blob: 594eaf3786b2c3336fcde9020e4f0b48ae81b7c8 [file] [log] [blame]
<?xml version="1.0" encoding="utf-8"?>
<!DOCTYPE library PUBLIC "-//Boost//DTD BoostBook XML V1.0//EN"
"http://www.boost.org/tools/boostbook/dtd/boostbook.dtd">
<section id="variant.tutorial.advanced">
<title>Advanced Topics</title>
<using-namespace name="boost"/>
<using-class name="boost::variant"/>
<para>This section discusses several features of the library often required
for advanced uses of <code>variant</code>. Unlike in the above section, each
feature presented below is largely independent of the others. Accordingly,
this section is not necessarily intended to be read linearly or in its
entirety.</para>
<section id="variant.tutorial.preprocessor">
<title>Preprocessor macros</title>
<para>While the <code>variant</code> class template's variadic parameter
list greatly simplifies use for specific instantiations of the template,
it significantly complicates use for generic instantiations. For instance,
while it is immediately clear how one might write a function accepting a
specific <code>variant</code> instantiation, say
<code>variant&lt;int, std::string&gt;</code>, it is less clear how one
might write a function accepting any given <code>variant</code>.</para>
<para>Due to the lack of support for true variadic template parameter lists
in the C++98 standard, the preprocessor is needed. While the
<libraryname>Preprocessor</libraryname> library provides a general and
powerful solution, the need to repeat
<code><macroname>BOOST_VARIANT_LIMIT_TYPES</macroname></code>
unnecessarily clutters otherwise simple code. Therefore, for common
use-cases, this library provides its own macro
<code><emphasis role="bold"><macroname>BOOST_VARIANT_ENUM_PARAMS</macroname></emphasis></code>.</para>
<para>This macro simplifies for the user the process of declaring
<code>variant</code> types in function templates or explicit partial
specializations of class templates, as shown in the following:
<programlisting>// general cases
template &lt;typename T&gt; void some_func(const T &amp;);
template &lt;typename T&gt; class some_class;
// function template overload
template &lt;<macroname>BOOST_VARIANT_ENUM_PARAMS</macroname>(typename T)&gt;
void some_func(const <classname>boost::variant</classname>&lt;<macroname>BOOST_VARIANT_ENUM_PARAMS</macroname>(T)&gt; &amp;);
// explicit partial specialization
template &lt;<macroname>BOOST_VARIANT_ENUM_PARAMS</macroname>(typename T)&gt;
class some_class&lt; <classname>boost::variant</classname>&lt;<macroname>BOOST_VARIANT_ENUM_PARAMS</macroname>(T)&gt; &gt;;</programlisting>
</para>
</section>
<section id="variant.tutorial.over-sequence">
<title>Using a type sequence to specify bounded types</title>
<para>While convenient for typical uses, the <code>variant</code> class
template's variadic template parameter list is limiting in two significant
dimensions. First, due to the lack of support for true variadic template
parameter lists in C++, the number of parameters must be limited to some
implementation-defined maximum (namely,
<code><macroname>BOOST_VARIANT_LIMIT_TYPES</macroname></code>).
