| /* -------------------------------------------------------------------- */ |
| /* |
| * lookup3.c, by Bob Jenkins, May 2006, Public Domain. |
| * |
| * These are functions for producing 32-bit hashes for hash table lookup. |
| * jlu32w(), jlu32l(), jlu32lpair(), jlu32b(), _JLU3_MIX(), and _JLU3_FINAL() |
| * are externally useful functions. Routines to test the hash are included |
| * if SELF_TEST is defined. You can use this free for any purpose. It's in |
| * the public domain. It has no warranty. |
| * |
| * You probably want to use jlu32l(). jlu32l() and jlu32b() |
| * hash byte arrays. jlu32l() is is faster than jlu32b() on |
| * little-endian machines. Intel and AMD are little-endian machines. |
| * On second thought, you probably want jlu32lpair(), which is identical to |
| * jlu32l() except it returns two 32-bit hashes for the price of one. |
| * You could implement jlu32bpair() if you wanted but I haven't bothered here. |
| * |
| * If you want to find a hash of, say, exactly 7 integers, do |
| * a = i1; b = i2; c = i3; |
| * _JLU3_MIX(a,b,c); |
| * a += i4; b += i5; c += i6; |
| * _JLU3_MIX(a,b,c); |
| * a += i7; |
| * _JLU3_FINAL(a,b,c); |
| * then use c as the hash value. If you have a variable size array of |
| * 4-byte integers to hash, use jlu32w(). If you have a byte array (like |
| * a character string), use jlu32l(). If you have several byte arrays, or |
| * a mix of things, see the comments above jlu32l(). |
| * |
| * Why is this so big? I read 12 bytes at a time into 3 4-byte integers, |
| * then mix those integers. This is fast (you can do a lot more thorough |
| * mixing with 12*3 instructions on 3 integers than you can with 3 instructions |
| * on 1 byte), but shoehorning those bytes into integers efficiently is messy. |
| */ |
| /* -------------------------------------------------------------------- */ |
| |
| #include <stdint.h> |
| |
| #if defined(_JLU3_SELFTEST) |
| # define _JLU3_jlu32w 1 |
| # define _JLU3_jlu32l 1 |
| # define _JLU3_jlu32lpair 1 |
| # define _JLU3_jlu32b 1 |
| #endif |
| |
| /*@-redef@*/ |
| /*@unchecked@*/ |
| static const union _dbswap { |
| const uint32_t ui; |
| const unsigned char uc[4]; |
| } endian = { .ui = 0x11223344 }; |
| # define HASH_LITTLE_ENDIAN (endian.uc[0] == (unsigned char) 0x44) |
| # define HASH_BIG_ENDIAN (endian.uc[0] == (unsigned char) 0x11) |
| /*@=redef@*/ |
| |
| #ifndef ROTL32 |
| # define ROTL32(x, s) (((x) << (s)) | ((x) >> (32 - (s)))) |
| #endif |
| |
| /* NOTE: The _size parameter should be in bytes. */ |
| #define _JLU3_INIT(_h, _size) (0xdeadbeef + ((uint32_t)(_size)) + (_h)) |
| |
| /* -------------------------------------------------------------------- */ |
| /* |
| * _JLU3_MIX -- mix 3 32-bit values reversibly. |
| * |
| * This is reversible, so any information in (a,b,c) before _JLU3_MIX() is |
| * still in (a,b,c) after _JLU3_MIX(). |
| * |
| * If four pairs of (a,b,c) inputs are run through _JLU3_MIX(), or through |
| * _JLU3_MIX() in reverse, there are at least 32 bits of the output that |
| * are sometimes the same for one pair and different for another pair. |
| * This was tested for: |
| * * pairs that differed by one bit, by two bits, in any combination |
| * of top bits of (a,b,c), or in any combination of bottom bits of |
| * (a,b,c). |
| * * "differ" is defined as +, -, ^, or ~^. For + and -, I transformed |
| * the output delta to a Gray code (a^(a>>1)) so a string of 1's (as |
| * is commonly produced by subtraction) look like a single 1-bit |
| * difference. |
| * * the base values were pseudorandom, all zero but one bit set, or |
| * all zero plus a counter that starts at zero. |
| * |
| * Some k values for my "a-=c; a^=ROTL32(c,k); c+=b;" arrangement that |
| * satisfy this are |
| * 4 6 8 16 19 4 |
| * 9 15 3 18 27 15 |
| * 14 9 3 7 17 3 |
| * Well, "9 15 3 18 27 15" didn't quite get 32 bits diffing |
| * for "differ" defined as + with a one-bit base and a two-bit delta. I |
| * used http://burtleburtle.net/bob/hash/avalanche.html to choose |
| * the operations, constants, and arrangements of the variables. |
| * |
| * This does not achieve avalanche. There are input bits of (a,b,c) |
