blob: 978677d544e71c7f09affc550bbddd9492c938c4 [file] [log] [blame]
<?xml version="1.0" encoding="utf-8"?>
<!DOCTYPE header PUBLIC "-//Boost//DTD BoostBook XML V1.0//EN"
"http://www.boost.org/tools/boostbook/dtd/boostbook.dtd">
<header name="boost/variant/variant.hpp">
<namespace name="boost">
<class name="variant">
<purpose>Safe, generic, stack-based discriminated union container.</purpose>
<description>
<simpara>The <code>variant</code> class template (inspired by Andrei
Alexandrescu's class of the same name
[<link linkend="variant.refs.ale01a">Ale01A</link>]) is an efficient,
<link linkend="variant.tutorial.recursive">recursive-capable</link>,
bounded discriminated union value type capable of containing any value
type (either POD or non-POD). It supports construction from any type
convertible to one of its bounded types or from a source
<code>variant</code> whose bounded types are each convertible to one
of the destination <code>variant</code>'s bounded types. As well,
through <code><functionname>apply_visitor</functionname></code>,
<code>variant</code> supports compile-time checked, type-safe
visitation; and through <code><functionname>get</functionname></code>,
<code>variant</code> supports run-time checked, type-safe value
retrieval.</simpara>
<simpara><emphasis role="bold">Notes</emphasis>:</simpara>
<itemizedlist>
<listitem>The bounded types of the <code>variant</code> are exposed
via the nested typedef <code>types</code>, which is an
<libraryname>MPL</libraryname>-compatible Sequence containing the
set of types that must be handled by any
<link linkend="variant.concepts.static-visitor">visitor</link> to
the <code>variant</code>.</listitem>
<listitem>All members of <code>variant</code> satisfy at least the
basic guarantee of exception-safety. That is, all operations on
a <code>variant</code> remain defined even after previous
operations have failed.</listitem>
<listitem>Each type specified as a template argument to
<code>variant</code> must meet the requirements of the
<emphasis><link linkend="variant.concepts.bounded-type">BoundedType</link></emphasis>
concept.</listitem>
<listitem>Each type specified as a template argument to
<code>variant</code> must be distinct after removal of qualifiers.
Thus, for instance, both <code>variant&lt;int, int&gt;</code> and
<code>variant&lt;int, const int&gt;</code> have undefined
behavior.</listitem>
<listitem>Conforming implementations of <code>variant</code> must
allow at least ten types as template arguments. The exact number
of allowed arguments is exposed by the preprocessor macro
<code><macroname>BOOST_VARIANT_LIMIT_TYPES</macroname></code>.
(See <code><classname>make_variant_over</classname></code> for a
means to specify the bounded types of a <code>variant</code> by
the elements of an <libraryname>MPL</libraryname> or compatible
Sequence, thus overcoming this limitation.)</listitem>
</itemizedlist>
</description>
<template>
<template-type-parameter name="T1"/>
<template-type-parameter name="T2">
<default><emphasis>unspecified</emphasis></default>
</template-type-parameter>
<template-varargs/>
<template-type-parameter name="TN">
<default><emphasis>unspecified</emphasis></default>
</template-type-parameter>
</template>
<typedef name="types">
<type><emphasis>unspecified</emphasis></type>
</typedef>
<destructor>
<effects>
<simpara>Destroys the content of <code>*this</code>.</simpara>
</effects>
<throws>Will not throw.</throws>
</destructor>
<constructor>
<requires>
<simpara>The first bounded type of the <code>variant</code> (i.e.,
<code>T1</code>) must fulfill the requirements of the
<emphasis>DefaultConstructible</emphasis> [20.1.4]
concept.</simpara>
</requires>
<postconditions>
<simpara>Content of <code>*this</code> is the default value of the
first bounded type (i.e, <code>T1</code>).</simpara>
</postconditions>
<throws>
<simpara>May fail with any exceptions arising from the default
constructor of <code>T1</code>.</simpara>
</throws>
</constructor>
<constructor>
<parameter name="other">
<paramtype>const variant &amp;</paramtype>
</parameter>
<postconditions>
<simpara>Content of <code>*this</code> is a copy of the content of
<code>other</code>.</simpara>
</postconditions>
<throws>
<simpara>May fail with any exceptions arising from the
copy constructor of <code>other</code>'s contained type.</simpara>
</throws>
</constructor>
<constructor>
<template>
<template-type-parameter name="T"/>
</template>
<parameter name="operand">
<paramtype>T &amp;</paramtype>
</parameter>
<requires>
<simpara><code>T</code> must be unambiguously convertible to one of
the bounded types (i.e., <code>T1</code>, <code>T2</code>,
etc.).</simpara>
</requires>
<postconditions>
<simpara>Content of <code>*this</code> is the best conversion of