Second, the nature of parameter lists in general makes compile-time
manipulation of the lists excessively difficult.</para>
<para>To solve these problems,
<code>make_variant_over&lt; <emphasis>Sequence</emphasis> &gt;</code>
exposes a <code>variant</code> whose bounded types are the elements of
<code>Sequence</code> (where <code>Sequence</code> is any type fulfilling
the requirements of <libraryname>MPL</libraryname>'s
<emphasis>Sequence</emphasis> concept). For instance,
<programlisting>typedef <classname>mpl::vector</classname>&lt; std::string &gt; types_initial;
typedef <classname>mpl::push_front</classname>&lt; types_initial, int &gt;::type types;
<classname>boost::make_variant_over</classname>&lt; types &gt;::type v1;</programlisting>
behaves equivalently to
<programlisting><classname>boost::variant</classname>&lt; int, std::string &gt; v2;</programlisting>
</para>
<para><emphasis role="bold">Portability</emphasis>: Unfortunately, due to
standard conformance issues in several compilers,
<code>make_variant_over</code> is not universally available. On these
compilers the library indicates its lack of support for the syntax via the
definition of the preprocessor symbol
<code><macroname>BOOST_VARIANT_NO_TYPE_SEQUENCE_SUPPORT</macroname></code>.</para>
</section>
<section id="variant.tutorial.recursive">
<title>Recursive <code>variant</code> types</title>
<para>Recursive types facilitate the construction of complex semantics from
simple syntax. For instance, nearly every programmer is familiar with the
canonical definition of a linked list implementation, whose simple
definition allows sequences of unlimited length:
<programlisting>template &lt;typename T&gt;
struct list_node
{
T data;
list_node * next;
};</programlisting>
</para>
<para>The nature of <code>variant</code> as a generic class template
unfortunately precludes the straightforward construction of recursive
<code>variant</code> types. Consider the following attempt to construct
a structure for simple mathematical expressions:
<programlisting>struct add;
struct sub;
template &lt;typename OpTag&gt; struct binary_op;
typedef <classname>boost::variant</classname>&lt;
int
, binary_op&lt;add&gt;
, binary_op&lt;sub&gt;
> expression;
template &lt;typename OpTag&gt;
struct binary_op
{
expression left; // <emphasis>variant instantiated here...</emphasis>
expression right;
binary_op( const expression &amp; lhs, const expression &amp; rhs )
: left(lhs), right(rhs)
{
}
}; // <emphasis>...but binary_op not complete until here!</emphasis></programlisting>
</para>
<para>While well-intentioned, the above approach will not compile because
<code>binary_op</code> is still incomplete when the <code>variant</code>
type <code>expression</code> is instantiated. Further, the approach suffers
from a more significant logical flaw: even if C++ syntax were different
such that the above example could be made to &quot;work,&quot;
<code>expression</code> would need to be of infinite size, which is
clearly impossible.</para>
<para>To overcome these difficulties, <code>variant</code> includes special
support for the
<code><classname>boost::recursive_wrapper</classname></code> class
template, which breaks the circular dependency at the heart of these
problems. Further,
<code><classname>boost::make_recursive_variant</classname></code> provides
a more convenient syntax for declaring recursive <code>variant</code>
types. Tutorials for use of these facilities is described in
<xref linkend="variant.tutorial.recursive.recursive-wrapper"/> and
<xref linkend="variant.tutorial.recursive.recursive-variant"/>.</para>
<section id="variant.tutorial.recursive.recursive-wrapper">
<title>Recursive types with <code>recursive_wrapper</code></title>
<para>The following example demonstrates how <code>recursive_wrapper</code>
could be used to solve the problem presented in
<xref linkend="variant.tutorial.recursive"/>:
<programlisting>typedef <classname>boost::variant</classname>&lt;
int
, <classname>boost::recursive_wrapper</classname>&lt; binary_op&lt;add&gt; &gt;
, <classname>boost::recursive_wrapper</classname>&lt; binary_op&lt;sub&gt; &gt;
&gt; expression;</programlisting>
</para>
<para>Because <code>variant</code> provides special support for
<code>recursive_wrapper</code>, clients may treat the resultant
<code>variant</code> as though the wrapper were not present. This is seen
in the implementation of the following visitor, which calculates the value
of an <code>expression</code> without any reference to
<code>recursive_wrapper</code>:
<programlisting>class calculator : public <classname>boost::static_visitor&lt;int&gt;</classname>
{
public:
int operator()(int value) const
{
return value;
}
int operator()(const binary_op&lt;add&gt; &amp; binary) const
{
return <functionname>boost::apply_visitor</functionname>( calculator(), binary.left )
+ <functionname>boost::apply_visitor</functionname>( calculator(), binary.right );