| * that fail to affect some output bits of (a,b,c), especially of a. The |
| * most thoroughly mixed value is c, but it doesn't really even achieve |
| * avalanche in c. |
| * |
| * This allows some parallelism. Read-after-writes are good at doubling |
| * the number of bits affected, so the goal of mixing pulls in the opposite |
| * direction as the goal of parallelism. I did what I could. Rotates |
| * seem to cost as much as shifts on every machine I could lay my hands |
| * on, and rotates are much kinder to the top and bottom bits, so I used |
| * rotates. |
| */ |
| /* -------------------------------------------------------------------- */ |
| #define _JLU3_MIX(a,b,c) \ |
| { \ |
| a -= c; a ^= ROTL32(c, 4); c += b; \ |
| b -= a; b ^= ROTL32(a, 6); a += c; \ |
| c -= b; c ^= ROTL32(b, 8); b += a; \ |
| a -= c; a ^= ROTL32(c,16); c += b; \ |
| b -= a; b ^= ROTL32(a,19); a += c; \ |
| c -= b; c ^= ROTL32(b, 4); b += a; \ |
| } |
| |
| /* -------------------------------------------------------------------- */ |
| /** |
| * _JLU3_FINAL -- final mixing of 3 32-bit values (a,b,c) into c |
| * |
| * Pairs of (a,b,c) values differing in only a few bits will usually |
| * produce values of c that look totally different. This was tested for |
| * * pairs that differed by one bit, by two bits, in any combination |
| * of top bits of (a,b,c), or in any combination of bottom bits of |
| * (a,b,c). |
| * * "differ" is defined as +, -, ^, or ~^. For + and -, I transformed |
| * the output delta to a Gray code (a^(a>>1)) so a string of 1's (as |
| * is commonly produced by subtraction) look like a single 1-bit |
| * difference. |
| * * the base values were pseudorandom, all zero but one bit set, or |
| * all zero plus a counter that starts at zero. |
| * |
| * These constants passed: |
| * 14 11 25 16 4 14 24 |
| * 12 14 25 16 4 14 24 |
| * and these came close: |
| * 4 8 15 26 3 22 24 |
| * 10 8 15 26 3 22 24 |
| * 11 8 15 26 3 22 24 |
| */ |
| /* -------------------------------------------------------------------- */ |
| #define _JLU3_FINAL(a,b,c) \ |
| { \ |
| c ^= b; c -= ROTL32(b,14); \ |
| a ^= c; a -= ROTL32(c,11); \ |
| b ^= a; b -= ROTL32(a,25); \ |
| c ^= b; c -= ROTL32(b,16); \ |
| a ^= c; a -= ROTL32(c,4); \ |
| b ^= a; b -= ROTL32(a,14); \ |
| c ^= b; c -= ROTL32(b,24); \ |
| } |
| |
| #if defined(_JLU3_jlu32w) |
| uint32_t jlu32w(uint32_t h, /*@null@*/ const uint32_t *k, size_t size) |
| /*@*/; |
| /* -------------------------------------------------------------------- */ |
| /** |
| * This works on all machines. To be useful, it requires |
| * -- that the key be an array of uint32_t's, and |
| * -- that the size be the number of uint32_t's in the key |
| * |
| * The function jlu32w() is identical to jlu32l() on little-endian |
| * machines, and identical to jlu32b() on big-endian machines, |
| * except that the size has to be measured in uint32_ts rather than in |
| * bytes. jlu32l() is more complicated than jlu32w() only because |
| * jlu32l() has to dance around fitting the key bytes into registers. |
| * |
| * @param h the previous hash, or an arbitrary value |
| * @param *k the key, an array of uint32_t values |
| * @param size the size of the key, in uint32_ts |
| * @return the lookup3 hash |
| */ |
| /* -------------------------------------------------------------------- */ |
| uint32_t jlu32w(uint32_t h, const uint32_t *k, size_t size) |
| { |
| uint32_t a = _JLU3_INIT(h, (size * sizeof(*k))); |
| uint32_t b = a; |
| uint32_t c = a; |
| |
| if (k == NULL) |
| goto exit; |
| |
| /*----------------------------------------------- handle most of the key */ |
| while (size > 3) { |
| a += k[0]; |
| b += k[1]; |
| c += k[2]; |
| _JLU3_MIX(a,b,c); |
| size -= 3; |
| k += 3; |
| } |
| |
| /*----------------------------------------- handle the last 3 uint32_t's */ |
| switch (size) { |
| case 3 : c+=k[2]; |
| case 2 : b+=k[1]; |
| case 1 : a+=k[0]; |
| _JLU3_FINAL(a,b,c); |
| /*@fallthrough@*/ |
| case 0: |
| break; |
| } |
| /*---------------------------------------------------- report the result */ |
| exit: |
| return c; |
| } |