<code>operand</code> to one of the bounded types, as determined
by standard overload resolution rules.</simpara>
</postconditions>
<throws>
<simpara>May fail with any exceptions arising from the conversion of
<code>operand</code> to one of the bounded types.</simpara>
</throws>
</constructor>
<constructor>
<template>
<template-type-parameter name="T"/>
</template>
<parameter name="operand">
<paramtype>const T &amp;</paramtype>
</parameter>
<notes>
<simpara>Same semantics as previous constructor, but allows
construction from temporaries.</simpara>
</notes>
</constructor>
<constructor>
<template>
<template-type-parameter name="U1"/>
<template-type-parameter name="U2"/>
<template-varargs/>
<template-type-parameter name="UN"/>
</template>
<parameter name="operand">
<paramtype>variant&lt;U1, U2, ..., UN&gt; &amp;</paramtype>
</parameter>
<requires>
<simpara><emphasis>Every</emphasis> one of <code>U1</code>,
<code>U2</code>, ..., <code>UN</code> must have an unambiguous
conversion to one of the bounded types (i.e., <code>T1</code>,
<code>T2</code>, ..., <code>TN</code>).</simpara>
</requires>
<postconditions>
<simpara>If <code>variant&lt;U1, U2, ..., UN&gt;</code> is itself
one of the bounded types, then content of <code>*this</code> is a
copy of <code>operand</code>. Otherwise, content of
<code>*this</code> is the best conversion of the content of
<code>operand</code> to one of the bounded types, as determined
by standard overload resolution rules.</simpara>
</postconditions>
<throws>
<simpara>If <code>variant&lt;U1, U2, ..., UN&gt;</code> is itself
one of the bounded types, then may fail with any exceptions arising
from the copy constructor of
<code>variant&lt;U1, U2, ..., UN&gt;</code>. Otherwise, may fail
with any exceptions arising from the conversion of the content of
<code>operand</code> to one of the bounded types.</simpara>
</throws>
</constructor>
<constructor>
<template>
<template-type-parameter name="U1"/>
<template-type-parameter name="U2"/>
<template-varargs/>
<template-type-parameter name="UN"/>
</template>
<parameter name="operand">
<paramtype>const variant&lt;U1, U2, ..., UN&gt; &amp;</paramtype>
</parameter>
<notes>
<simpara>Same semantics as previous constructor, but allows
construction from temporaries.</simpara>
</notes>
</constructor>
<method-group name="modifiers">
<method name="swap">
<type>void</type>
<parameter name="other">
<paramtype>variant &amp;</paramtype>
</parameter>
<requires>
<simpara>Every bounded type must fulfill the requirements of the
<conceptname>Assignable</conceptname>
concept.</simpara>
</requires>
<effects>
<simpara>Interchanges the content of <code>*this</code> and
<code>other</code>.</simpara>
</effects>
<throws>
<simpara>If the contained type of <code>other</code> is the same as
the contained type of <code>*this</code>, then may fail with any
exceptions arising from the <code>swap</code> of the contents of
<code>*this</code> and <code>other</code>. Otherwise, may fail
with any exceptions arising from either of the copy constructors
of the contained types. Also, in the event of insufficient
memory, may fail with <code>std::bad_alloc</code>
(<link linkend="variant.design.never-empty.problem">why?</link>).</simpara>
</throws>
</method>
<method name="operator=">
<type>variant &amp;</type>
<parameter name="rhs">
<paramtype>const variant &amp;</paramtype>
</parameter>
<requires>
<simpara>Every bounded type must fulfill the requirements of the
<conceptname>Assignable</conceptname>
concept.</simpara>
</requires>
<effects>
<simpara>If the contained type of <code>rhs</code> is the same as
the contained type of <code>*this</code>, then assigns the
content of <code>rhs</code> into the content of
<code>*this</code>. Otherwise, makes the content of
<code>*this</code> a copy of the content of <code>rhs</code>,
destroying the previous content of <code>*this</code>.</simpara>
</effects>
<throws>
<simpara>If the contained type of <code>rhs</code> is the same as
the contained type of <code>*this</code>, then may fail with any
exceptions arising from the assignment of the content of
<code>rhs</code> into the content <code>*this</code>. Otherwise,
may fail with any exceptions arising from the copy constructor
of the contained type of <code>rhs</code>. Also, in the event of
insufficient memory, may fail with <code>std::bad_alloc</code>
(<link linkend="variant.design.never-empty.problem">why?</link>).</simpara>
</throws>
</method>
<method name="operator=">
<type>variant &amp;</type>
<template>
<template-type-parameter name="T"/>
</template>
<parameter name="rhs">
<paramtype>const T &amp;</paramtype>
</parameter>
<requires>
<itemizedlist>
<listitem><code>T</code> must be unambiguously convertible to
one of the bounded types (i.e., <code>T1</code>,
