|  | /* Extended regular expression matching and search library. | 
|  | Copyright (C) 2002, 2003, 2004, 2005, 2006, 2007 Free Software Foundation, | 
|  | Inc. | 
|  | This file is part of the GNU C Library. | 
|  | Contributed by Isamu Hasegawa <isamu@yamato.ibm.com>. | 
|  |  | 
|  | This program is free software; you can redistribute it and/or modify | 
|  | it under the terms of the GNU General Public License as published by | 
|  | the Free Software Foundation; either version 2, or (at your option) | 
|  | any later version. | 
|  |  | 
|  | This program is distributed in the hope that it will be useful, | 
|  | but WITHOUT ANY WARRANTY; without even the implied warranty of | 
|  | MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the | 
|  | GNU General Public License for more details. | 
|  |  | 
|  | You should have received a copy of the GNU General Public License along | 
|  | with this program; if not, write to the Free Software Foundation, | 
|  | Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. */ | 
|  |  | 
|  | static reg_errcode_t match_ctx_init (re_match_context_t *cache, int eflags, | 
|  | Idx n) internal_function; | 
|  | static void match_ctx_clean (re_match_context_t *mctx) internal_function; | 
|  | static void match_ctx_free (re_match_context_t *cache) internal_function; | 
|  | static reg_errcode_t match_ctx_add_entry (re_match_context_t *cache, Idx node, | 
|  | Idx str_idx, Idx from, Idx to) | 
|  | internal_function; | 
|  | static Idx search_cur_bkref_entry (const re_match_context_t *mctx, Idx str_idx) | 
|  | internal_function; | 
|  | static reg_errcode_t match_ctx_add_subtop (re_match_context_t *mctx, Idx node, | 
|  | Idx str_idx) internal_function; | 
|  | static re_sub_match_last_t * match_ctx_add_sublast (re_sub_match_top_t *subtop, | 
|  | Idx node, Idx str_idx) | 
|  | internal_function; | 
|  | static void sift_ctx_init (re_sift_context_t *sctx, re_dfastate_t **sifted_sts, | 
|  | re_dfastate_t **limited_sts, Idx last_node, | 
|  | Idx last_str_idx) | 
|  | internal_function; | 
|  | static reg_errcode_t re_search_internal (const regex_t *preg, | 
|  | const char *string, Idx length, | 
|  | Idx start, Idx last_start, Idx stop, | 
|  | size_t nmatch, regmatch_t pmatch[], | 
|  | int eflags) internal_function; | 
|  | static regoff_t re_search_2_stub (struct re_pattern_buffer *bufp, | 
|  | const char *string1, Idx length1, | 
|  | const char *string2, Idx length2, | 
|  | Idx start, regoff_t range, | 
|  | struct re_registers *regs, | 
|  | Idx stop, bool ret_len) internal_function; | 
|  | static regoff_t re_search_stub (struct re_pattern_buffer *bufp, | 
|  | const char *string, Idx length, Idx start, | 
|  | regoff_t range, Idx stop, | 
|  | struct re_registers *regs, | 
|  | bool ret_len) internal_function; | 
|  | static unsigned int re_copy_regs (struct re_registers *regs, regmatch_t *pmatch, | 
|  | Idx nregs, int regs_allocated) | 
|  | internal_function; | 
|  | static reg_errcode_t prune_impossible_nodes (re_match_context_t *mctx) | 
|  | internal_function; | 
|  | static Idx check_matching (re_match_context_t *mctx, bool fl_longest_match, | 
|  | Idx *p_match_first) internal_function; | 
|  | static Idx check_halt_state_context (const re_match_context_t *mctx, | 
|  | const re_dfastate_t *state, Idx idx) | 
|  | internal_function; | 
|  | static void update_regs (const re_dfa_t *dfa, regmatch_t *pmatch, | 
|  | regmatch_t *prev_idx_match, Idx cur_node, | 
|  | Idx cur_idx, Idx nmatch) internal_function; | 
|  | static reg_errcode_t push_fail_stack (struct re_fail_stack_t *fs, | 
|  | Idx str_idx, Idx dest_node, Idx nregs, | 
|  | regmatch_t *regs, | 
|  | re_node_set *eps_via_nodes) | 
|  | internal_function; | 
|  | static reg_errcode_t set_regs (const regex_t *preg, | 
|  | const re_match_context_t *mctx, | 
|  | size_t nmatch, regmatch_t *pmatch, | 
|  | bool fl_backtrack) internal_function; | 
|  | static reg_errcode_t free_fail_stack_return (struct re_fail_stack_t *fs) | 
|  | internal_function; | 
|  |  | 
|  | #ifdef RE_ENABLE_I18N | 
|  | static int sift_states_iter_mb (const re_match_context_t *mctx, | 
|  | re_sift_context_t *sctx, | 
|  | Idx node_idx, Idx str_idx, Idx max_str_idx) | 
|  | internal_function; | 
|  | #endif /* RE_ENABLE_I18N */ | 
|  | static reg_errcode_t sift_states_backward (const re_match_context_t *mctx, | 
|  | re_sift_context_t *sctx) | 
|  | internal_function; | 
|  | static reg_errcode_t build_sifted_states (const re_match_context_t *mctx, | 
|  | re_sift_context_t *sctx, Idx str_idx, | 
|  | re_node_set *cur_dest) | 
|  | internal_function; | 
|  | static reg_errcode_t update_cur_sifted_state (const re_match_context_t *mctx, | 
|  | re_sift_context_t *sctx, | 
|  | Idx str_idx, | 
|  | re_node_set *dest_nodes) | 
|  | internal_function; | 
|  | static reg_errcode_t add_epsilon_src_nodes (const re_dfa_t *dfa, | 
|  | re_node_set *dest_nodes, | 
|  | const re_node_set *candidates) | 
|  | internal_function; | 
|  | static bool check_dst_limits (const re_match_context_t *mctx, | 
|  | const re_node_set *limits, | 
|  | Idx dst_node, Idx dst_idx, Idx src_node, | 
|  | Idx src_idx) internal_function; | 
|  | static int check_dst_limits_calc_pos_1 (const re_match_context_t *mctx, | 
|  | int boundaries, Idx subexp_idx, | 
|  | Idx from_node, Idx bkref_idx) | 
|  | internal_function; | 
|  | static int check_dst_limits_calc_pos (const re_match_context_t *mctx, | 
|  | Idx limit, Idx subexp_idx, | 
|  | Idx node, Idx str_idx, | 
|  | Idx bkref_idx) internal_function; | 
|  | static reg_errcode_t check_subexp_limits (const re_dfa_t *dfa, | 
|  | re_node_set *dest_nodes, | 
|  | const re_node_set *candidates, | 
|  | re_node_set *limits, | 
|  | struct re_backref_cache_entry *bkref_ents, | 
|  | Idx str_idx) internal_function; | 
|  | static reg_errcode_t sift_states_bkref (const re_match_context_t *mctx, | 
|  | re_sift_context_t *sctx, | 