| #endif /* defined(_JLU3_jlu32w) */ |
| |
| #if defined(_JLU3_jlu32l) |
| uint32_t jlu32l(uint32_t h, const void *key, size_t size) |
| /*@*/; |
| /* -------------------------------------------------------------------- */ |
| /* |
| * jlu32l() -- hash a variable-length key into a 32-bit value |
| * h : can be any 4-byte value |
| * k : the key (the unaligned variable-length array of bytes) |
| * size : the size of the key, counting by bytes |
| * Returns a 32-bit value. Every bit of the key affects every bit of |
| * the return value. Two keys differing by one or two bits will have |
| * totally different hash values. |
| * |
| * The best hash table sizes are powers of 2. There is no need to do |
| * mod a prime (mod is sooo slow!). If you need less than 32 bits, |
| * use a bitmask. For example, if you need only 10 bits, do |
| * h = (h & hashmask(10)); |
| * In which case, the hash table should have hashsize(10) elements. |
| * |
| * If you are hashing n strings (uint8_t **)k, do it like this: |
| * for (i=0, h=0; i<n; ++i) h = jlu32l(h, k[i], len[i]); |
| * |
| * By Bob Jenkins, 2006. bob_jenkins@burtleburtle.net. You may use this |
| * code any way you wish, private, educational, or commercial. It's free. |
| * |
| * Use for hash table lookup, or anything where one collision in 2^^32 is |
| * acceptable. Do NOT use for cryptographic purposes. |
| * |
| * @param h the previous hash, or an arbitrary value |
| * @param *k the key, an array of uint8_t values |
| * @param size the size of the key |
| * @return the lookup3 hash |
| */ |
| /* -------------------------------------------------------------------- */ |
| uint32_t jlu32l(uint32_t h, const void *key, size_t size) |
| { |
| union { const void *ptr; size_t i; } u; |
| uint32_t a = _JLU3_INIT(h, size); |
| uint32_t b = a; |
| uint32_t c = a; |
| |
| if (key == NULL) |
| goto exit; |
| |
| u.ptr = key; |
| if (HASH_LITTLE_ENDIAN && ((u.i & 0x3) == 0)) { |
| const uint32_t *k = (const uint32_t *)key; /* read 32-bit chunks */ |
| #ifdef VALGRIND |
| const uint8_t *k8; |
| #endif |
| |
| /*------ all but last block: aligned reads and affect 32 bits of (a,b,c) */ |
| while (size > 12) { |
| a += k[0]; |
| b += k[1]; |
| c += k[2]; |
| _JLU3_MIX(a,b,c); |
| size -= 12; |
| k += 3; |
| } |
| |
| /*------------------------- handle the last (probably partial) block */ |
| /* |
| * "k[2]&0xffffff" actually reads beyond the end of the string, but |
| * then masks off the part it's not allowed to read. Because the |
| * string is aligned, the masked-off tail is in the same word as the |
| * rest of the string. Every machine with memory protection I've seen |
| * does it on word boundaries, so is OK with this. But VALGRIND will |
| * still catch it and complain. The masking trick does make the hash |
| * noticably faster for short strings (like English words). |
| */ |
| #ifndef VALGRIND |
| |
| switch (size) { |
| case 12: c += k[2]; b+=k[1]; a+=k[0]; break; |
| case 11: c += k[2]&0xffffff; b+=k[1]; a+=k[0]; break; |
| case 10: c += k[2]&0xffff; b+=k[1]; a+=k[0]; break; |
| case 9: c += k[2]&0xff; b+=k[1]; a+=k[0]; break; |
| case 8: b += k[1]; a+=k[0]; break; |
| case 7: b += k[1]&0xffffff; a+=k[0]; break; |
| case 6: b += k[1]&0xffff; a+=k[0]; break; |
| case 5: b += k[1]&0xff; a+=k[0]; break; |
| case 4: a += k[0]; break; |
| case 3: a += k[0]&0xffffff; break; |
| case 2: a += k[0]&0xffff; break; |
| case 1: a += k[0]&0xff; break; |
| case 0: goto exit; |
| } |
| |
| #else /* make valgrind happy */ |
| |
| k8 = (const uint8_t *)k; |
| switch (size) { |
| case 12: c += k[2]; b+=k[1]; a+=k[0] break; |
| case 11: c += ((uint32_t)k8[10])<<16; /*@fallthrough@*/ |
| case 10: c += ((uint32_t)k8[9])<<8; /*@fallthrough@*/ |
| case 9: c += k8[8]; /*@fallthrough@*/ |
| case 8: b += k[1]; a+=k[0]; break; |
| case 7: b += ((uint32_t)k8[6])<<16; /*@fallthrough@*/ |
| case 6: b += ((uint32_t)k8[5])<<8; /*@fallthrough@*/ |
| case 5: b += k8[4]; /*@fallthrough@*/ |
| case 4: a += k[0]; break; |
| case 3: a += ((uint32_t)k8[2])<<16; /*@fallthrough@*/ |
| case 2: a += ((uint32_t)k8[1])<<8; /*@fallthrough@*/ |
| case 1: a += k8[0]; break; |
| case 0: goto exit; |
