex<T> acos(complex<T>& x);
template<class T> complex<T> asin(complex<T>& x);
template<class T> complex<T> atan(complex<T>& x);
template<class T> complex<T> acosh(complex<T>& x);
template<class T> complex<T> asinh(complex<T>& x);
template<class T> complex<T> atanh(complex<T>& x);
template<class T> complex<T> fabs(complex<T>& x);
} // namespace tr1
} // namespace std
[*Configuration:]
[@../../libs/config/index.html Boost.Config] should (automatically) define
the macro BOOST_HAS_TR1_COMPLEX_INVERSE_TRIG
if your standard library implements the additional inverse trig functions.
[*Standard Conformity:]
No known problems.
[endsect]
[section:unordered_set Unordered Associative Set (Hash Table).]
#include <boost/tr1/unordered_set.hpp>
or
#include <unordered_set>
For accessing data based on key lookup, the C++ standard library
offers std::set, std::map, std::multiset and std::multimap.
These are generally implemented using balanced binary trees so that
lookup time has logarithmic complexity. That is generally okay,
but in many cases a hash table can perform better, as accessing
data has constant complexity, on average. The worst case complexity
is linear, but that occurs rarely and with some care, can be avoided.
With this in mind, the C++ Standard Library Technical Report
introduced the unordered associative containers, which are
implemented using hash tables, and they have now been added to
the Working Draft of the C++ Standard.
Refer to the
[@../../libs/unordered/index.html Unordered Library docs]
for more information.
namespace std {
namespace tr1 {
template <class Value,
class Hash = hash<Value>,
class Pred = std::equal_to<Value>,
class Alloc = std::allocator<Value> >
class unordered_set;
// [6.3.4.5] Class template unordered_multiset
template <class Value,
class Hash = hash<Value>,
class Pred = std::equal_to<Value>,
class Alloc = std::allocator<Value> >
class unordered_multiset;
template <class Value, class Hash, class Pred, class Alloc>
void swap(unordered_set<Value, Hash, Pred, Alloc>& x,
unordered_set<Value, Hash, Pred, Alloc>& y);
template <class Value, class Hash, class Pred, class Alloc>
void swap(unordered_multiset<Value, Hash, Pred, Alloc>& x,
unordered_multiset<Value, Hash, Pred, Alloc>& y);
} // namespace tr1
} // namespace std
[*Configuration:]
[@../../libs/config/index.html Boost.Config] should (automatically) define
the macro BOOST_HAS_TR1_UNORDERED_SET if your
standard library implements this part of TR1.
[*Standard Conformity:]
No known issues for conforming compilers.
[endsect]
[section:unordered_map Unordered Associative Map (Hash Table).]
#include <boost/tr1/unordered_map.hpp>
or
#include <unordered_map>
For accessing data based on key lookup, the C++ standard library
offers std::set, std::map, std::multiset and std::multimap.
These are generally implemented using balanced binary trees so that
lookup time has logarithmic complexity. That is generally okay,
but in many cases a hash table can perform better, as accessing
data has constant complexity, on average. The worst case complexity
is linear, but that occurs rarely and with some care, can be avoided.
With this in mind, the C++ Standard Library Technical Report
introduced the unordered associative containers, which are
implemented using hash tables, and they have now been added to
the Working Draft of the C++ Standard.
Refer to the
[@../../libs/unordered/index.html Unordered Library docs]
for more information.
namespace std {
namespace tr1 {
// [6.3.4.4] Class template unordered_map
template <class Key,
class T,
class Hash = hash<Key>,
class Pred = std::equal_to<Key>,
class Alloc = std::allocator<std::pair<const Key, T> > >
class unordered_map;
// [6.3.4.6] Class template unordered_multimap
template <class Key,
class T,
class Hash = hash<Key>,
class Pred = std::equal_to<Key>,
class Alloc = std::allocator<std::pair<const Key, T> > >
class unordered_multimap;
template <class Key, class T, class Hash, class Pred, class Alloc>
void swap(unordered_map<Key, T, Hash, Pred, Alloc>& x,
unordered_map<Key, T, Hash, Pred, Alloc>& y);
template <class Key, class T, class Hash, class Pred, class Alloc>
void swap(unordered_multimap<Key, T, Hash, Pred, Alloc>& x,
unordered_multimap<Key, T, Hash, Pred, Alloc>& y);
} // namespace tr1
} // namespace std
[*Configuration:]
[@../../libs/config/index.html Boost.Config] should (automatically) define
the macro BOOST_HAS_TR1_UNORDERED_MAP if your
standard library implements this part of TR1.