|  | Idx str_idx, const re_node_set *candidates) | 
|  | internal_function; | 
|  | static reg_errcode_t merge_state_array (const re_dfa_t *dfa, | 
|  | re_dfastate_t **dst, | 
|  | re_dfastate_t **src, Idx num) | 
|  | internal_function; | 
|  | static re_dfastate_t *find_recover_state (reg_errcode_t *err, | 
|  | re_match_context_t *mctx) internal_function; | 
|  | static re_dfastate_t *transit_state (reg_errcode_t *err, | 
|  | re_match_context_t *mctx, | 
|  | re_dfastate_t *state) internal_function; | 
|  | static re_dfastate_t *merge_state_with_log (reg_errcode_t *err, | 
|  | re_match_context_t *mctx, | 
|  | re_dfastate_t *next_state) | 
|  | internal_function; | 
|  | static reg_errcode_t check_subexp_matching_top (re_match_context_t *mctx, | 
|  | re_node_set *cur_nodes, | 
|  | Idx str_idx) internal_function; | 
|  | #if 0 | 
|  | static re_dfastate_t *transit_state_sb (reg_errcode_t *err, | 
|  | re_match_context_t *mctx, | 
|  | re_dfastate_t *pstate) | 
|  | internal_function; | 
|  | #endif | 
|  | #ifdef RE_ENABLE_I18N | 
|  | static reg_errcode_t transit_state_mb (re_match_context_t *mctx, | 
|  | re_dfastate_t *pstate) | 
|  | internal_function; | 
|  | #endif /* RE_ENABLE_I18N */ | 
|  | static reg_errcode_t transit_state_bkref (re_match_context_t *mctx, | 
|  | const re_node_set *nodes) | 
|  | internal_function; | 
|  | static reg_errcode_t get_subexp (re_match_context_t *mctx, | 
|  | Idx bkref_node, Idx bkref_str_idx) | 
|  | internal_function; | 
|  | static reg_errcode_t get_subexp_sub (re_match_context_t *mctx, | 
|  | const re_sub_match_top_t *sub_top, | 
|  | re_sub_match_last_t *sub_last, | 
|  | Idx bkref_node, Idx bkref_str) | 
|  | internal_function; | 
|  | static Idx find_subexp_node (const re_dfa_t *dfa, const re_node_set *nodes, | 
|  | Idx subexp_idx, int type) internal_function; | 
|  | static reg_errcode_t check_arrival (re_match_context_t *mctx, | 
|  | state_array_t *path, Idx top_node, | 
|  | Idx top_str, Idx last_node, Idx last_str, | 
|  | int type) internal_function; | 
|  | static reg_errcode_t check_arrival_add_next_nodes (re_match_context_t *mctx, | 
|  | Idx str_idx, | 
|  | re_node_set *cur_nodes, | 
|  | re_node_set *next_nodes) | 
|  | internal_function; | 
|  | static reg_errcode_t check_arrival_expand_ecl (const re_dfa_t *dfa, | 
|  | re_node_set *cur_nodes, | 
|  | Idx ex_subexp, int type) | 
|  | internal_function; | 
|  | static reg_errcode_t check_arrival_expand_ecl_sub (const re_dfa_t *dfa, | 
|  | re_node_set *dst_nodes, | 
|  | Idx target, Idx ex_subexp, | 
|  | int type) internal_function; | 
|  | static reg_errcode_t expand_bkref_cache (re_match_context_t *mctx, | 
|  | re_node_set *cur_nodes, Idx cur_str, | 
|  | Idx subexp_num, int type) | 
|  | internal_function; | 
|  | static bool build_trtable (const re_dfa_t *dfa, | 
|  | re_dfastate_t *state) internal_function; | 
|  | #ifdef RE_ENABLE_I18N | 
|  | static int check_node_accept_bytes (const re_dfa_t *dfa, Idx node_idx, | 
|  | const re_string_t *input, Idx idx) | 
|  | internal_function; | 
|  | # ifdef _LIBC | 
|  | static unsigned int find_collation_sequence_value (const unsigned char *mbs, | 
|  | size_t name_len) | 
|  | internal_function; | 
|  | # endif /* _LIBC */ | 
|  | #endif /* RE_ENABLE_I18N */ | 
|  | static Idx group_nodes_into_DFAstates (const re_dfa_t *dfa, | 
|  | const re_dfastate_t *state, | 
|  | re_node_set *states_node, | 
|  | bitset_t *states_ch) internal_function; | 
|  | static bool check_node_accept (const re_match_context_t *mctx, | 
|  | const re_token_t *node, Idx idx) | 
|  | internal_function; | 
|  | static reg_errcode_t extend_buffers (re_match_context_t *mctx) | 
|  | internal_function; | 
|  |  | 
|  | /* Entry point for POSIX code.  */ | 
|  |  | 
|  | /* regexec searches for a given pattern, specified by PREG, in the | 
|  | string STRING. | 
|  |  | 
|  | If NMATCH is zero or REG_NOSUB was set in the cflags argument to | 
|  | `regcomp', we ignore PMATCH.  Otherwise, we assume PMATCH has at | 
|  | least NMATCH elements, and we set them to the offsets of the | 
|  | corresponding matched substrings. | 
|  |  | 
|  | EFLAGS specifies `execution flags' which affect matching: if | 
|  | REG_NOTBOL is set, then ^ does not match at the beginning of the | 
|  | string; if REG_NOTEOL is set, then $ does not match at the end. | 
|  |  | 
|  | We return 0 if we find a match and REG_NOMATCH if not.  */ | 
|  |  | 
|  | int | 
|  | regexec (preg, string, nmatch, pmatch, eflags) | 
|  | const regex_t *_Restrict_ preg; | 
|  | const char *_Restrict_ string; | 
|  | size_t nmatch; | 
|  | regmatch_t pmatch[_Restrict_arr_]; | 
|  | int eflags; | 
|  | { | 
|  | reg_errcode_t err; | 
|  | Idx start, length; | 
|  | #ifdef _LIBC | 
|  | re_dfa_t *dfa = (re_dfa_t *) preg->buffer; | 
|  | #endif | 
|  |  | 
|  | if (eflags & ~(REG_NOTBOL | REG_NOTEOL | REG_STARTEND)) | 
|  | return REG_BADPAT; | 
|  |  | 
|  | if (eflags & REG_STARTEND) | 
|  | { | 
|  | start = pmatch[0].rm_so; | 
|  | length = pmatch[0].rm_eo; | 
|  | } | 
|  | else | 
|  | { | 
|  | start = 0; | 
|  | length = strlen (string); | 
|  | } | 
|  |  | 
|  | __libc_lock_lock (dfa->lock); | 
|  | if (preg->no_sub) | 
|  | err = re_search_internal (preg, string, length, start, length, | 
|  | length, 0, NULL, eflags); | 
|  | else | 
|  | err = re_search_internal (preg, string, length, start, length, | 
|  | length, nmatch, pmatch, eflags); | 
|  | __libc_lock_unlock (dfa->lock); | 
|  | return err != REG_NOERROR; | 
|  | } | 
|  |  | 
|  | #ifdef _LIBC | 
|  | # include <shlib-compat.h> | 
|  | versioned_symbol (libc, __regexec, regexec, GLIBC_2_3_4); | 
|  |  | 
|  | # if SHLIB_COMPAT (libc, GLIBC_2_0, GLIBC_2_3_4) | 
|  | __typeof__ (__regexec) __compat_regexec; | 
|  |  | 
|  | int | 
|  | attribute_compat_text_section | 
|  | __compat_regexec (const regex_t *_Restrict_ preg, | 
|  | const char *_Restrict_ string, size_t nmatch, | 
|  | regmatch_t pmatch[], int eflags) | 