}
int operator()(const binary_op&lt;sub&gt; &amp; binary) const
{
return <functionname>boost::apply_visitor</functionname>( calculator(), binary.left )
- <functionname>boost::apply_visitor</functionname>( calculator(), binary.right );
}
};</programlisting>
</para>
<para>Finally, we can demonstrate <code>expression</code> in action:
<programlisting>void f()
{
// result = ((7-3)+8) = 12
expression result(
binary_op&lt;add&gt;(
binary_op&lt;sub&gt;(7,3)
, 8
)
);
assert( <functionname>boost::apply_visitor</functionname>(calculator(),result) == 12 );
}</programlisting>
</para>
</section>
<section id="variant.tutorial.recursive.recursive-variant">
<title>Recursive types with <code>make_recursive_variant</code></title>
<para>For some applications of recursive <code>variant</code> types, a user
may be able to sacrifice the full flexibility of using
<code>recursive_wrapper</code> with <code>variant</code> for the following
convenient syntax:
<programlisting>typedef <classname>boost::make_recursive_variant</classname>&lt;
int
, std::vector&lt; boost::recursive_variant_ &gt;
&gt;::type int_tree_t;</programlisting>
</para>
<para>Use of the resultant <code>variant</code> type is as expected:
<programlisting>std::vector&lt; int_tree_t &gt; subresult;
subresult.push_back(3);
subresult.push_back(5);
std::vector&lt; int_tree_t &gt; result;
result.push_back(1);
result.push_back(subresult);
result.push_back(7);
int_tree_t var(result);</programlisting>
</para>
<para>To be clear, one might represent the resultant content of
<code>var</code> as <code>( 1 ( 3 5 ) 7 )</code>.</para>
<para>Finally, note that a type sequence can be used to specify the bounded
types of a recursive <code>variant</code> via the use of
<code><classname>boost::make_recursive_variant_over</classname></code>,
whose semantics are the same as <code>make_variant_over</code> (which is
described in <xref linkend="variant.tutorial.over-sequence"/>).</para>
<para><emphasis role="bold">Portability</emphasis>: Unfortunately, due to
standard conformance issues in several compilers,
<code>make_recursive_variant</code> is not universally supported. On these
compilers the library indicates its lack of support via the definition
of the preprocessor symbol
<code><macroname>BOOST_VARIANT_NO_FULL_RECURSIVE_VARIANT_SUPPORT</macroname></code>.
Thus, unless working with highly-conformant compilers, maximum portability
will be achieved by instead using <code>recursive_wrapper</code>, as
described in
<xref linkend="variant.tutorial.recursive.recursive-wrapper"/>.</para>
</section>
</section> <!--/tutorial.recursive-->
<section id="variant.tutorial.binary-visitation">
<title>Binary visitation</title>
<para>As the tutorial above demonstrates, visitation is a powerful mechanism
for manipulating <code>variant</code> content. Binary visitation further
extends the power and flexibility of visitation by allowing simultaneous
visitation of the content of two different <code>variant</code>
objects.</para>
<para>Notably this feature requires that binary visitors are incompatible
with the visitor objects discussed in the tutorial above, as they must
operate on two arguments. The following demonstrates the implementation of
a binary visitor:
<programlisting>class are_strict_equals
: public <classname>boost::static_visitor</classname>&lt;bool&gt;
{
public:
template &lt;typename T, typename U&gt;
bool operator()( const T &amp;, const U &amp; ) const
{
return false; // cannot compare different types
}
template &lt;typename T&gt;
bool operator()( const T &amp; lhs, const T &amp; rhs ) const
{
return lhs == rhs;
}
};</programlisting>
</para>
<para>As expected, the visitor is applied to two <code>variant</code>
arguments by means of <code>apply_visitor</code>:
<programlisting><classname>boost::variant</classname>&lt; int, std::string &gt; v1( "hello" );
<classname>boost::variant</classname>&lt; double, std::string &gt; v2( "hello" );
assert( <functionname>boost::apply_visitor</functionname>(are_strict_equals(), v1, v2) );
<classname>boost::variant</classname>&lt; int, const char * &gt; v3( "hello" );
assert( !<functionname>boost::apply_visitor</functionname>(are_strict_equals(), v1, v3) );</programlisting>
</para>
<para>Finally, we must note that the function object returned from the
&quot;delayed&quot; form of
<code><functionname>apply_visitor</functionname></code> also supports
binary visitation, as the following demonstrates:
<programlisting>typedef <classname>boost::variant</classname>&lt;double, std::string&gt; my_variant;
std::vector&lt; my_variant &gt; seq1;
seq1.push_back("pi is close to ");
seq1.push_back(3.14);
std::list&lt; my_variant &gt; seq2;
seq2.push_back("pi is close to ");
seq2.push_back(3.14);
are_strict_equals visitor;
assert( std::equal(
seq1.begin(), seq1.end(), seq2.begin()
, <functionname>boost::apply_visitor</functionname>( visitor )
) );</programlisting>
</para>
</section>
</section>