[*Standard Conformity:]
No known issues for conforming compilers.
[endsect]
[section:special Mathematical Special Functions.]
The TR adds 23 special functions (plus float and long double overloads)
to header <cmath>.
Refer to the
[@../../libs/math/doc/sf_and_dist/html/math_toolkit/main_overview/tr1.html Math Library docs]
for more information.
namespace std {
namespace tr1 {
// [5.2.1.1] associated Laguerre polynomials:
double assoc_laguerre(unsigned n, unsigned m, double x);
float assoc_laguerref(unsigned n, unsigned m, float x);
long double assoc_laguerrel(unsigned n, unsigned m, long double x);
// [5.2.1.2] associated Legendre functions:
double assoc_legendre(unsigned l, unsigned m, double x);
float assoc_legendref(unsigned l, unsigned m, float x);
long double assoc_legendrel(unsigned l, unsigned m, long double x);
// [5.2.1.3] beta function:
double beta(double x, double y);
float betaf(float x, float y);
long double betal(long double x, long double y);
// [5.2.1.4] (complete) elliptic integral of the first kind:
double comp_ellint_1(double k);
float comp_ellint_1f(float k);
long double comp_ellint_1l(long double k);
// [5.2.1.5] (complete) elliptic integral of the second kind:
double comp_ellint_2(double k);
float comp_ellint_2f(float k);
long double comp_ellint_2l(long double k);
// [5.2.1.6] (complete) elliptic integral of the third kind:
double comp_ellint_3(double k, double nu);
float comp_ellint_3f(float k, float nu);
long double comp_ellint_3l(long double k, long double nu);
// [5.2.1.7] confluent hypergeometric functions:
double conf_hyperg(double a, double c, double x);
float conf_hypergf(float a, float c, float x);
long double conf_hypergl(long double a, long double c, long double x);
// [5.2.1.8] regular modified cylindrical Bessel functions:
double cyl_bessel_i(double nu, double x);
float cyl_bessel_if(float nu, float x);
long double cyl_bessel_il(long double nu, long double x);
// [5.2.1.9] cylindrical Bessel functions (of the first kind):
double cyl_bessel_j(double nu, double x);
float cyl_bessel_jf(float nu, float x);
long double cyl_bessel_jl(long double nu, long double x);
// [5.2.1.10] irregular modified cylindrical Bessel functions:
double cyl_bessel_k(double nu, double x);
float cyl_bessel_kf(float nu, float x);
long double cyl_bessel_kl(long double nu, long double x);
// [5.2.1.11] cylindrical Neumann functions;
// cylindrical Bessel functions (of the second kind):
double cyl_neumann(double nu, double x);
float cyl_neumannf(float nu, float x);
long double cyl_neumannl(long double nu, long double x);
// [5.2.1.12] (incomplete) elliptic integral of the first kind:
double ellint_1(double k, double phi);
float ellint_1f(float k, float phi);
long double ellint_1l(long double k, long double phi);
// [5.2.1.13] (incomplete) elliptic integral of the second kind:
double ellint_2(double k, double phi);
float ellint_2f(float k, float phi);
long double ellint_2l(long double k, long double phi);
// [5.2.1.14] (incomplete) elliptic integral of the third kind:
double ellint_3(double k, double nu, double phi);
float ellint_3f(float k, float nu, float phi);
long double ellint_3l(long double k, long double nu, long double phi);
// [5.2.1.15] exponential integral:
double expint(double x);
float expintf(float x);
long double expintl(long double x);
// [5.2.1.16] Hermite polynomials:
double hermite(unsigned n, double x);
float hermitef(unsigned n, float x);
long double hermitel(unsigned n, long double x);
// [5.2.1.17] hypergeometric functions:
double hyperg(double a, double b, double c, double x);
float hypergf(float a, float b, float c, float x);
long double hypergl(long double a, long double b, long double c, long double x);
// [5.2.1.18] Laguerre polynomials:
double laguerre(unsigned n, double x);
float laguerref(unsigned n, float x);
long double laguerrel(unsigned n, long double x);
// [5.2.1.19] Legendre polynomials:
double legendre(unsigned l, double x);
float legendref(unsigned l, float x);
long double legendrel(unsigned l, long double x);
// [5.2.1.20] Riemann zeta function:
double riemann_zeta(double);
float riemann_zetaf(float);
long double riemann_zetal(long double);