|  | { | 
|  | return regexec (preg, string, nmatch, pmatch, | 
|  | eflags & (REG_NOTBOL | REG_NOTEOL)); | 
|  | } | 
|  | compat_symbol (libc, __compat_regexec, regexec, GLIBC_2_0); | 
|  | # endif | 
|  | #endif | 
|  |  | 
|  | /* Entry points for GNU code.  */ | 
|  |  | 
|  | /* re_match, re_search, re_match_2, re_search_2 | 
|  |  | 
|  | The former two functions operate on STRING with length LENGTH, | 
|  | while the later two operate on concatenation of STRING1 and STRING2 | 
|  | with lengths LENGTH1 and LENGTH2, respectively. | 
|  |  | 
|  | re_match() matches the compiled pattern in BUFP against the string, | 
|  | starting at index START. | 
|  |  | 
|  | re_search() first tries matching at index START, then it tries to match | 
|  | starting from index START + 1, and so on.  The last start position tried | 
|  | is START + RANGE.  (Thus RANGE = 0 forces re_search to operate the same | 
|  | way as re_match().) | 
|  |  | 
|  | The parameter STOP of re_{match,search}_2 specifies that no match exceeding | 
|  | the first STOP characters of the concatenation of the strings should be | 
|  | concerned. | 
|  |  | 
|  | If REGS is not NULL, and BUFP->no_sub is not set, the offsets of the match | 
|  | and all groups is stored in REGS.  (For the "_2" variants, the offsets are | 
|  | computed relative to the concatenation, not relative to the individual | 
|  | strings.) | 
|  |  | 
|  | On success, re_match* functions return the length of the match, re_search* | 
|  | return the position of the start of the match.  Return value -1 means no | 
|  | match was found and -2 indicates an internal error.  */ | 
|  |  | 
|  | regoff_t | 
|  | re_match (bufp, string, length, start, regs) | 
|  | struct re_pattern_buffer *bufp; | 
|  | const char *string; | 
|  | Idx length, start; | 
|  | struct re_registers *regs; | 
|  | { | 
|  | return re_search_stub (bufp, string, length, start, 0, length, regs, true); | 
|  | } | 
|  | #ifdef _LIBC | 
|  | weak_alias (__re_match, re_match) | 
|  | #endif | 
|  |  | 
|  | regoff_t | 
|  | re_search (bufp, string, length, start, range, regs) | 
|  | struct re_pattern_buffer *bufp; | 
|  | const char *string; | 
|  | Idx length, start; | 
|  | regoff_t range; | 
|  | struct re_registers *regs; | 
|  | { | 
|  | return re_search_stub (bufp, string, length, start, range, length, regs, | 
|  | false); | 
|  | } | 
|  | #ifdef _LIBC | 
|  | weak_alias (__re_search, re_search) | 
|  | #endif | 
|  |  | 
|  | regoff_t | 
|  | re_match_2 (bufp, string1, length1, string2, length2, start, regs, stop) | 
|  | struct re_pattern_buffer *bufp; | 
|  | const char *string1, *string2; | 
|  | Idx length1, length2, start, stop; | 
|  | struct re_registers *regs; | 
|  | { | 
|  | return re_search_2_stub (bufp, string1, length1, string2, length2, | 
|  | start, 0, regs, stop, true); | 
|  | } | 
|  | #ifdef _LIBC | 
|  | weak_alias (__re_match_2, re_match_2) | 
|  | #endif | 
|  |  | 
|  | regoff_t | 
|  | re_search_2 (bufp, string1, length1, string2, length2, start, range, regs, stop) | 
|  | struct re_pattern_buffer *bufp; | 
|  | const char *string1, *string2; | 
|  | Idx length1, length2, start, stop; | 
|  | regoff_t range; | 
|  | struct re_registers *regs; | 
|  | { | 
|  | return re_search_2_stub (bufp, string1, length1, string2, length2, | 
|  | start, range, regs, stop, false); | 
|  | } | 
|  | #ifdef _LIBC | 
|  | weak_alias (__re_search_2, re_search_2) | 
|  | #endif | 
|  |  | 
|  | static regoff_t | 
|  | internal_function | 
|  | re_search_2_stub (struct re_pattern_buffer *bufp, | 
|  | const char *string1, Idx length1, | 
|  | const char *string2, Idx length2, | 
|  | Idx start, regoff_t range, struct re_registers *regs, | 
|  | Idx stop, bool ret_len) | 
|  | { | 
|  | const char *str; | 
|  | regoff_t rval; | 
|  | Idx len = length1 + length2; | 
|  | char *s = NULL; | 
|  |  | 
|  | if (BE (length1 < 0 || length2 < 0 || stop < 0 || len < length1, 0)) | 
|  | return -2; | 
|  |  | 
|  | /* Concatenate the strings.  */ | 
|  | if (length2 > 0) | 
|  | if (length1 > 0) | 
|  | { | 
|  | s = re_malloc (char, len); | 
|  |  | 
|  | if (BE (s == NULL, 0)) | 
|  | return -2; | 
|  | #ifdef _LIBC | 
|  | memcpy (__mempcpy (s, string1, length1), string2, length2); | 
|  | #else | 
|  | memcpy (s, string1, length1); | 
|  | memcpy (s + length1, string2, length2); | 
|  | #endif | 
|  | str = s; | 
|  | } | 
|  | else | 
|  | str = string2; | 
|  | else | 
|  | str = string1; | 
|  |  | 
|  | rval = re_search_stub (bufp, str, len, start, range, stop, regs, | 
|  | ret_len); | 
|  | re_free (s); | 
|  | return rval; | 
|  | } | 
|  |  | 
|  | /* The parameters have the same meaning as those of re_search. | 
|  | Additional parameters: | 
|  | If RET_LEN is true the length of the match is returned (re_match style); | 
|  | otherwise the position of the match is returned.  */ | 
|  |  | 
|  | static regoff_t | 
|  | internal_function | 
|  | re_search_stub (struct re_pattern_buffer *bufp, | 
|  | const char *string, Idx length, | 
|  | Idx start, regoff_t range, Idx stop, struct re_registers *regs, | 
|  | bool ret_len) | 
|  | { | 
|  | reg_errcode_t result; | 
|  | regmatch_t *pmatch; | 
|  | Idx nregs; | 
|  | regoff_t rval; | 
|  | int eflags = 0; | 
|  | #ifdef _LIBC | 
|  | re_dfa_t *dfa = (re_dfa_t *) bufp->buffer; | 
|  | #endif | 
|  | Idx last_start = start + range; | 
|  |  | 
|  | /* Check for out-of-range.  */ | 
|  | if (BE (start < 0 || start > length, 0)) | 
|  | return -1; | 
|  | if (BE (length < last_start || (0 <= range && last_start < start), 0)) | 
|  | last_start = length; | 
|  | else if (BE (last_start < 0 || (range < 0 && start <= last_start), 0)) | 
|  | last_start = 0; | 
|  |  | 
|  | __libc_lock_lock (dfa->lock); | 
|  |  | 
|  | eflags |= (bufp->not_bol) ? REG_NOTBOL : 0; | 
|  | eflags |= (bufp->not_eol) ? REG_NOTEOL : 0; | 
|  |  | 
|  | /* Compile fastmap if we haven't yet.  */ | 
