blob: 4a3fe2c99599d34a1bb66fcc18b691f9cd802623 [file] [log] [blame]
// Copyright 2006-2009 Daniel James.
// Distributed under the Boost Software License, Version 1.0. (See accompanying
// file LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt)
#include "../helpers/prefix.hpp"
#include <boost/unordered_set.hpp>
#include <boost/unordered_map.hpp>
#include "../helpers/test.hpp"
#include <boost/next_prior.hpp>
#include "../objects/test.hpp"
#include "../helpers/random_values.hpp"
#include "../helpers/tracker.hpp"
#include "../helpers/equivalent.hpp"
#include "../helpers/helpers.hpp"
#include <iostream>
namespace erase_tests
{
test::seed_t seed(85638);
template <class Container>
void erase_tests1(Container*,
test::random_generator generator = test::default_generator)
{
std::cerr<<"Erase by key.\n";
{
test::random_values<Container> v(1000, generator);
Container x(v.begin(), v.end());
for(BOOST_DEDUCED_TYPENAME test::random_values<Container>::iterator
it = v.begin(); it != v.end(); ++it)
{
std::size_t count = x.count(test::get_key<Container>(*it));
std::size_t old_size = x.size();
BOOST_TEST(count == x.erase(test::get_key<Container>(*it)));
BOOST_TEST(x.size() == old_size - count);
BOOST_TEST(x.count(test::get_key<Container>(*it)) == 0);
BOOST_TEST(x.find(test::get_key<Container>(*it)) == x.end());
}
}
std::cerr<<"erase(begin()).\n";
{
test::random_values<Container> v(1000, generator);
Container x(v.begin(), v.end());
std::size_t size = x.size();
while(size > 0 && !x.empty())
{
BOOST_DEDUCED_TYPENAME Container::key_type
key = test::get_key<Container>(*x.begin());
std::size_t count = x.count(key);
BOOST_DEDUCED_TYPENAME Container::iterator
pos = x.erase(x.begin());
--size;
BOOST_TEST(pos == x.begin());
BOOST_TEST(x.count(key) == count - 1);
BOOST_TEST(x.size() == size);
}
BOOST_TEST(x.empty());
}
std::cerr<<"erase(random position).\n";
{
test::random_values<Container> v(1000, generator);
Container x(v.begin(), v.end());
std::size_t size = x.size();
while(size > 0 && !x.empty())
{
using namespace std;
int index = rand() % (int) x.size();
BOOST_DEDUCED_TYPENAME Container::const_iterator prev, pos, next;
if(index == 0) {
prev = pos = x.begin();
}
else {
prev = boost::next(x.begin(), index - 1);
pos = boost::next(prev);
}
next = boost::next(pos);
BOOST_DEDUCED_TYPENAME Container::key_type
key = test::get_key<Container>(*pos);
std::size_t count = x.count(key);
BOOST_TEST(next == x.erase(pos));
--size;
if(size > 0)
BOOST_TEST(index == 0 ? next == x.begin() :
next == boost::next(prev));
BOOST_TEST(x.count(key) == count - 1);
BOOST_TEST(x.size() == size);
}
BOOST_TEST(x.empty());
}
std::cerr<<"erase(ranges).\n";
{
test::random_values<Container> v(500, generator);
Container x(v.begin(), v.end());
std::size_t size = x.size();
// I'm actually stretching it a little here, as the standard says it
// returns 'the iterator immediately following the erase elements'
// and if nothing is erased, then there's nothing to follow. But I
// think this is the only sensible option...
BOOST_TEST(x.erase(x.end(), x.end()) == x.end());
BOOST_TEST(x.erase(x.begin(), x.begin()) == x.begin());
BOOST_TEST(x.size() == size);
BOOST_TEST(x.erase(x.begin(), x.end()) == x.end());
BOOST_TEST(x.empty());
BOOST_TEST(x.begin() == x.end());
BOOST_TEST(x.erase(x.begin(), x.end()) == x.begin());
}
std::cerr<<"quick_erase(begin()).\n";
{
test::random_values<Container> v(1000, generator);
Container x(v.begin(), v.end());
std::size_t size = x.size();
while(size > 0 && !x.empty())
{
BOOST_DEDUCED_TYPENAME Container::key_type
key = test::get_key<Container>(*x.begin());
std::size_t count = x.count(key);
x.quick_erase(x.begin());
--size;
BOOST_TEST(x.count(key) == count - 1);
BOOST_TEST(x.size() == size);
}
BOOST_TEST(x.empty());
}
std::cerr<<"quick_erase(random position).\n";
{
test::random_values<Container> v(1000, generator);
Container x(v.begin(), v.end());
std::size_t size = x.size();
while(size > 0 && !x.empty())
{
using namespace std;
int index = rand() % (int) x.size();
BOOST_DEDUCED_TYPENAME Container::const_iterator prev, pos, next;
if(index == 0) {
prev = pos = x.begin();
}
else {
prev = boost::next(x.begin(), index - 1);
pos = boost::next(prev);
}
next = boost::next(pos);
BOOST_DEDUCED_TYPENAME Container::key_type
key = test::get_key<Container>(*pos);
std::size_t count = x.count(key);
x.quick_erase(pos);
--size;
if(size > 0)
BOOST_TEST(index == 0 ? next == x.begin() :
next == boost::next(prev));
BOOST_TEST(x.count(key) == count - 1);
BOOST_TEST(x.size() == size);
}
BOOST_TEST(x.empty());
}
std::cerr<<"clear().\n";
{
test::random_values<Container> v(500, generator);
Container x(v.begin(), v.end());
x.clear();
BOOST_TEST(x.empty());
BOOST_TEST(x.begin() == x.end());
}
std::cerr<<"\n";
}
boost::unordered_set<test::object,
test::hash, test::equal_to,
test::allocator<test::object> >* test_set;
boost::unordered_multiset<test::object,
test::hash, test::equal_to,
test::allocator<test::object> >* test_multiset;
boost::unordered_map<test::object, test::object,
test::hash, test::equal_to,
test::allocator<test::object> >* test_map;
boost::unordered_multimap<test::object, test::object,
test::hash, test::equal_to,
test::allocator<test::object> >* test_multimap;
using test::default_generator;
using test::generate_collisions;
UNORDERED_TEST(erase_tests1,
((test_set)(test_multiset)(test_map)(test_multimap))
((default_generator)(generate_collisions))
)
}
RUN_TESTS()