| } |
| |
| #endif /* !valgrind */ |
| |
| } else if (HASH_LITTLE_ENDIAN && ((u.i & 0x1) == 0)) { |
| const uint16_t *k = (const uint16_t *)key; /* read 16-bit chunks */ |
| const uint8_t *k8; |
| |
| /*----------- all but last block: aligned reads and different mixing */ |
| while (size > 12) { |
| a += k[0] + (((uint32_t)k[1])<<16); |
| b += k[2] + (((uint32_t)k[3])<<16); |
| c += k[4] + (((uint32_t)k[5])<<16); |
| _JLU3_MIX(a,b,c); |
| size -= 12; |
| k += 6; |
| } |
| |
| /*------------------------- handle the last (probably partial) block */ |
| k8 = (const uint8_t *)k; |
| switch (size) { |
| case 12: |
| c += k[4]+(((uint32_t)k[5])<<16); |
| b += k[2]+(((uint32_t)k[3])<<16); |
| a += k[0]+(((uint32_t)k[1])<<16); |
| break; |
| case 11: |
| c += ((uint32_t)k8[10])<<16; |
| /*@fallthrough@*/ |
| case 10: |
| c += (uint32_t)k[4]; |
| b += k[2]+(((uint32_t)k[3])<<16); |
| a += k[0]+(((uint32_t)k[1])<<16); |
| break; |
| case 9: |
| c += (uint32_t)k8[8]; |
| /*@fallthrough@*/ |
| case 8: |
| b += k[2]+(((uint32_t)k[3])<<16); |
| a += k[0]+(((uint32_t)k[1])<<16); |
| break; |
| case 7: |
| b += ((uint32_t)k8[6])<<16; |
| /*@fallthrough@*/ |
| case 6: |
| b += (uint32_t)k[2]; |
| a += k[0]+(((uint32_t)k[1])<<16); |
| break; |
| case 5: |
| b += (uint32_t)k8[4]; |
| /*@fallthrough@*/ |
| case 4: |
| a += k[0]+(((uint32_t)k[1])<<16); |
| break; |
| case 3: |
| a += ((uint32_t)k8[2])<<16; |
| /*@fallthrough@*/ |
| case 2: |
| a += (uint32_t)k[0]; |
| break; |
| case 1: |
| a += (uint32_t)k8[0]; |
| break; |
| case 0: |
| goto exit; |
| } |
| |
| } else { /* need to read the key one byte at a time */ |
| const uint8_t *k = (const uint8_t *)key; |
| |
| /*----------- all but the last block: affect some 32 bits of (a,b,c) */ |
| while (size > 12) { |
| a += (uint32_t)k[0]; |
| a += ((uint32_t)k[1])<<8; |
| a += ((uint32_t)k[2])<<16; |
| a += ((uint32_t)k[3])<<24; |
| b += (uint32_t)k[4]; |
| b += ((uint32_t)k[5])<<8; |
| b += ((uint32_t)k[6])<<16; |
| b += ((uint32_t)k[7])<<24; |
| c += (uint32_t)k[8]; |
| c += ((uint32_t)k[9])<<8; |
| c += ((uint32_t)k[10])<<16; |
| c += ((uint32_t)k[11])<<24; |
| _JLU3_MIX(a,b,c); |
| size -= 12; |
| k += 12; |
| } |
| |
| /*---------------------------- last block: affect all 32 bits of (c) */ |
| switch (size) { |
| case 12: c += ((uint32_t)k[11])<<24; /*@fallthrough@*/ |
| case 11: c += ((uint32_t)k[10])<<16; /*@fallthrough@*/ |
| case 10: c += ((uint32_t)k[9])<<8; /*@fallthrough@*/ |
| case 9: c += (uint32_t)k[8]; /*@fallthrough@*/ |
| case 8: b += ((uint32_t)k[7])<<24; /*@fallthrough@*/ |
| case 7: b += ((uint32_t)k[6])<<16; /*@fallthrough@*/ |
| case 6: b += ((uint32_t)k[5])<<8; /*@fallthrough@*/ |
| case 5: b += (uint32_t)k[4]; /*@fallthrough@*/ |
| case 4: a += ((uint32_t)k[3])<<24; /*@fallthrough@*/ |
| case 3: a += ((uint32_t)k[2])<<16; /*@fallthrough@*/ |
| case 2: a += ((uint32_t)k[1])<<8; /*@fallthrough@*/ |
| case 1: a += (uint32_t)k[0]; |
| break; |
| case 0: |
| goto exit; |
| } |
| } |
| |
| _JLU3_FINAL(a,b,c); |
| |
| exit: |
| return c; |
| } |
| #endif /* defined(_JLU3_jlu32l) */ |
| |
| #if defined(_JLU3_jlu32lpair) |
| /** |
| * jlu32lpair: return 2 32-bit hash values. |
| * |
| * This is identical to jlu32l(), except it returns two 32-bit hash |
| * values instead of just one. This is good enough for hash table |
| * lookup with 2^^64 buckets, or if you want a second hash if you're not |
| * happy with the first, or if you want a probably-unique 64-bit ID for |
| * the key. *pc is better mixed than *pb, so use *pc first. If you want |
| * a 64-bit value do something like "*pc + (((uint64_t)*pb)<<32)". |
| * |
| * @param h the previous hash, or an arbitrary value |
| * @param *key the key, an array of uint8_t values |
| * @param size the size of the key in bytes |
| * @retval *pc, IN: primary initval, OUT: primary hash |
| * *retval *pb IN: secondary initval, OUT: secondary hash |
| */ |
| void jlu32lpair(const void *key, size_t size, uint32_t *pc, uint32_t *pb) |
| { |
| union { const void *ptr; size_t i; } u; |
| uint32_t a = _JLU3_INIT(*pc, size); |
| uint32_t b = a; |
| uint32_t c = a; |
| |