// [5.2.1.21] spherical Bessel functions (of the first kind):
double sph_bessel(unsigned n, double x);
float sph_besself(unsigned n, float x);
long double sph_bessell(unsigned n, long double x);
// [5.2.1.22] spherical associated Legendre functions:
double sph_legendre(unsigned l, unsigned m, double theta);
float sph_legendref(unsigned l, unsigned m, float theta);
long double sph_legendrel(unsigned l, unsigned m, long double theta);
// [5.2.1.23] spherical Neumann functions;
// spherical Bessel functions (of the second kind):
double sph_neumann(unsigned n, double x);
float sph_neumannf(unsigned n, float x);
long double sph_neumannl(unsigned n, long double x);
} // namespace tr1
} // namespace std
[*Standard Conformity:]
The following functions are not supported in the Boost version of this component:
// [5.2.1.7] confluent hypergeometric functions:
double conf_hyperg(double a, double c, double x);
float conf_hypergf(float a, float c, float x);
long double conf_hypergl(long double a, long double c, long double x);
// [5.2.1.17] hypergeometric functions:
double hyperg(double a, double b, double c, double x);
float hypergf(float a, float b, float c, float x);
long double hypergl(long double a, long double b, long double c, long double x);
[endsect]
[section:c99_special C99 Mathematical Special Functions.]
The TR adds a number of special functions which were first introduced in the C99 standard
to header <cmath>.
Refer to the
[@../../libs/math/doc/sf_and_dist/html/math_toolkit/main_overview/tr1.html Math Library docs]
for more information.
namespace std {
namespace tr1 {
// types
typedef floating-type double_t;
typedef floating-type float_t;
// functions
double acosh(double x);
float acoshf(float x);
long double acoshl(long double x);
double asinh(double x);
float asinhf(float x);
long double asinhl(long double x);
double atanh(double x);
float atanhf(float x);
long double atanhl(long double x);
double cbrt(double x);
float cbrtf(float x);
long double cbrtl(long double x);
double copysign(double x, double y);
float copysignf(float x, float y);
long double copysignl(long double x, long double y);
double erf(double x);
float erff(float x);
long double erfl(long double x);
double erfc(double x);
float erfcf(float x);
long double erfcl(long double x);
double exp2(double x);
float exp2f(float x);
long double exp2l(long double x);
double expm1(double x);
float expm1f(float x);
long double expm1l(long double x);
double fdim(double x, double y);
float fdimf(float x, float y);
long double fdiml(long double x, long double y);
double fma(double x, double y, double z);
float fmaf(float x, float y, float z);
long double fmal(long double x, long double y, long double z);
double fmax(double x, double y);
float fmaxf(float x, float y);
long double fmaxl(long double x, long double y);
double fmin(double x, double y);
float fminf(float x, float y);
long double fminl(long double x, long double y);
double hypot(double x, double y);
float hypotf(float x, float y);
long double hypotl(long double x, long double y);
int ilogb(double x);
int ilogbf(float x);
int ilogbl(long double x);
double lgamma(double x);
float lgammaf(float x);
long double lgammal(long double x);
long long llrint(double x);
long long llrintf(float x);
long long llrintl(long double x);
long long llround(double x);
long long llroundf(float x);
long long llroundl(long double x);
double log1p(double x);
float log1pf(float x);
long double log1pl(long double x);
double log2(double x);
float log2f(float x);
long double log2l(long double x);
double logb(double x);
float logbf(float x);
long double logbl(long double x);
long lrint(double x);
long lrintf(float x);
long lrintl(long double x);
long lround(double x);
long lroundf(float x);
long lroundl(long double x);
double nan(const char *str);
float nanf(const char *str);
long double nanl(const char *str);
double nearbyint(double x);
float nearbyintf(float x);
long double nearbyintl(long double x);
double nextafter(double x, double y);
float nextafterf(float x, float y);
long double nextafterl(long double x, long double y);
double nexttoward(double x, long double y);