|  | if (start < last_start && bufp->fastmap != NULL && !bufp->fastmap_accurate) | 
|  | re_compile_fastmap (bufp); | 
|  |  | 
|  | if (BE (bufp->no_sub, 0)) | 
|  | regs = NULL; | 
|  |  | 
|  | /* We need at least 1 register.  */ | 
|  | if (regs == NULL) | 
|  | nregs = 1; | 
|  | else if (BE (bufp->regs_allocated == REGS_FIXED | 
|  | && regs->num_regs <= bufp->re_nsub, 0)) | 
|  | { | 
|  | nregs = regs->num_regs; | 
|  | if (BE (nregs < 1, 0)) | 
|  | { | 
|  | /* Nothing can be copied to regs.  */ | 
|  | regs = NULL; | 
|  | nregs = 1; | 
|  | } | 
|  | } | 
|  | else | 
|  | nregs = bufp->re_nsub + 1; | 
|  | pmatch = re_malloc (regmatch_t, nregs); | 
|  | if (BE (pmatch == NULL, 0)) | 
|  | { | 
|  | rval = -2; | 
|  | goto out; | 
|  | } | 
|  |  | 
|  | result = re_search_internal (bufp, string, length, start, last_start, stop, | 
|  | nregs, pmatch, eflags); | 
|  |  | 
|  | rval = 0; | 
|  |  | 
|  | /* I hope we needn't fill ther regs with -1's when no match was found.  */ | 
|  | if (result != REG_NOERROR) | 
|  | rval = -1; | 
|  | else if (regs != NULL) | 
|  | { | 
|  | /* If caller wants register contents data back, copy them.  */ | 
|  | bufp->regs_allocated = re_copy_regs (regs, pmatch, nregs, | 
|  | bufp->regs_allocated); | 
|  | if (BE (bufp->regs_allocated == REGS_UNALLOCATED, 0)) | 
|  | rval = -2; | 
|  | } | 
|  |  | 
|  | if (BE (rval == 0, 1)) | 
|  | { | 
|  | if (ret_len) | 
|  | { | 
|  | assert (pmatch[0].rm_so == start); | 
|  | rval = pmatch[0].rm_eo - start; | 
|  | } | 
|  | else | 
|  | rval = pmatch[0].rm_so; | 
|  | } | 
|  | re_free (pmatch); | 
|  | out: | 
|  | __libc_lock_unlock (dfa->lock); | 
|  | return rval; | 
|  | } | 
|  |  | 
|  | static unsigned int | 
|  | internal_function | 
|  | re_copy_regs (struct re_registers *regs, regmatch_t *pmatch, Idx nregs, | 
|  | int regs_allocated) | 
|  | { | 
|  | int rval = REGS_REALLOCATE; | 
|  | Idx i; | 
|  | Idx need_regs = nregs + 1; | 
|  | /* We need one extra element beyond `num_regs' for the `-1' marker GNU code | 
|  | uses.  */ | 
|  |  | 
|  | /* Have the register data arrays been allocated?  */ | 
|  | if (regs_allocated == REGS_UNALLOCATED) | 
|  | { /* No.  So allocate them with malloc.  */ | 
|  | regs->start = re_malloc (regoff_t, need_regs); | 
|  | if (BE (regs->start == NULL, 0)) | 
|  | return REGS_UNALLOCATED; | 
|  | regs->end = re_malloc (regoff_t, need_regs); | 
|  | if (BE (regs->end == NULL, 0)) | 
|  | { | 
|  | re_free (regs->start); | 
|  | return REGS_UNALLOCATED; | 
|  | } | 
|  | regs->num_regs = need_regs; | 
|  | } | 
|  | else if (regs_allocated == REGS_REALLOCATE) | 
|  | { /* Yes.  If we need more elements than were already | 
|  | allocated, reallocate them.  If we need fewer, just | 
|  | leave it alone.  */ | 
|  | if (BE (need_regs > regs->num_regs, 0)) | 
|  | { | 
|  | regoff_t *new_start = re_realloc (regs->start, regoff_t, need_regs); | 
|  | regoff_t *new_end; | 
|  | if (BE (new_start == NULL, 0)) | 
|  | return REGS_UNALLOCATED; | 
|  | new_end = re_realloc (regs->end, regoff_t, need_regs); | 
|  | if (BE (new_end == NULL, 0)) | 
|  | { | 
|  | re_free (new_start); | 
|  | return REGS_UNALLOCATED; | 
|  | } | 
|  | regs->start = new_start; | 
|  | regs->end = new_end; | 
|  | regs->num_regs = need_regs; | 
|  | } | 
|  | } | 
|  | else | 
|  | { | 
|  | assert (regs_allocated == REGS_FIXED); | 
|  | /* This function may not be called with REGS_FIXED and nregs too big.  */ | 
|  | assert (regs->num_regs >= nregs); | 
|  | rval = REGS_FIXED; | 
|  | } | 
|  |  | 
|  | /* Copy the regs.  */ | 
|  | for (i = 0; i < nregs; ++i) | 
|  | { | 
|  | regs->start[i] = pmatch[i].rm_so; | 
|  | regs->end[i] = pmatch[i].rm_eo; | 
|  | } | 
|  | for ( ; i < regs->num_regs; ++i) | 
|  | regs->start[i] = regs->end[i] = -1; | 
|  |  | 
|  | return rval; | 
|  | } | 
|  |  | 
|  | /* Set REGS to hold NUM_REGS registers, storing them in STARTS and | 
|  | ENDS.  Subsequent matches using PATTERN_BUFFER and REGS will use | 
|  | this memory for recording register information.  STARTS and ENDS | 
|  | must be allocated using the malloc library routine, and must each | 
|  | be at least NUM_REGS * sizeof (regoff_t) bytes long. | 
|  |  | 
|  | If NUM_REGS == 0, then subsequent matches should allocate their own | 
|  | register data. | 
|  |  | 
|  | Unless this function is called, the first search or match using | 
|  | PATTERN_BUFFER will allocate its own register data, without | 
|  | freeing the old data.  */ | 
|  |  | 
|  | void | 
|  | re_set_registers (bufp, regs, num_regs, starts, ends) | 
|  | struct re_pattern_buffer *bufp; | 
|  | struct re_registers *regs; | 
|  | __re_size_t num_regs; | 
|  | regoff_t *starts, *ends; | 
|  | { | 
|  | if (num_regs) | 
|  | { | 
|  | bufp->regs_allocated = REGS_REALLOCATE; | 
|  | regs->num_regs = num_regs; | 
|  | regs->start = starts; | 
|  | regs->end = ends; | 
|  | } | 
|  | else | 
|  | { | 
|  | bufp->regs_allocated = REGS_UNALLOCATED; | 
|  | regs->num_regs = 0; | 
|  | regs->start = regs->end = NULL; | 
|  | } | 
|  | } | 
|  | #ifdef _LIBC | 
|  | weak_alias (__re_set_registers, re_set_registers) | 
|  | #endif | 
|  |  | 
|  | /* Entry points compatible with 4.2 BSD regex library.  We don't define | 
|  | them unless specifically requested.  */ | 
|  |  | 
|  | #if defined _REGEX_RE_COMP || defined _LIBC | 
|  | int | 
|  | # ifdef _LIBC | 
|  | weak_function | 
|  | # endif | 
|  | re_exec (s) | 
|  | const char *s; | 
|  | { | 
|  | return 0 == regexec (&re_comp_buf, s, 0, NULL, 0); | 
|  | } | 
|  | #endif /* _REGEX_RE_COMP */ | 
|  |  | 
|  | /* Internal entry point.  */ | 
|  |  | 
|  | /* Searches for a compiled pattern PREG in the string STRING, whose | 
|  | length is LENGTH.  NMATCH, PMATCH, and EFLAGS have the same | 
|  | meaning as with regexec.  LAST_START is START + RANGE, where | 
|  | START and RANGE have the same meaning as with re_search. | 