| if (key == NULL) |
| goto exit; |
| |
| c += *pb; /* Add the secondary hash. */ |
| |
| u.ptr = key; |
| if (HASH_LITTLE_ENDIAN && ((u.i & 0x3) == 0)) { |
| const uint32_t *k = (const uint32_t *)key; /* read 32-bit chunks */ |
| #ifdef VALGRIND |
| const uint8_t *k8; |
| #endif |
| |
| /*-- all but last block: aligned reads and affect 32 bits of (a,b,c) */ |
| while (size > (size_t)12) { |
| a += k[0]; |
| b += k[1]; |
| c += k[2]; |
| _JLU3_MIX(a,b,c); |
| size -= 12; |
| k += 3; |
| } |
| /*------------------------- handle the last (probably partial) block */ |
| /* |
| * "k[2]&0xffffff" actually reads beyond the end of the string, but |
| * then masks off the part it's not allowed to read. Because the |
| * string is aligned, the masked-off tail is in the same word as the |
| * rest of the string. Every machine with memory protection I've seen |
| * does it on word boundaries, so is OK with this. But VALGRIND will |
| * still catch it and complain. The masking trick does make the hash |
| * noticably faster for short strings (like English words). |
| */ |
| #ifndef VALGRIND |
| |
| switch (size) { |
| case 12: c += k[2]; b+=k[1]; a+=k[0]; break; |
| case 11: c += k[2]&0xffffff; b+=k[1]; a+=k[0]; break; |
| case 10: c += k[2]&0xffff; b+=k[1]; a+=k[0]; break; |
| case 9: c += k[2]&0xff; b+=k[1]; a+=k[0]; break; |
| case 8: b += k[1]; a+=k[0]; break; |
| case 7: b += k[1]&0xffffff; a+=k[0]; break; |
| case 6: b += k[1]&0xffff; a+=k[0]; break; |
| case 5: b += k[1]&0xff; a+=k[0]; break; |
| case 4: a += k[0]; break; |
| case 3: a += k[0]&0xffffff; break; |
| case 2: a += k[0]&0xffff; break; |
| case 1: a += k[0]&0xff; break; |
| case 0: goto exit; |
| } |
| |
| #else /* make valgrind happy */ |
| |
| k8 = (const uint8_t *)k; |
| switch (size) { |
| case 12: c += k[2]; b+=k[1]; a+=k[0]; break; |
| case 11: c += ((uint32_t)k8[10])<<16; /*@fallthrough@*/ |
| case 10: c += ((uint32_t)k8[9])<<8; /*@fallthrough@*/ |
| case 9: c += k8[8]; /*@fallthrough@*/ |
| case 8: b += k[1]; a+=k[0]; break; |
| case 7: b += ((uint32_t)k8[6])<<16; /*@fallthrough@*/ |
| case 6: b += ((uint32_t)k8[5])<<8; /*@fallthrough@*/ |
| case 5: b += k8[4]; /*@fallthrough@*/ |
| case 4: a += k[0]; break; |
| case 3: a += ((uint32_t)k8[2])<<16; /*@fallthrough@*/ |
| case 2: a += ((uint32_t)k8[1])<<8; /*@fallthrough@*/ |
| case 1: a += k8[0]; break; |
| case 0: goto exit; |
| } |
| |
| #endif /* !valgrind */ |
| |
| } else if (HASH_LITTLE_ENDIAN && ((u.i & 0x1) == 0)) { |
| const uint16_t *k = (const uint16_t *)key; /* read 16-bit chunks */ |
| const uint8_t *k8; |
| |
| /*----------- all but last block: aligned reads and different mixing */ |
| while (size > (size_t)12) { |
| a += k[0] + (((uint32_t)k[1])<<16); |
| b += k[2] + (((uint32_t)k[3])<<16); |
| c += k[4] + (((uint32_t)k[5])<<16); |
| _JLU3_MIX(a,b,c); |
| size -= 12; |
| k += 6; |
| } |
| |
| /*------------------------- handle the last (probably partial) block */ |
| k8 = (const uint8_t *)k; |
| switch (size) { |
| case 12: |
| c += k[4]+(((uint32_t)k[5])<<16); |
| b += k[2]+(((uint32_t)k[3])<<16); |
| a += k[0]+(((uint32_t)k[1])<<16); |
| break; |
| case 11: |
| c += ((uint32_t)k8[10])<<16; |
| /*@fallthrough@*/ |
| case 10: |
| c += k[4]; |
| b += k[2]+(((uint32_t)k[3])<<16); |
| a += k[0]+(((uint32_t)k[1])<<16); |
| break; |
| case 9: |
| c += k8[8]; |
| /*@fallthrough@*/ |
| case 8: |
| b += k[2]+(((uint32_t)k[3])<<16); |
| a += k[0]+(((uint32_t)k[1])<<16); |
| break; |
| case 7: |
| b += ((uint32_t)k8[6])<<16; |
| /*@fallthrough@*/ |
| case 6: |
| b += k[2]; |
| a += k[0]+(((uint32_t)k[1])<<16); |
| break; |
| case 5: |
| b += k8[4]; |
| /*@fallthrough@*/ |
| case 4: |
| a += k[0]+(((uint32_t)k[1])<<16); |
| break; |
| case 3: |
| a += ((uint32_t)k8[2])<<16; |
| /*@fallthrough@*/ |
| case 2: |
| a += k[0]; |
| break; |
| case 1: |
| a += k8[0]; |
| break; |
| case 0: |
| goto exit; |
| } |
| |
| } else { /* need to read the key one byte at a time */ |
| const uint8_t *k = (const uint8_t *)key; |
| |
| /*----------- all but the last block: affect some 32 bits of (a,b,c) */ |
| while (size > (size_t)12) { |
| a += k[0]; |
| a += ((uint32_t)k[1])<<8; |