float nexttowardf(float x, long double y);
long double nexttowardl(long double x, long double y);
double remainder(double x, double y);
float remainderf(float x, float y);
long double remainderl(long double x, long double y);
double remquo(double x, double y, int *pquo);
float remquof(float x, float y, int *pquo);
long double remquol(long double x, long double y, int *pquo);
double rint(double x);
float rintf(float x);
long double rintl(long double x);
double round(double x);
float roundf(float x);
long double roundl(long double x);
double scalbln(double x, long ex);
float scalblnf(float x, long ex);
long double scalblnl(long double x, long ex);
double scalbn(double x, int ex);
float scalbnf(float x, int ex);
long double scalbnl(long double x, int ex);
double tgamma(double x);
float tgammaf(float x);
long double tgammal(long double x);
double trunc(double x);
float truncf(float x);
long double truncl(long double x);
// C99 macros defined as C++ templates
template<class T> bool signbit(T x);
template<class T> int fpclassify(T x);
template<class T> bool isfinite(T x);
template<class T> bool isinf(T x);
template<class T> bool isnan(T x);
template<class T> bool isnormal(T x);
template<class T> bool isgreater(T x, T y);
template<class T> bool isgreaterequal(T x, T y);
template<class T> bool isless(T x, T y);
template<class T> bool islessequal(T x, T y);
template<class T> bool islessgreater(T x, T y);
template<class T> bool isunordered(T x, T y);
}} // namespaces
[*Standard Conformity:]
The following functions are not supported in the Boost version of this component:
double exp2(double x);
float exp2f(float x);
long double exp2l(long double x);
double fdim(double x, double y);
float fdimf(float x, float y);
long double fdiml(long double x, long double y);
double fma(double x, double y, double z);
float fmaf(float x, float y, float z);
long double fmal(long double x, long double y, long double z);
int ilogb(double x);
int ilogbf(float x);
int ilogbl(long double x);
long long llrint(double x);
long long llrintf(float x);
long long llrintl(long double x);
double log2(double x);
float log2f(float x);
long double log2l(long double x);
double logb(double x);
float logbf(float x);
long double logbl(long double x);
long lrint(double x);
long lrintf(float x);
long lrintl(long double x);
double nan(const char *str);
float nanf(const char *str);
long double nanl(const char *str);
double nearbyint(double x);
float nearbyintf(float x);
long double nearbyintl(long double x);
double remainder(double x, double y);
float remainderf(float x, float y);
long double remainderl(long double x, long double y);
double remquo(double x, double y, int *pquo);
float remquof(float x, float y, int *pquo);
long double remquol(long double x, long double y, int *pquo);
double rint(double x);
float rintf(float x);
long double rintl(long double x);
double scalbln(double x, long ex);
float scalblnf(float x, long ex);
long double scalblnl(long double x, long ex);
double scalbn(double x, int ex);
float scalbnf(float x, int ex);
long double scalbnl(long double x, int ex);
// C99 macros defined as C++ templates
template<class T> bool isgreater(T x, T y);
template<class T> bool isgreaterequal(T x, T y);
template<class T> bool isless(T x, T y);
template<class T> bool islessequal(T x, T y);
template<class T> bool islessgreater(T x, T y);
template<class T> bool isunordered(T x, T y);
[endsect]
[endsect]
[section:header_list TR1 By Header]
[section:array_header <array>]
See: [link boost_tr1.subject_list.array Fixed Size Array]
[endsect]
[section:cmath_header <cmath>]
See: [link boost_tr1.subject_list.special Special Functions]
See: [link boost_tr1.subject_list.c99_special C99 Special Functions]
[endsect]
[section:complex_header <complex>]
See: [link boost_tr1.subject_list.complex Additional Overloads for Complex Number Algorithms]
See: [link boost_tr1.subject_list.complex_trig Additional Complex Number Algorithms]
[endsect]
[section:functional <functional>]
See: [link boost_tr1.subject_list.ref Reference Wrapper].
See: [link boost_tr1.subject_list.result_of Result_of].
See: [link boost_tr1.subject_list.mem_fn Member Function Wrappers].