|  | Return REG_NOERROR if we find a match, and REG_NOMATCH if not, | 
|  | otherwise return the error code. | 
|  | Note: We assume front end functions already check ranges. | 
|  | (0 <= LAST_START && LAST_START <= LENGTH)  */ | 
|  |  | 
|  | static reg_errcode_t | 
|  | internal_function | 
|  | re_search_internal (const regex_t *preg, | 
|  | const char *string, Idx length, | 
|  | Idx start, Idx last_start, Idx stop, | 
|  | size_t nmatch, regmatch_t pmatch[], | 
|  | int eflags) | 
|  | { | 
|  | reg_errcode_t err; | 
|  | const re_dfa_t *dfa = (const re_dfa_t *) preg->buffer; | 
|  | Idx left_lim, right_lim; | 
|  | int incr; | 
|  | bool fl_longest_match; | 
|  | int match_kind; | 
|  | Idx match_first; | 
|  | Idx match_last = REG_MISSING; | 
|  | Idx extra_nmatch; | 
|  | bool sb; | 
|  | int ch; | 
|  | #if defined _LIBC || (defined __STDC_VERSION__ && __STDC_VERSION__ >= 199901L) | 
|  | re_match_context_t mctx = { .dfa = dfa }; | 
|  | #else | 
|  | re_match_context_t mctx; | 
|  | #endif | 
|  | char *fastmap = ((preg->fastmap != NULL && preg->fastmap_accurate | 
|  | && start != last_start && !preg->can_be_null) | 
|  | ? preg->fastmap : NULL); | 
|  | RE_TRANSLATE_TYPE t = preg->translate; | 
|  |  | 
|  | #if !(defined _LIBC || (defined __STDC_VERSION__ && __STDC_VERSION__ >= 199901L)) | 
|  | memset (&mctx, '\0', sizeof (re_match_context_t)); | 
|  | mctx.dfa = dfa; | 
|  | #endif | 
|  |  | 
|  | extra_nmatch = (nmatch > preg->re_nsub) ? nmatch - (preg->re_nsub + 1) : 0; | 
|  | nmatch -= extra_nmatch; | 
|  |  | 
|  | /* Check if the DFA haven't been compiled.  */ | 
|  | if (BE (preg->used == 0 || dfa->init_state == NULL | 
|  | || dfa->init_state_word == NULL || dfa->init_state_nl == NULL | 
|  | || dfa->init_state_begbuf == NULL, 0)) | 
|  | return REG_NOMATCH; | 
|  |  | 
|  | #ifdef DEBUG | 
|  | /* We assume front-end functions already check them.  */ | 
|  | assert (0 <= last_start && last_start <= length); | 
|  | #endif | 
|  |  | 
|  | /* If initial states with non-begbuf contexts have no elements, | 
|  | the regex must be anchored.  If preg->newline_anchor is set, | 
|  | we'll never use init_state_nl, so do not check it.  */ | 
|  | if (dfa->init_state->nodes.nelem == 0 | 
|  | && dfa->init_state_word->nodes.nelem == 0 | 
|  | && (dfa->init_state_nl->nodes.nelem == 0 | 
|  | || !preg->newline_anchor)) | 
|  | { | 
|  | if (start != 0 && last_start != 0) | 
|  | return REG_NOMATCH; | 
|  | start = last_start = 0; | 
|  | } | 
|  |  | 
|  | /* We must check the longest matching, if nmatch > 0.  */ | 
|  | fl_longest_match = (nmatch != 0 || dfa->nbackref); | 
|  |  | 
|  | err = re_string_allocate (&mctx.input, string, length, dfa->nodes_len + 1, | 
|  | preg->translate, preg->syntax & RE_ICASE, dfa); | 
|  | if (BE (err != REG_NOERROR, 0)) | 
|  | goto free_return; | 
|  | mctx.input.stop = stop; | 
|  | mctx.input.raw_stop = stop; | 
|  | mctx.input.newline_anchor = preg->newline_anchor; | 
|  |  | 
|  | err = match_ctx_init (&mctx, eflags, dfa->nbackref * 2); | 
|  | if (BE (err != REG_NOERROR, 0)) | 
|  | goto free_return; | 
|  |  | 
|  | /* We will log all the DFA states through which the dfa pass, | 
|  | if nmatch > 1, or this dfa has "multibyte node", which is a | 
|  | back-reference or a node which can accept multibyte character or | 
|  | multi character collating element.  */ | 
|  | if (nmatch > 1 || dfa->has_mb_node) | 
|  | { | 
|  | /* Avoid overflow.  */ | 
|  | if (BE (SIZE_MAX / sizeof (re_dfastate_t *) <= mctx.input.bufs_len, 0)) | 
|  | { | 
|  | err = REG_ESPACE; | 
|  | goto free_return; | 
|  | } | 
|  |  | 
|  | mctx.state_log = re_malloc (re_dfastate_t *, mctx.input.bufs_len + 1); | 
|  | if (BE (mctx.state_log == NULL, 0)) | 
|  | { | 
|  | err = REG_ESPACE; | 
|  | goto free_return; | 
|  | } | 
|  | } | 
|  | else | 
|  | mctx.state_log = NULL; | 
|  |  | 
|  | match_first = start; | 
|  | mctx.input.tip_context = (eflags & REG_NOTBOL) ? CONTEXT_BEGBUF | 
|  | : CONTEXT_NEWLINE | CONTEXT_BEGBUF; | 
|  |  | 
|  | /* Check incrementally whether of not the input string match.  */ | 
|  | incr = (last_start < start) ? -1 : 1; | 
|  | left_lim = (last_start < start) ? last_start : start; | 
|  | right_lim = (last_start < start) ? start : last_start; | 
|  | sb = dfa->mb_cur_max == 1; | 
|  | match_kind = | 
|  | (fastmap | 
|  | ? ((sb || !(preg->syntax & RE_ICASE || t) ? 4 : 0) | 
|  | | (start <= last_start ? 2 : 0) | 
|  | | (t != NULL ? 1 : 0)) | 
|  | : 8); | 
|  |  | 
|  | for (;; match_first += incr) | 
|  | { | 
|  | err = REG_NOMATCH; | 
|  | if (match_first < left_lim || right_lim < match_first) | 
|  | goto free_return; | 
|  |  | 
|  | /* Advance as rapidly as possible through the string, until we | 
|  | find a plausible place to start matching.  This may be done | 
|  | with varying efficiency, so there are various possibilities: | 
|  | only the most common of them are specialized, in order to | 
|  | save on code size.  We use a switch statement for speed.  */ | 
|  | switch (match_kind) | 
|  | { | 
|  | case 8: | 
|  | /* No fastmap.  */ | 
|  | break; | 
|  |  | 
|  | case 7: | 
|  | /* Fastmap with single-byte translation, match forward.  */ | 
|  | while (BE (match_first < right_lim, 1) | 
|  | && !fastmap[t[(unsigned char) string[match_first]]]) | 
|  | ++match_first; | 
|  | goto forward_match_found_start_or_reached_end; | 
|  |  | 
|  | case 6: | 
|  | /* Fastmap without translation, match forward.  */ | 
|  | while (BE (match_first < right_lim, 1) | 
|  | && !fastmap[(unsigned char) string[match_first]]) | 
|  | ++match_first; | 
|  |  | 
|  | forward_match_found_start_or_reached_end: | 
|  | if (BE (match_first == right_lim, 0)) | 
|  | { | 
|  | ch = match_first >= length | 
|  | ? 0 : (unsigned char) string[match_first]; | 
|  | if (!fastmap[t ? t[ch] : ch]) | 
|  | goto free_return; | 
|  | } | 
|  | break; | 
|  |  | 
|  | case 4: | 
|  | case 5: | 