| a += ((uint32_t)k[2])<<16; |
| a += ((uint32_t)k[3])<<24; |
| b += k[4]; |
| b += ((uint32_t)k[5])<<8; |
| b += ((uint32_t)k[6])<<16; |
| b += ((uint32_t)k[7])<<24; |
| c += k[8]; |
| c += ((uint32_t)k[9])<<8; |
| c += ((uint32_t)k[10])<<16; |
| c += ((uint32_t)k[11])<<24; |
| _JLU3_MIX(a,b,c); |
| size -= 12; |
| k += 12; |
| } |
| |
| /*---------------------------- last block: affect all 32 bits of (c) */ |
| switch (size) { |
| case 12: c += ((uint32_t)k[11])<<24; /*@fallthrough@*/ |
| case 11: c += ((uint32_t)k[10])<<16; /*@fallthrough@*/ |
| case 10: c += ((uint32_t)k[9])<<8; /*@fallthrough@*/ |
| case 9: c += k[8]; /*@fallthrough@*/ |
| case 8: b += ((uint32_t)k[7])<<24; /*@fallthrough@*/ |
| case 7: b += ((uint32_t)k[6])<<16; /*@fallthrough@*/ |
| case 6: b += ((uint32_t)k[5])<<8; /*@fallthrough@*/ |
| case 5: b += k[4]; /*@fallthrough@*/ |
| case 4: a += ((uint32_t)k[3])<<24; /*@fallthrough@*/ |
| case 3: a += ((uint32_t)k[2])<<16; /*@fallthrough@*/ |
| case 2: a += ((uint32_t)k[1])<<8; /*@fallthrough@*/ |
| case 1: a += k[0]; |
| break; |
| case 0: |
| goto exit; |
| } |
| } |
| |
| _JLU3_FINAL(a,b,c); |
| |
| exit: |
| *pc = c; |
| *pb = b; |
| return; |
| } |
| #endif /* defined(_JLU3_jlu32lpair) */ |
| |
| #if defined(_JLU3_jlu32b) |
| uint32_t jlu32b(uint32_t h, /*@null@*/ const void *key, size_t size) |
| /*@*/; |
| /* |
| * jlu32b(): |
| * This is the same as jlu32w() on big-endian machines. It is different |
| * from jlu32l() on all machines. jlu32b() takes advantage of |
| * big-endian byte ordering. |
| * |
| * @param h the previous hash, or an arbitrary value |
| * @param *k the key, an array of uint8_t values |
| * @param size the size of the key |
| * @return the lookup3 hash |
| */ |
| uint32_t jlu32b(uint32_t h, const void *key, size_t size) |
| { |
| union { const void *ptr; size_t i; } u; |
| uint32_t a = _JLU3_INIT(h, size); |
| uint32_t b = a; |
| uint32_t c = a; |
| |
| if (key == NULL) |
| return h; |
| |
| u.ptr = key; |
| if (HASH_BIG_ENDIAN && ((u.i & 0x3) == 0)) { |
| const uint32_t *k = (const uint32_t *)key; /* read 32-bit chunks */ |
| #ifdef VALGRIND |
| const uint8_t *k8; |
| #endif |
| |
| /*-- all but last block: aligned reads and affect 32 bits of (a,b,c) */ |
| while (size > 12) { |
| a += k[0]; |
| b += k[1]; |
| c += k[2]; |
| _JLU3_MIX(a,b,c); |
| size -= 12; |
| k += 3; |
| } |
| |
| /*------------------------- handle the last (probably partial) block */ |
| /* |
| * "k[2]<<8" actually reads beyond the end of the string, but |
| * then shifts out the part it's not allowed to read. Because the |
| * string is aligned, the illegal read is in the same word as the |
| * rest of the string. Every machine with memory protection I've seen |
| * does it on word boundaries, so is OK with this. But VALGRIND will |
| * still catch it and complain. The masking trick does make the hash |
| * noticably faster for short strings (like English words). |
| */ |
| #ifndef VALGRIND |
| |
| switch (size) { |
| case 12: c += k[2]; b+=k[1]; a+=k[0]; break; |
| case 11: c += k[2]&0xffffff00; b+=k[1]; a+=k[0]; break; |
| case 10: c += k[2]&0xffff0000; b+=k[1]; a+=k[0]; break; |
| case 9: c += k[2]&0xff000000; b+=k[1]; a+=k[0]; break; |
| case 8: b += k[1]; a+=k[0]; break; |
| case 7: b += k[1]&0xffffff00; a+=k[0]; break; |
| case 6: b += k[1]&0xffff0000; a+=k[0]; break; |
| case 5: b += k[1]&0xff000000; a+=k[0]; break; |
| case 4: a += k[0]; break; |
| case 3: a += k[0]&0xffffff00; break; |
| case 2: a += k[0]&0xffff0000; break; |
| case 1: a += k[0]&0xff000000; break; |
| case 0: goto exit; |
| } |
| |
| #else /* make valgrind happy */ |
| |
| k8 = (const uint8_t *)k; |
| switch (size) { /* all the case statements fall through */ |
| case 12: c += k[2]; b+=k[1]; a+=k[0]; break; |
| case 11: c += ((uint32_t)k8[10])<<8; /*@fallthrough@*/ |
| case 10: c += ((uint32_t)k8[9])<<16; /*@fallthrough@*/ |
| case 9: c += ((uint32_t)k8[8])<<24; /*@fallthrough@*/ |
| case 8: b += k[1]; a+=k[0]; break; |
| case 7: b += ((uint32_t)k8[6])<<8; /*@fallthrough@*/ |
| case 6: b += ((uint32_t)k8[5])<<16; /*@fallthrough@*/ |
| case 5: b += ((uint32_t)k8[4])<<24; /*@fallthrough@*/ |