<code>T2</code>, etc.).</listitem>
<listitem>Every bounded type must fulfill the requirements of the
<conceptname>Assignable</conceptname>
concept.</listitem>
</itemizedlist>
</requires>
<effects>
<simpara>If the contained type of <code>*this</code> is
<code>T</code>, then assigns <code>rhs</code> into the content
of <code>*this</code>. Otherwise, makes the content of
<code>*this</code> the best conversion of <code>rhs</code> to
one of the bounded types, as determined by standard overload
resolution rules, destroying the previous content of
<code>*this</code>.</simpara>
</effects>
<throws>
<simpara>If the contained type of <code>*this</code> is
<code>T</code>, then may fail with any exceptions arising from
the assignment of <code>rhs</code> into the content
<code>*this</code>. Otherwise, may fail with any exceptions
arising from the conversion of <code>rhs</code> to one of the
bounded types. Also, in the event of insufficient memory, may
fail with <code>std::bad_alloc</code>
(<link linkend="variant.design.never-empty.problem">why?</link>).</simpara>
</throws>
</method>
</method-group>
<method-group name="queries">
<method name="which" cv="const">
<type>int</type>
<returns>
<simpara>The zero-based index into the set of bounded types
of the contained type of <code>*this</code>. (For instance, if
called on a <code>variant&lt;int, std::string&gt;</code> object
containing a <code>std::string</code>, <code>which()</code>
would return <code>1</code>.)</simpara>
</returns>
<throws>Will not throw.</throws>
</method>
<method name="empty" cv="const">
<type>bool</type>
<returns>
<simpara><code>false</code>: <code>variant</code> always contains
exactly one of its bounded types. (See
<xref linkend="variant.design.never-empty"/>
for more information.)</simpara>
</returns>
<rationale>
<simpara>Facilitates generic compatibility with
<classname>boost::any</classname>.</simpara>
</rationale>
<throws>Will not throw.</throws>
</method>
<method name="type" cv="const">
<type>const std::type_info &amp;</type>
<returns>
<simpara><code>typeid(x)</code>, where <code>x</code> is the the
content of <code>*this</code>.</simpara>
</returns>
<throws>Will not throw.</throws>
<notes>
<simpara>Not available when <code>BOOST_NO_TYPEID</code> is
defined.</simpara>
</notes>
</method>
</method-group>
<method-group name="relational">
<overloaded-method name="operator==" cv="const">
<purpose>Equality comparison.</purpose>
<signature cv="const">
<type>bool</type>
<parameter name="rhs">
<paramtype>const variant &amp;</paramtype>
</parameter>
</signature>
<signature cv="const">
<type>void</type>
<template>
<template-type-parameter name="U"/>
</template>
<parameter>
<paramtype>const U &amp;</paramtype>
</parameter>
</signature>
<notes>
<simpara>The overload returning <code>void</code> exists only to
prohibit implicit conversion of the operator's right-hand side
to <code>variant</code>; thus, its use will (purposefully)
result in a compile-time error.</simpara>
</notes>
<requires>
<simpara>Every bounded type of the <code>variant</code> must
fulfill the requirements of the
<conceptname>EqualityComparable</conceptname>
concept.</simpara>
</requires>
<returns>
<simpara><code>true</code> iff <code>which() == rhs.which()</code>
<emphasis>and</emphasis>
<code>content_this == content_rhs</code>, where
<code>content_this</code> is the content of <code>*this</code>
and <code>content_rhs</code> is the content of
<code>rhs</code>.</simpara>
</returns>
<throws>
<simpara>If <code>which() == rhs.which()</code> then may fail with
any exceptions arising from <code>operator==(T,T)</code>, where
<code>T</code> is the contained type of
<code>*this</code>.</simpara>
</throws>
</overloaded-method>
<overloaded-method name="operator&lt;">
<purpose>LessThan comparison.</purpose>
<signature cv="const">
<type>bool</type>
<parameter name="rhs">
<paramtype>const variant &amp;</paramtype>
</parameter>
</signature>
<signature cv="const">
<type>void</type>
<template>
<template-type-parameter name="U"/>
</template>
<parameter>
<paramtype>const U &amp;</paramtype>
</parameter>
</signature>
<notes>
<simpara>The overload returning <code>void</code> exists only to
prohibit implicit conversion of the operator's right-hand side
to <code>variant</code>; thus, its use will (purposefully)
result in a compile-time error.</simpara>
</notes>
<requires>
<simpara>Every bounded type of the <code>variant</code> must
fulfill the requirements of the
<conceptname>LessThanComparable</conceptname>
concept.</simpara>
</requires>
<returns>
<simpara>If <code>which() == rhs.which()</code> then:
<code>content_this &lt; content_rhs</code>, where
<code>content_this</code> is the content of <code>*this</code>
and <code>content_rhs</code> is the content of <code>rhs</code>.