|  | /* Fastmap without multi-byte translation, match backwards.  */ | 
|  | while (match_first >= left_lim) | 
|  | { | 
|  | ch = match_first >= length | 
|  | ? 0 : (unsigned char) string[match_first]; | 
|  | if (fastmap[t ? t[ch] : ch]) | 
|  | break; | 
|  | --match_first; | 
|  | } | 
|  | if (match_first < left_lim) | 
|  | goto free_return; | 
|  | break; | 
|  |  | 
|  | default: | 
|  | /* In this case, we can't determine easily the current byte, | 
|  | since it might be a component byte of a multibyte | 
|  | character.  Then we use the constructed buffer instead.  */ | 
|  | for (;;) | 
|  | { | 
|  | /* If MATCH_FIRST is out of the valid range, reconstruct the | 
|  | buffers.  */ | 
|  | __re_size_t offset = match_first - mctx.input.raw_mbs_idx; | 
|  | if (BE (offset >= (__re_size_t) mctx.input.valid_raw_len, 0)) | 
|  | { | 
|  | err = re_string_reconstruct (&mctx.input, match_first, | 
|  | eflags); | 
|  | if (BE (err != REG_NOERROR, 0)) | 
|  | goto free_return; | 
|  |  | 
|  | offset = match_first - mctx.input.raw_mbs_idx; | 
|  | } | 
|  | /* If MATCH_FIRST is out of the buffer, leave it as '\0'. | 
|  | Note that MATCH_FIRST must not be smaller than 0.  */ | 
|  | ch = (match_first >= length | 
|  | ? 0 : re_string_byte_at (&mctx.input, offset)); | 
|  | if (fastmap[ch]) | 
|  | break; | 
|  | match_first += incr; | 
|  | if (match_first < left_lim || match_first > right_lim) | 
|  | { | 
|  | err = REG_NOMATCH; | 
|  | goto free_return; | 
|  | } | 
|  | } | 
|  | break; | 
|  | } | 
|  |  | 
|  | /* Reconstruct the buffers so that the matcher can assume that | 
|  | the matching starts from the beginning of the buffer.  */ | 
|  | err = re_string_reconstruct (&mctx.input, match_first, eflags); | 
|  | if (BE (err != REG_NOERROR, 0)) | 
|  | goto free_return; | 
|  |  | 
|  | #ifdef RE_ENABLE_I18N | 
|  | /* Don't consider this char as a possible match start if it part, | 
|  | yet isn't the head, of a multibyte character.  */ | 
|  | if (!sb && !re_string_first_byte (&mctx.input, 0)) | 
|  | continue; | 
|  | #endif | 
|  |  | 
|  | /* It seems to be appropriate one, then use the matcher.  */ | 
|  | /* We assume that the matching starts from 0.  */ | 
|  | mctx.state_log_top = mctx.nbkref_ents = mctx.max_mb_elem_len = 0; | 
|  | match_last = check_matching (&mctx, fl_longest_match, | 
|  | start <= last_start ? &match_first : NULL); | 
|  | if (match_last != REG_MISSING) | 
|  | { | 
|  | if (BE (match_last == REG_ERROR, 0)) | 
|  | { | 
|  | err = REG_ESPACE; | 
|  | goto free_return; | 
|  | } | 
|  | else | 
|  | { | 
|  | mctx.match_last = match_last; | 
|  | if ((!preg->no_sub && nmatch > 1) || dfa->nbackref) | 
|  | { | 
|  | re_dfastate_t *pstate = mctx.state_log[match_last]; | 
|  | mctx.last_node = check_halt_state_context (&mctx, pstate, | 
|  | match_last); | 
|  | } | 
|  | if ((!preg->no_sub && nmatch > 1 && dfa->has_plural_match) | 
|  | || dfa->nbackref) | 
|  | { | 
|  | err = prune_impossible_nodes (&mctx); | 
|  | if (err == REG_NOERROR) | 
|  | break; | 
|  | if (BE (err != REG_NOMATCH, 0)) | 
|  | goto free_return; | 
|  | match_last = REG_MISSING; | 
|  | } | 
|  | else | 
|  | break; /* We found a match.  */ | 
|  | } | 
|  | } | 
|  |  | 
|  | match_ctx_clean (&mctx); | 
|  | } | 
|  |  | 
|  | #ifdef DEBUG | 
|  | assert (match_last != REG_MISSING); | 
|  | assert (err == REG_NOERROR); | 
|  | #endif | 
|  |  | 
|  | /* Set pmatch[] if we need.  */ | 
|  | if (nmatch > 0) | 
|  | { | 
|  | Idx reg_idx; | 
|  |  | 
|  | /* Initialize registers.  */ | 
|  | for (reg_idx = 1; reg_idx < nmatch; ++reg_idx) | 
|  | pmatch[reg_idx].rm_so = pmatch[reg_idx].rm_eo = -1; | 
|  |  | 
|  | /* Set the points where matching start/end.  */ | 
|  | pmatch[0].rm_so = 0; | 
|  | pmatch[0].rm_eo = mctx.match_last; | 
|  | /* FIXME: This function should fail if mctx.match_last exceeds | 
|  | the maximum possible regoff_t value.  We need a new error | 
|  | code REG_OVERFLOW.  */ | 
|  |  | 
|  | if (!preg->no_sub && nmatch > 1) | 
|  | { | 
|  | err = set_regs (preg, &mctx, nmatch, pmatch, | 
|  | dfa->has_plural_match && dfa->nbackref > 0); | 
|  | if (BE (err != REG_NOERROR, 0)) | 
|  | goto free_return; | 
|  | } | 
|  |  | 
|  | /* At last, add the offset to the each registers, since we slided | 
|  | the buffers so that we could assume that the matching starts | 
|  | from 0.  */ | 
|  | for (reg_idx = 0; reg_idx < nmatch; ++reg_idx) | 
|  | if (pmatch[reg_idx].rm_so != -1) | 
|  | { | 
|  | #ifdef RE_ENABLE_I18N | 
|  | if (BE (mctx.input.offsets_needed != 0, 0)) | 
|  | { | 
|  | pmatch[reg_idx].rm_so = | 
|  | (pmatch[reg_idx].rm_so == mctx.input.valid_len | 
|  | ? mctx.input.valid_raw_len | 
|  | : mctx.input.offsets[pmatch[reg_idx].rm_so]); | 
|  | pmatch[reg_idx].rm_eo = | 
|  | (pmatch[reg_idx].rm_eo == mctx.input.valid_len | 
|  | ? mctx.input.valid_raw_len | 
|  | : mctx.input.offsets[pmatch[reg_idx].rm_eo]); | 
|  | } | 
|  | #else | 
|  | assert (mctx.input.offsets_needed == 0); | 
|  | #endif | 
|  | pmatch[reg_idx].rm_so += match_first; | 
|  | pmatch[reg_idx].rm_eo += match_first; | 
|  | } | 
|  | for (reg_idx = 0; reg_idx < extra_nmatch; ++reg_idx) | 
|  | { | 
|  | pmatch[nmatch + reg_idx].rm_so = -1; | 
|  | pmatch[nmatch + reg_idx].rm_eo = -1; | 
|  | } | 
|  |  | 
|  | if (dfa->subexp_map) | 
|  | for (reg_idx = 0; reg_idx + 1 < nmatch; reg_idx++) | 
|  | if (dfa->subexp_map[reg_idx] != reg_idx) | 
|  | { | 
|  | pmatch[reg_idx + 1].rm_so | 
|  | = pmatch[dfa->subexp_map[reg_idx] + 1].rm_so; | 
|  | pmatch[reg_idx + 1].rm_eo | 
|  | = pmatch[dfa->subexp_map[reg_idx] + 1].rm_eo; | 
|  | } | 
|  | } | 
|  |  | 
|  | free_return: | 
|  | re_free (mctx.state_log); | 
|  | if (dfa->nbackref) | 
|  | match_ctx_free (&mctx); | 
|  | re_string_destruct (&mctx.input); | 
|  | return err; | 
|  | } | 
|  |  | 
|  | static reg_errcode_t | 
|  | internal_function | 
|  | prune_impossible_nodes (re_match_context_t *mctx) | 