| case 4: a += k[0]; break; |
| case 3: a += ((uint32_t)k8[2])<<8; /*@fallthrough@*/ |
| case 2: a += ((uint32_t)k8[1])<<16; /*@fallthrough@*/ |
| case 1: a += ((uint32_t)k8[0])<<24; break; |
| case 0: goto exit; |
| } |
| |
| #endif /* !VALGRIND */ |
| |
| } else { /* need to read the key one byte at a time */ |
| const uint8_t *k = (const uint8_t *)key; |
| |
| /*----------- all but the last block: affect some 32 bits of (a,b,c) */ |
| while (size > 12) { |
| a += ((uint32_t)k[0])<<24; |
| a += ((uint32_t)k[1])<<16; |
| a += ((uint32_t)k[2])<<8; |
| a += ((uint32_t)k[3]); |
| b += ((uint32_t)k[4])<<24; |
| b += ((uint32_t)k[5])<<16; |
| b += ((uint32_t)k[6])<<8; |
| b += ((uint32_t)k[7]); |
| c += ((uint32_t)k[8])<<24; |
| c += ((uint32_t)k[9])<<16; |
| c += ((uint32_t)k[10])<<8; |
| c += ((uint32_t)k[11]); |
| _JLU3_MIX(a,b,c); |
| size -= 12; |
| k += 12; |
| } |
| |
| /*---------------------------- last block: affect all 32 bits of (c) */ |
| switch (size) { /* all the case statements fall through */ |
| case 12: c += k[11]; /*@fallthrough@*/ |
| case 11: c += ((uint32_t)k[10])<<8; /*@fallthrough@*/ |
| case 10: c += ((uint32_t)k[9])<<16; /*@fallthrough@*/ |
| case 9: c += ((uint32_t)k[8])<<24; /*@fallthrough@*/ |
| case 8: b += k[7]; /*@fallthrough@*/ |
| case 7: b += ((uint32_t)k[6])<<8; /*@fallthrough@*/ |
| case 6: b += ((uint32_t)k[5])<<16; /*@fallthrough@*/ |
| case 5: b += ((uint32_t)k[4])<<24; /*@fallthrough@*/ |
| case 4: a += k[3]; /*@fallthrough@*/ |
| case 3: a += ((uint32_t)k[2])<<8; /*@fallthrough@*/ |
| case 2: a += ((uint32_t)k[1])<<16; /*@fallthrough@*/ |
| case 1: a += ((uint32_t)k[0])<<24; /*@fallthrough@*/ |
| break; |
| case 0: |
| goto exit; |
| } |
| } |
| |
| _JLU3_FINAL(a,b,c); |
| |
| exit: |
| return c; |
| } |
| #endif /* defined(_JLU3_jlu32b) */ |
| |
| #if defined(_JLU3_SELFTEST) |
| |
| /* used for timings */ |
| static void driver1(void) |
| /*@*/ |
| { |
| uint8_t buf[256]; |
| uint32_t i; |
| uint32_t h=0; |
| time_t a,z; |
| |
| time(&a); |
| for (i=0; i<256; ++i) buf[i] = 'x'; |
| for (i=0; i<1; ++i) { |
| h = jlu32l(h, &buf[0], sizeof(buf[0])); |
| } |
| time(&z); |
| if (z-a > 0) printf("time %d %.8x\n", (int)(z-a), h); |
| } |
| |
| /* check that every input bit changes every output bit half the time */ |
| #define HASHSTATE 1 |
| #define HASHLEN 1 |
| #define MAXPAIR 60 |
| #define MAXLEN 70 |
| static void driver2(void) |
| /*@*/ |
| { |
| uint8_t qa[MAXLEN+1], qb[MAXLEN+2], *a = &qa[0], *b = &qb[1]; |
| uint32_t c[HASHSTATE], d[HASHSTATE], i=0, j=0, k, l, m=0, z; |
| uint32_t e[HASHSTATE],f[HASHSTATE],g[HASHSTATE],h[HASHSTATE]; |
| uint32_t x[HASHSTATE],y[HASHSTATE]; |
| uint32_t hlen; |
| |
| printf("No more than %d trials should ever be needed \n",MAXPAIR/2); |
| for (hlen=0; hlen < MAXLEN; ++hlen) { |
| z=0; |
| for (i=0; i<hlen; ++i) { /*-------------- for each input byte, */ |
| for (j=0; j<8; ++j) { /*--------------- for each input bit, */ |
| for (m=1; m<8; ++m) { /*--- for serveral possible initvals, */ |
| for (l=0; l<HASHSTATE; ++l) |
| e[l]=f[l]=g[l]=h[l]=x[l]=y[l]=~((uint32_t)0); |
| |
| /* check that every output bit is affected by that input bit */ |
| for (k=0; k<MAXPAIR; k+=2) { |
| uint32_t finished=1; |
| /* keys have one bit different */ |
| for (l=0; l<hlen+1; ++l) {a[l] = b[l] = (uint8_t)0;} |
| /* have a and b be two keys differing in only one bit */ |
| a[i] ^= (k<<j); |
| a[i] ^= (k>>(8-j)); |
| c[0] = jlu32l(m, a, hlen); |
| b[i] ^= ((k+1)<<j); |
| b[i] ^= ((k+1)>>(8-j)); |
| d[0] = jlu32l(m, b, hlen); |
| /* check every bit is 1, 0, set, and not set at least once */ |
| for (l=0; l<HASHSTATE; ++l) { |
| e[l] &= (c[l]^d[l]); |
| f[l] &= ~(c[l]^d[l]); |
| g[l] &= c[l]; |
| h[l] &= ~c[l]; |
| x[l] &= d[l]; |
| y[l] &= ~d[l]; |
| if (e[l]|f[l]|g[l]|h[l]|x[l]|y[l]) finished=0; |
| } |
| if (finished) break; |
| } |
| if (k>z) z=k; |
| if (k == MAXPAIR) { |
| printf("Some bit didn't change: "); |
| printf("%.8x %.8x %.8x %.8x %.8x %.8x ", |
| e[0],f[0],g[0],h[0],x[0],y[0]); |
| printf("i %d j %d m %d len %d\n", i, j, m, hlen); |
| } |
| if (z == MAXPAIR) goto done; |
| } |
| } |