Otherwise: <code>which() &lt; rhs.which()</code>.</simpara>
</returns>
<throws>
<simpara>If <code>which() == rhs.which()</code> then may fail with
any exceptions arising from <code>operator&lt;(T,T)</code>,
where <code>T</code> is the contained type of
<code>*this</code>.</simpara>
</throws>
</overloaded-method>
</method-group>
</class>
<function name="swap">
<template>
<template-type-parameter name="T1"/>
<template-type-parameter name="T2"/>
<template-varargs/>
<template-type-parameter name="TN"/>
</template>
<type>void</type>
<parameter name="lhs">
<paramtype><classname>variant</classname>&lt;T1, T2, ..., TN&gt; &amp;</paramtype>
</parameter>
<parameter name="rhs">
<paramtype><classname>variant</classname>&lt;T1, T2, ..., TN&gt; &amp;</paramtype>
</parameter>
<effects>
<simpara>Swaps <code>lhs</code> with <code>rhs</code> by application
of <code><methodname>variant::swap</methodname></code>.</simpara>
</effects>
<throws>
<simpara>May fail with any exception arising from
<code><methodname>variant::swap</methodname></code>.</simpara>
</throws>
</function>
<function name="operator&lt;&lt;">
<purpose>Provides streaming output for <code>variant</code> types.</purpose>
<template>
<template-type-parameter name="ElemType"/>
<template-type-parameter name="Traits"/>
<template-type-parameter name="T1"/>
<template-type-parameter name="T2"/>
<template-varargs/>
<template-type-parameter name="TN"/>
</template>
<type>std::basic_ostream&lt;ElemType,Traits&gt; &amp;</type>
<parameter name="out">
<paramtype>std::basic_ostream&lt;ElemType,Traits&gt; &amp;</paramtype>
</parameter>
<parameter name="rhs">
<paramtype>const <classname>variant</classname>&lt;T1, T2, ..., TN&gt; &amp;</paramtype>
</parameter>
<requires>
<simpara>Every bounded type of the <code>variant</code> must
fulfill the requirements of the
<link linkend="variant.concepts.output-streamable"><emphasis>OutputStreamable</emphasis></link>
concept.</simpara>
</requires>
<effects>
<simpara>Calls <code>out &lt;&lt; x</code>, where <code>x</code> is
the content of <code>rhs</code>.</simpara>
</effects>
<notes>
<simpara>Not available when <code>BOOST_NO_IOSTREAM</code> is
defined.</simpara>
</notes>
</function>
<class name="make_variant_over">
<purpose>
<simpara>Exposes a <code>variant</code> whose bounded types are the
elements of the given type sequence.</simpara>
</purpose>
<template>
<template-type-parameter name="Sequence"/>
</template>
<typedef name="type">
<type>variant&lt; <emphasis>unspecified</emphasis> &gt;</type>
</typedef>
<description>
<simpara><code>type</code> has behavior equivalent in every respect to
<code><classname>variant</classname>&lt; Sequence[0], Sequence[1], ... &gt;</code>
(where <code>Sequence[<emphasis>i</emphasis>]</code> denotes the
<emphasis>i</emphasis>-th element of <code>Sequence</code>), except
that no upper limit is imposed on the number of types.</simpara>
<simpara><emphasis role="bold">Notes</emphasis>:</simpara>
<itemizedlist>
<listitem><code>Sequence</code> must meet the requirements of
<libraryname>MPL</libraryname>'s <emphasis>Sequence</emphasis>
concept.</listitem>
<listitem>Due to standard conformance problems in several compilers,
<code>make_variant_over</code> may not be supported on your
compiler. See
<code><macroname>BOOST_VARIANT_NO_TYPE_SEQUENCE_SUPPORT</macroname></code>
for more information.</listitem>
</itemizedlist>
</description>
</class>
</namespace>
</header>