blob: fbd1a8993da80a92a700e78b7ba2a30a28408ea9 [file] [log] [blame]
/*
* Copyright 1993, 1995 Christopher Seiwald.
*
* This file is part of Jam - see jam.c for Copyright information.
*/
# include "jam.h"
# include "hash.h"
# include "compile.h"
# include <assert.h>
/*
* hash.c - simple in-memory hashing routines
*
* External routines:
*
* hashinit() - initialize a hash table, returning a handle
* hashitem() - find a record in the table, and optionally enter a new one
* hashdone() - free a hash table, given its handle
*
* Internal routines:
*
* hashrehash() - resize and rebuild hp->tab, the hash table
*
* 4/29/93 - ensure ITEM's are aligned
*/
/* */
#define HASH_DEBUG_PROFILE 1
/* */
char *hashsccssid="@(#)hash.c 1.14 () 6/20/88";
/* Header attached to all data items entered into a hash table. */
struct hashhdr
{
struct item * next;
unsigned int keyval; /* for quick comparisons */
};
/* This structure overlays the one handed to hashenter(). Its actual size is
* given to hashinit().
*/
struct hashdata
{
char * key;
/* rest of user data */
};
typedef struct item
{
struct hashhdr hdr;
struct hashdata data;
} ITEM ;
# define MAX_LISTS 32
struct hash
{
/*
* the hash table, just an array of item pointers
*/
struct {
int nel;
ITEM **base;
} tab;
int bloat; /* tab.nel / items.nel */
int inel; /* initial number of elements */
/*
* the array of records, maintained by these routines
* essentially a microallocator
*/
struct {
int more; /* how many more ITEMs fit in lists[ list ] */
ITEM *free; /* free list of items */
char *next; /* where to put more ITEMs in lists[ list ] */
int datalen; /* length of records in this hash table */
int size; /* sizeof( ITEM ) + aligned datalen */
int nel; /* total ITEMs held by all lists[] */
int list; /* index into lists[] */
struct {
int nel; /* total ITEMs held by this list */
char *base; /* base of ITEMs array */
} lists[ MAX_LISTS ];
} items;
char * name; /* just for hashstats() */
};
static void hashrehash( struct hash *hp );
static void hashstat( struct hash *hp );
static void * hash_mem_alloc(size_t datalen, size_t size);
static void hash_mem_free(size_t datalen, void * data);
#ifdef OPT_BOEHM_GC
static void hash_mem_finalizer(char * key, struct hash * hp);
#endif
static unsigned int jenkins_one_at_a_time_hash(const unsigned char *key)
{
unsigned int hash = 0;
while ( *key )
{
hash += *key++;
hash += (hash << 10);
hash ^= (hash >> 6);
}
hash += (hash << 3);
hash ^= (hash >> 11);
hash += (hash << 15);
return hash;
}
/*
static unsigned int knuth_hash(const unsigned char *key)
{
unsigned int keyval = *key;
while ( *key )
keyval = keyval * 2147059363 + *key++;
return keyval;
}
*/
static unsigned int hash_keyval( const char * key_ )
{
/*
return knuth_hash((const unsigned char *)key_);
*/
return jenkins_one_at_a_time_hash((const unsigned char *)key_);
}
#define hash_bucket(hp,keyval) ((hp)->tab.base + ( (keyval) % (hp)->tab.nel ))
/* Find the hash item for the given data. Returns pointer to the
item and if given a pointer to the item before the found item.
If it's the first item in a bucket, there is no previous item,
and zero is returned for the previous item instead.
*/
static ITEM * hash_search(
struct hash *hp,
unsigned int keyval,
const char * keydata,
ITEM * * previous )
{
ITEM * i = *hash_bucket(hp,keyval);
ITEM * p = 0;
for ( ; i; i = i->hdr.next )
{
if ( ( keyval == i->hdr.keyval ) &&
!strcmp( i->data.key, keydata ) )
{
if (previous)
{
*previous = p;
}
return i;
}
p = i;
}
return 0;
}
/*
* hash_free() - remove the given item from the table if it's there.
* Returns 1 if found, 0 otherwise.
*
* NOTE: 2nd argument is HASHDATA*, not HASHDATA** as elsewhere.