| } |
| done: |
| if (z < MAXPAIR) { |
| printf("Mix success %2d bytes %2d initvals ",i,m); |
| printf("required %d trials\n", z/2); |
| } |
| } |
| printf("\n"); |
| } |
| |
| /* Check for reading beyond the end of the buffer and alignment problems */ |
| static void driver3(void) |
| /*@*/ |
| { |
| uint8_t buf[MAXLEN+20], *b; |
| uint32_t len; |
| uint8_t q[] = "This is the time for all good men to come to the aid of their country..."; |
| uint32_t h; |
| uint8_t qq[] = "xThis is the time for all good men to come to the aid of their country..."; |
| uint32_t i; |
| uint8_t qqq[] = "xxThis is the time for all good men to come to the aid of their country..."; |
| uint32_t j; |
| uint8_t qqqq[] = "xxxThis is the time for all good men to come to the aid of their country..."; |
| uint32_t ref,x,y; |
| uint8_t *p; |
| uint32_t m = 13; |
| |
| printf("Endianness. These lines should all be the same (for values filled in):\n"); |
| printf("%.8x %.8x %.8x\n", |
| jlu32w(m, (const uint32_t *)q, (sizeof(q)-1)/4), |
| jlu32w(m, (const uint32_t *)q, (sizeof(q)-5)/4), |
| jlu32w(m, (const uint32_t *)q, (sizeof(q)-9)/4)); |
| p = q; |
| printf("%.8x %.8x %.8x %.8x %.8x %.8x %.8x %.8x %.8x %.8x %.8x %.8x\n", |
| jlu32l(m, p, sizeof(q)-1), jlu32l(m, p, sizeof(q)-2), |
| jlu32l(m, p, sizeof(q)-3), jlu32l(m, p, sizeof(q)-4), |
| jlu32l(m, p, sizeof(q)-5), jlu32l(m, p, sizeof(q)-6), |
| jlu32l(m, p, sizeof(q)-7), jlu32l(m, p, sizeof(q)-8), |
| jlu32l(m, p, sizeof(q)-9), jlu32l(m, p, sizeof(q)-10), |
| jlu32l(m, p, sizeof(q)-11), jlu32l(m, p, sizeof(q)-12)); |
| p = &qq[1]; |
| printf("%.8x %.8x %.8x %.8x %.8x %.8x %.8x %.8x %.8x %.8x %.8x %.8x\n", |
| jlu32l(m, p, sizeof(q)-1), jlu32l(m, p, sizeof(q)-2), |
| jlu32l(m, p, sizeof(q)-3), jlu32l(m, p, sizeof(q)-4), |
| jlu32l(m, p, sizeof(q)-5), jlu32l(m, p, sizeof(q)-6), |
| jlu32l(m, p, sizeof(q)-7), jlu32l(m, p, sizeof(q)-8), |
| jlu32l(m, p, sizeof(q)-9), jlu32l(m, p, sizeof(q)-10), |
| jlu32l(m, p, sizeof(q)-11), jlu32l(m, p, sizeof(q)-12)); |
| p = &qqq[2]; |
| printf("%.8x %.8x %.8x %.8x %.8x %.8x %.8x %.8x %.8x %.8x %.8x %.8x\n", |
| jlu32l(m, p, sizeof(q)-1), jlu32l(m, p, sizeof(q)-2), |
| jlu32l(m, p, sizeof(q)-3), jlu32l(m, p, sizeof(q)-4), |
| jlu32l(m, p, sizeof(q)-5), jlu32l(m, p, sizeof(q)-6), |
| jlu32l(m, p, sizeof(q)-7), jlu32l(m, p, sizeof(q)-8), |
| jlu32l(m, p, sizeof(q)-9), jlu32l(m, p, sizeof(q)-10), |
| jlu32l(m, p, sizeof(q)-11), jlu32l(m, p, sizeof(q)-12)); |
| p = &qqqq[3]; |
| printf("%.8x %.8x %.8x %.8x %.8x %.8x %.8x %.8x %.8x %.8x %.8x %.8x\n", |
| jlu32l(m, p, sizeof(q)-1), jlu32l(m, p, sizeof(q)-2), |
| jlu32l(m, p, sizeof(q)-3), jlu32l(m, p, sizeof(q)-4), |
| jlu32l(m, p, sizeof(q)-5), jlu32l(m, p, sizeof(q)-6), |
| jlu32l(m, p, sizeof(q)-7), jlu32l(m, p, sizeof(q)-8), |
| jlu32l(m, p, sizeof(q)-9), jlu32l(m, p, sizeof(q)-10), |
| jlu32l(m, p, sizeof(q)-11), jlu32l(m, p, sizeof(q)-12)); |
| printf("\n"); |
| for (h=0, b=buf+1; h<8; ++h, ++b) { |
| for (i=0; i<MAXLEN; ++i) { |
| len = i; |
| for (j=0; j<i; ++j) |
| *(b+j)=0; |
| |
| /* these should all be equal */ |
| m = 1; |
| ref = jlu32l(m, b, len); |
| *(b+i)=(uint8_t)~0; |
| *(b-1)=(uint8_t)~0; |
| x = jlu32l(m, b, len); |
| y = jlu32l(m, b, len); |
| if ((ref != x) || (ref != y)) |
| printf("alignment error: %.8x %.8x %.8x %d %d\n",ref,x,y, h, i); |
| } |
| } |
| } |
| |
| /* check for problems with nulls */ |
| static void driver4(void) |
| /*@*/ |
| { |
| uint8_t buf[1]; |
| uint32_t h; |
| uint32_t i; |
| uint32_t state[HASHSTATE]; |
| |
| buf[0] = ~0; |
| for (i=0; i<HASHSTATE; ++i) |
| state[i] = 1; |
| printf("These should all be different\n"); |
| h = 0; |
| for (i=0; i<8; ++i) { |
| h = jlu32l(h, buf, 0); |
| printf("%2ld 0-byte strings, hash is %.8x\n", (long)i, h); |
| } |
| } |
| |
| |
| int main(int argc, char ** argv) |
| { |
| driver1(); /* test that the key is hashed: used for timings */ |
| driver2(); /* test that whole key is hashed thoroughly */ |
| driver3(); /* test that nothing but the key is hashed */ |
| driver4(); /* test hashing multiple buffers (all buffers are null) */ |
| return 1; |
| } |
| |
| #endif /* _JLU3_SELFTEST */ |