|  | { | 
|  | const re_dfa_t *const dfa = mctx->dfa; | 
|  | Idx halt_node, match_last; | 
|  | reg_errcode_t ret; | 
|  | re_dfastate_t **sifted_states; | 
|  | re_dfastate_t **lim_states = NULL; | 
|  | re_sift_context_t sctx; | 
|  | #ifdef DEBUG | 
|  | assert (mctx->state_log != NULL); | 
|  | #endif | 
|  | match_last = mctx->match_last; | 
|  | halt_node = mctx->last_node; | 
|  |  | 
|  | /* Avoid overflow.  */ | 
|  | if (BE (SIZE_MAX / sizeof (re_dfastate_t *) <= match_last, 0)) | 
|  | return REG_ESPACE; | 
|  |  | 
|  | sifted_states = re_malloc (re_dfastate_t *, match_last + 1); | 
|  | if (BE (sifted_states == NULL, 0)) | 
|  | { | 
|  | ret = REG_ESPACE; | 
|  | goto free_return; | 
|  | } | 
|  | if (dfa->nbackref) | 
|  | { | 
|  | lim_states = re_malloc (re_dfastate_t *, match_last + 1); | 
|  | if (BE (lim_states == NULL, 0)) | 
|  | { | 
|  | ret = REG_ESPACE; | 
|  | goto free_return; | 
|  | } | 
|  | while (1) | 
|  | { | 
|  | memset (lim_states, '\0', | 
|  | sizeof (re_dfastate_t *) * (match_last + 1)); | 
|  | sift_ctx_init (&sctx, sifted_states, lim_states, halt_node, | 
|  | match_last); | 
|  | ret = sift_states_backward (mctx, &sctx); | 
|  | re_node_set_free (&sctx.limits); | 
|  | if (BE (ret != REG_NOERROR, 0)) | 
|  | goto free_return; | 
|  | if (sifted_states[0] != NULL || lim_states[0] != NULL) | 
|  | break; | 
|  | do | 
|  | { | 
|  | --match_last; | 
|  | if (! REG_VALID_INDEX (match_last)) | 
|  | { | 
|  | ret = REG_NOMATCH; | 
|  | goto free_return; | 
|  | } | 
|  | } while (mctx->state_log[match_last] == NULL | 
|  | || !mctx->state_log[match_last]->halt); | 
|  | halt_node = check_halt_state_context (mctx, | 
|  | mctx->state_log[match_last], | 
|  | match_last); | 
|  | } | 
|  | ret = merge_state_array (dfa, sifted_states, lim_states, | 
|  | match_last + 1); | 
|  | re_free (lim_states); | 
|  | lim_states = NULL; | 
|  | if (BE (ret != REG_NOERROR, 0)) | 
|  | goto free_return; | 
|  | } | 
|  | else | 
|  | { | 
|  | sift_ctx_init (&sctx, sifted_states, lim_states, halt_node, match_last); | 
|  | ret = sift_states_backward (mctx, &sctx); | 
|  | re_node_set_free (&sctx.limits); | 
|  | if (BE (ret != REG_NOERROR, 0)) | 
|  | goto free_return; | 
|  | } | 
|  | re_free (mctx->state_log); | 
|  | mctx->state_log = sifted_states; | 
|  | sifted_states = NULL; | 
|  | mctx->last_node = halt_node; | 
|  | mctx->match_last = match_last; | 
|  | ret = REG_NOERROR; | 
|  | free_return: | 
|  | re_free (sifted_states); | 
|  | re_free (lim_states); | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | /* Acquire an initial state and return it. | 
|  | We must select appropriate initial state depending on the context, | 
|  | since initial states may have constraints like "\<", "^", etc..  */ | 
|  |  | 
|  | static inline re_dfastate_t * | 
|  | __attribute ((always_inline)) internal_function | 
|  | acquire_init_state_context (reg_errcode_t *err, const re_match_context_t *mctx, | 
|  | Idx idx) | 
|  | { | 
|  | const re_dfa_t *const dfa = mctx->dfa; | 
|  | if (dfa->init_state->has_constraint) | 
|  | { | 
|  | unsigned int context; | 
|  | context = re_string_context_at (&mctx->input, idx - 1, mctx->eflags); | 
|  | if (IS_WORD_CONTEXT (context)) | 
|  | return dfa->init_state_word; | 
|  | else if (IS_ORDINARY_CONTEXT (context)) | 
|  | return dfa->init_state; | 
|  | else if (IS_BEGBUF_CONTEXT (context) && IS_NEWLINE_CONTEXT (context)) | 
|  | return dfa->init_state_begbuf; | 
|  | else if (IS_NEWLINE_CONTEXT (context)) | 
|  | return dfa->init_state_nl; | 
|  | else if (IS_BEGBUF_CONTEXT (context)) | 
|  | { | 
|  | /* It is relatively rare case, then calculate on demand.  */ | 
|  | return re_acquire_state_context (err, dfa, | 
|  | dfa->init_state->entrance_nodes, | 
|  | context); | 
|  | } | 
|  | else | 
|  | /* Must not happen?  */ | 
|  | return dfa->init_state; | 
|  | } | 
|  | else | 
|  | return dfa->init_state; | 
|  | } | 
|  |  | 
|  | /* Check whether the regular expression match input string INPUT or not, | 
|  | and return the index where the matching end.  Return REG_MISSING if | 
|  | there is no match, and return REG_ERROR in case of an error. | 
|  | FL_LONGEST_MATCH means we want the POSIX longest matching. | 
|  | If P_MATCH_FIRST is not NULL, and the match fails, it is set to the | 
|  | next place where we may want to try matching. | 
|  | Note that the matcher assume that the maching starts from the current | 
|  | index of the buffer.  */ | 
|  |  | 
|  | static Idx | 
|  | internal_function | 
|  | check_matching (re_match_context_t *mctx, bool fl_longest_match, | 
|  | Idx *p_match_first) | 
|  | { | 
|  | const re_dfa_t *const dfa = mctx->dfa; | 
|  | reg_errcode_t err; | 
|  | Idx match = 0; | 
|  | Idx match_last = REG_MISSING; | 
|  | Idx cur_str_idx = re_string_cur_idx (&mctx->input); | 
|  | re_dfastate_t *cur_state; | 
|  | bool at_init_state = p_match_first != NULL; | 
|  | Idx next_start_idx = cur_str_idx; | 
|  |  | 
|  | err = REG_NOERROR; | 
|  | cur_state = acquire_init_state_context (&err, mctx, cur_str_idx); | 
|  | /* An initial state must not be NULL (invalid).  */ | 
|  | if (BE (cur_state == NULL, 0)) | 
|  | { | 
|  | assert (err == REG_ESPACE); | 
|  | return REG_ERROR; | 
|  | } | 
|  |  | 
|  | if (mctx->state_log != NULL) | 
|  | { | 
|  | mctx->state_log[cur_str_idx] = cur_state; | 
|  |  | 
|  | /* Check OP_OPEN_SUBEXP in the initial state in case that we use them | 
|  | later.  E.g. Processing back references.  */ | 
|  | if (BE (dfa->nbackref, 0)) | 
|  | { | 
|  | at_init_state = false; | 
|  | err = check_subexp_matching_top (mctx, &cur_state->nodes, 0); | 
|  | if (BE (err != REG_NOERROR, 0)) | 
|  | return err; | 
|  |  | 
|  | if (cur_state->has_backref) | 
|  | { | 
|  | err = transit_state_bkref (mctx, &cur_state->nodes); | 
|  | if (BE (err != REG_NOERROR, 0)) | 
|  | return err; | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | /* If the RE accepts NULL string.  */ | 