See: [link boost_tr1.subject_list.bind Function Binders].
See: [link boost_tr1.subject_list.function Polymorphic Function Wrappers].
See: [link boost_tr1.subject_list.hash Hash Functions].
[endsect]
[section:memory <memory>]
See: [link boost_tr1.subject_list.ptrs Smart Pointers].
[endsect]
[section:random_header <random>]
See: [link boost_tr1.subject_list.random Random Numbers].
[endsect]
[section:regex_header <regex>]
See: [link boost_tr1.subject_list.regex Regular Expressions].
[endsect]
[section:tuple_header <tuple>]
See: [link boost_tr1.subject_list.tuple Tuple Types].
[endsect]
[section:type_traits_header <type_traits>]
See: [link boost_tr1.subject_list.type_traits Type Traits].
[endsect]
[section:unordered_map_header <unordered_map>]
See: [link boost_tr1.subject_list.unordered_map Unordered Associative Map]
[endsect]
[section:unordered_set_header <unordered_set>]
See: [link boost_tr1.subject_list.unordered_set Unordered Associative Set].
[endsect]
[section:utility_header <utility>]
See: [link boost_tr1.subject_list.utility Tuple Interface to std::pair].
[endsect]
[endsect]
[section:implementation Implementation]
When Boost.TR1 is [link boost_tr1.config configured] to make use of your standard library's
native TR1 implementation, then it doesn't do very much: it just includes
the appropriate header.
When Boost.TR1 is using the Boost implementation of a particular
component, then it includes the appropriate Boost header(s) and imports
the necessary declarations in `namespace std::tr1` with using declarations.
Note that only those declarations that are part of the standard are imported:
the implementation is deliberately quite strict about not including any
Boost-specific extensions in `namespace std::tr1`, in order to catch any
portability errors in user code. If you really need to use Boost-specific
extensions then you should include the Boost headers directly and use the
declarations in `namespace boost::` instead. Note that this style of implementation
is not completely standards-conforming, in particular it is not possible
to add user-defined template specializations of TR1 components
into `namespace std::tr1`. There are also one or two Boost libraries that are not
yet fully standards conforming, any such non-conformities are documented in
[link boost_tr1.subject_list the TR1 by subject section]. Hopefully, occurrences of non-standard
behavior should be extremely rare in practice however.
If you use the standard conforming header includes (in `boost/tr1/tr1`)
then these header names can sometimes conflict with existing standard library
headers (for example `shared_ptr` is added to the existing
standard library header
`<memory>` rather than it's own header). These headers
forward on to your existing standard library header in one of two ways: for
gcc it uses `#include_next`, and for other compilers it uses the
macro `BOOST_TR1_STD_HEADER(header)` (defined in
[@../../boost/tr1/detail/config.hpp boost/tr1/detail/config.hpp])
which evaluates to `#include <../include/header>`. This
should work "straight out the box" for most compilers, but does mean that
these headers should [*never] be placed inside a
directory called "include"
that is already in your compiler's search path.
[endsect]
[section:testing Testing]
The test suite for Boost.TR1 is relatively lightweight; tests have been
added to the Boost.Config test suite for each new configuration macro, and
each TR1 component has a very short concept check test added. The concept test
programs are designed only to verify that all the TR1 components
that are
supposed to be in `namespace std::tr1` are indeed present and have standards
conforming interfaces. There are a few test programs (those which end in the suffix
"_tricky") which do not currently compile with the Boost.TR1 implementation, because the
relevant Boost libraries have not yet implemented the features tested; hopefully
these incompatibilities will be removed in future releases.
The concept tests do not take account of compiler defects (quite deliberately
so); the intent is that the tests can be used to verify conformance with the
standard, both for Boost code, and for third party implementations. Consequently
very many of these tests are known to fail with older compilers. This should
not be taken as evidence that these compilers can not be used at all with Boost.TR1,
simply that there are features missing that make those compilers non-conforming.
Full runtime tests for TR1 components are not in general part of this
test suite, however, it is hoped that the Boost.TR1 component authors will make
their regular test suites compile with the standards conforming headers as well
as the Boost-specific ones. This will allow these tests to be used against the standard
library's own TR1 implementation as well as the Boost one.
[endsect]