*/
int
hash_free(
register struct hash *hp,
HASHDATA *data)
{
ITEM * i = 0;
ITEM * prev = 0;
unsigned int keyval = hash_keyval(data->key);
i = hash_search( hp, keyval, data->key, &prev );
if (i)
{
/* mark it free so we skip it during enumeration */
i->data.key = 0;
/* unlink the record from the hash chain */
if (prev) prev->hdr.next = i->hdr.next;
else *hash_bucket(hp,keyval) = i->hdr.next;
/* link it into the freelist */
i->hdr.next = hp->items.free;
hp->items.free = i;
/* we have another item */
hp->items.more++;
return 1;
}
return 0;
}
/*
* hashitem() - find a record in the table, and optionally enter a new one
*/
int
hashitem(
register struct hash *hp,
HASHDATA **data,
int enter )
{
register ITEM *i;
char *b = (*data)->key;
unsigned int keyval = hash_keyval(b);
#ifdef HASH_DEBUG_PROFILE
profile_frame prof[1];
if ( DEBUG_PROFILE )
profile_enter( 0, prof );
#endif
if ( enter && !hp->items.more )
hashrehash( hp );
if ( !enter && !hp->items.nel )
{
#ifdef HASH_DEBUG_PROFILE
if ( DEBUG_PROFILE )
profile_exit( prof );
#endif
return 0;
}
i = hash_search( hp, keyval, (*data)->key, 0 );
if (i)
{
*data = &i->data;
#ifdef HASH_DEBUG_PROFILE
if ( DEBUG_PROFILE ) profile_exit( prof );
#endif
return !0;
}
if ( enter )
{
ITEM * * base = hash_bucket(hp,keyval);
/* try to grab one from the free list */
if ( hp->items.free )
{
i = hp->items.free;
hp->items.free = i->hdr.next;
assert( i->data.key == 0 );
}
else
{
i = (ITEM *)hp->items.next;
hp->items.next += hp->items.size;
}
hp->items.more--;
memcpy( (char *)&i->data, (char *)*data, hp->items.datalen );
i->hdr.keyval = keyval;
i->hdr.next = *base;
*base = i;
*data = &i->data;
#ifdef OPT_BOEHM_GC
if (sizeof(HASHDATA) == hp->items.datalen)
{
GC_REGISTER_FINALIZER(i->data.key,&hash_mem_finalizer,hp,0,0);
}
#endif
}
#ifdef HASH_DEBUG_PROFILE
if ( DEBUG_PROFILE )
profile_exit( prof );
#endif
return 0;
}
/*
* hashrehash() - resize and rebuild hp->tab, the hash table
*/
static void hashrehash( register struct hash *hp )
{
int i = ++hp->items.list;
hp->items.more = i ? 2 * hp->items.nel : hp->inel;
hp->items.next = (char *)hash_mem_alloc( hp->items.datalen, hp->items.more * hp->items.size );
hp->items.free = 0;
hp->items.lists[i].nel = hp->items.more;
hp->items.lists[i].base = hp->items.next;
hp->items.nel += hp->items.more;
if ( hp->tab.base )
hash_mem_free( hp->items.datalen, (char *)hp->tab.base );
hp->tab.nel = hp->items.nel * hp->bloat;
hp->tab.base = (ITEM **)hash_mem_alloc( hp->items.datalen, hp->tab.nel * sizeof(ITEM **) );
memset( (char *)hp->tab.base, '\0', hp->tab.nel * sizeof( ITEM * ) );
for ( i = 0; i < hp->items.list; ++i )
{
int nel = hp->items.lists[i].nel;
char *next = hp->items.lists[i].base;
for ( ; nel--; next += hp->items.size )
{
register ITEM *i = (ITEM *)next;
ITEM **ip = hp->tab.base + i->hdr.keyval % hp->tab.nel;
/* code currently assumes rehashing only when there are no free items */
assert( i->data.key != 0 );
i->hdr.next = *ip;
*ip = i;
}
}
}
void hashenumerate( struct hash * hp, void (* f)( void *, void * ), void * data )
{
int i;
for ( i = 0; i <= hp->items.list; ++i )
{
char * next = hp->items.lists[i].base;
int nel = hp->items.lists[i].nel;
if ( i == hp->items.list )
nel -= hp->items.more;
for ( ; nel--; next += hp->items.size )
{
ITEM * i = (ITEM *)next;
if ( i->data.key != 0 ) /* DO not enumerate freed items. */
f( &i->data, data );
}
}
}
/* --- */
# define ALIGNED(x) ( ( x + sizeof( ITEM ) - 1 ) & ~( sizeof( ITEM ) - 1 ) )
/*
* hashinit() - initialize a hash table, returning a handle
*/
struct hash *
hashinit(
int datalen,
char *name )
{
struct hash *hp = (struct hash *)hash_mem_alloc( datalen, sizeof( *hp ) );
hp->bloat = 3;
hp->tab.nel = 0;
hp->tab.base = (ITEM **)0;
hp->items.more = 0;
hp->items.free = 0;
hp->items.datalen = datalen;
hp->items.size = sizeof( struct hashhdr ) + ALIGNED( datalen );
hp->items.list = -1;
hp->items.nel = 0;
hp->inel = 11 /* 47 */;
hp->name = name;
return hp;
}
/*
* hashdone() - free a hash table, given its handle
*/
void
hashdone( struct hash *hp )
{
int i;
if ( !hp )
return;
if ( DEBUG_MEM || DEBUG_PROFILE )
hashstat( hp );
if ( hp->tab.base )
hash_mem_free( hp->items.datalen, (char *)hp->tab.base );
for ( i = 0; i <= hp->items.list; ++i )
hash_mem_free( hp->items.datalen, hp->items.lists[i].base );
hash_mem_free( hp->items.datalen, (char *)hp );
}
static void * hash_mem_alloc(size_t datalen, size_t size)
{
if (sizeof(HASHDATA) == datalen)
{
return BJAM_MALLOC_RAW(size);
}
else
{
return BJAM_MALLOC(size);
}
}
static void hash_mem_free(size_t datalen, void * data)
{
if (sizeof(HASHDATA) == datalen)
{
BJAM_FREE_RAW(data);
}
else
{
BJAM_FREE(data);
}
}
#ifdef OPT_BOEHM_GC
static void hash_mem_finalizer(char * key, struct hash * hp)
{
HASHDATA d;
d.key = key;
hash_free(hp,&d);
}
#endif
/* ---- */
static void hashstat( struct hash * hp )
{
ITEM * * tab = hp->tab.base;
int nel = hp->tab.nel;
int count = 0;
int sets = 0;
int run = ( tab[ nel - 1 ] != (ITEM *)0 );
int i;
int here;
for ( i = nel; i > 0; --i )
{
if ( ( here = ( *tab++ != (ITEM *)0 ) ) )
count++;
if ( here && !run )
sets++;
run = here;
}
printf( "%s table: %d+%d+%d (%dK+%luK) items+table+hash, %f density\n",
hp->name,
count,
hp->items.nel,
hp->tab.nel,
hp->items.nel * hp->items.size / 1024,
(long unsigned)hp->tab.nel * sizeof( ITEM ** ) / 1024,
(float)count / (float)sets );
}