|  | if (BE (cur_state->halt, 0)) | 
|  | { | 
|  | if (!cur_state->has_constraint | 
|  | || check_halt_state_context (mctx, cur_state, cur_str_idx)) | 
|  | { | 
|  | if (!fl_longest_match) | 
|  | return cur_str_idx; | 
|  | else | 
|  | { | 
|  | match_last = cur_str_idx; | 
|  | match = 1; | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | while (!re_string_eoi (&mctx->input)) | 
|  | { | 
|  | re_dfastate_t *old_state = cur_state; | 
|  | Idx next_char_idx = re_string_cur_idx (&mctx->input) + 1; | 
|  |  | 
|  | if (BE (next_char_idx >= mctx->input.bufs_len, 0) | 
|  | || (BE (next_char_idx >= mctx->input.valid_len, 0) | 
|  | && mctx->input.valid_len < mctx->input.len)) | 
|  | { | 
|  | err = extend_buffers (mctx); | 
|  | if (BE (err != REG_NOERROR, 0)) | 
|  | { | 
|  | assert (err == REG_ESPACE); | 
|  | return REG_ERROR; | 
|  | } | 
|  | } | 
|  |  | 
|  | cur_state = transit_state (&err, mctx, cur_state); | 
|  | if (mctx->state_log != NULL) | 
|  | cur_state = merge_state_with_log (&err, mctx, cur_state); | 
|  |  | 
|  | if (cur_state == NULL) | 
|  | { | 
|  | /* Reached the invalid state or an error.  Try to recover a valid | 
|  | state using the state log, if available and if we have not | 
|  | already found a valid (even if not the longest) match.  */ | 
|  | if (BE (err != REG_NOERROR, 0)) | 
|  | return REG_ERROR; | 
|  |  | 
|  | if (mctx->state_log == NULL | 
|  | || (match && !fl_longest_match) | 
|  | || (cur_state = find_recover_state (&err, mctx)) == NULL) | 
|  | break; | 
|  | } | 
|  |  | 
|  | if (BE (at_init_state, 0)) | 
|  | { | 
|  | if (old_state == cur_state) | 
|  | next_start_idx = next_char_idx; | 
|  | else | 
|  | at_init_state = false; | 
|  | } | 
|  |  | 
|  | if (cur_state->halt) | 
|  | { | 
|  | /* Reached a halt state. | 
|  | Check the halt state can satisfy the current context.  */ | 
|  | if (!cur_state->has_constraint | 
|  | || check_halt_state_context (mctx, cur_state, | 
|  | re_string_cur_idx (&mctx->input))) | 
|  | { | 
|  | /* We found an appropriate halt state.  */ | 
|  | match_last = re_string_cur_idx (&mctx->input); | 
|  | match = 1; | 
|  |  | 
|  | /* We found a match, do not modify match_first below.  */ | 
|  | p_match_first = NULL; | 
|  | if (!fl_longest_match) | 
|  | break; | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | if (p_match_first) | 
|  | *p_match_first += next_start_idx; | 
|  |  | 
|  | return match_last; | 
|  | } | 
|  |  | 
|  | /* Check NODE match the current context.  */ | 
|  |  | 
|  | static bool | 
|  | internal_function | 
|  | check_halt_node_context (const re_dfa_t *dfa, Idx node, unsigned int context) | 
|  | { | 
|  | re_token_type_t type = dfa->nodes[node].type; | 
|  | unsigned int constraint = dfa->nodes[node].constraint; | 
|  | if (type != END_OF_RE) | 
|  | return false; | 
|  | if (!constraint) | 
|  | return true; | 
|  | if (NOT_SATISFY_NEXT_CONSTRAINT (constraint, context)) | 
|  | return false; | 
|  | return true; | 
|  | } | 
|  |  | 
|  | /* Check the halt state STATE match the current context. | 
|  | Return 0 if not match, if the node, STATE has, is a halt node and | 
|  | match the context, return the node.  */ | 
|  |  | 
|  | static Idx | 
|  | internal_function | 
|  | check_halt_state_context (const re_match_context_t *mctx, | 
|  | const re_dfastate_t *state, Idx idx) | 
|  | { | 
|  | Idx i; | 
|  | unsigned int context; | 
|  | #ifdef DEBUG | 
|  | assert (state->halt); | 
|  | #endif | 
|  | context = re_string_context_at (&mctx->input, idx, mctx->eflags); | 
|  | for (i = 0; i < state->nodes.nelem; ++i) | 
|  | if (check_halt_node_context (mctx->dfa, state->nodes.elems[i], context)) | 
|  | return state->nodes.elems[i]; | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* Compute the next node to which "NFA" transit from NODE("NFA" is a NFA | 
|  | corresponding to the DFA). | 
|  | Return the destination node, and update EPS_VIA_NODES; | 
|  | return REG_MISSING in case of errors.  */ | 
|  |  | 
|  | static Idx | 
|  | internal_function | 
|  | proceed_next_node (const re_match_context_t *mctx, Idx nregs, regmatch_t *regs, | 
|  | Idx *pidx, Idx node, re_node_set *eps_via_nodes, | 
|  | struct re_fail_stack_t *fs) | 
|  | { | 
|  | const re_dfa_t *const dfa = mctx->dfa; | 
|  | Idx i; | 
|  | bool ok; | 
|  | if (IS_EPSILON_NODE (dfa->nodes[node].type)) | 
|  | { | 
|  | re_node_set *cur_nodes = &mctx->state_log[*pidx]->nodes; | 
|  | re_node_set *edests = &dfa->edests[node]; | 
|  | Idx dest_node; | 
|  | ok = re_node_set_insert (eps_via_nodes, node); | 
|  | if (BE (! ok, 0)) | 
|  | return REG_ERROR; | 
|  | /* Pick up a valid destination, or return REG_MISSING if none | 
|  | is found.  */ | 
|  | for (dest_node = REG_MISSING, i = 0; i < edests->nelem; ++i) | 
|  | { | 
|  | Idx candidate = edests->elems[i]; | 
|  | if (!re_node_set_contains (cur_nodes, candidate)) | 
|  | continue; | 
|  | if (dest_node == REG_MISSING) | 
|  | dest_node = candidate; | 
|  |  | 
|  | else | 
|  | { | 
|  | /* In order to avoid infinite loop like "(a*)*", return the second | 
|  | epsilon-transition if the first was already considered.  */ | 
|  | if (re_node_set_contains (eps_via_nodes, dest_node)) | 
|  | return candidate; | 
|  |  | 
|  | /* Otherwise, push the second epsilon-transition on the fail stack.  */ | 
|  | else if (fs != NULL | 
|  | && push_fail_stack (fs, *pidx, candidate, nregs, regs, | 
|  | eps_via_nodes)) | 
|  | return REG_ERROR; | 
|  |  | 
|  | /* We know we are going to exit.  */ | 
|  | break; | 
|  | } | 
|  | } | 
|  | return dest_node; | 
|  | } | 
|  | else | 
|  | { | 
|  | Idx naccepted = 0; | 
|  | re_token_type_t type = dfa->nodes[node].type; | 
|  |  | 
|  | #ifdef RE_ENABLE_I18N | 
|  | if (dfa->nodes[node].accept_mb) | 
|  | naccepted = check_node_accept_bytes (dfa, node, &mctx->input, *pidx); | 
|  | else | 
|  | #endif /* RE_ENABLE_I18N */ | 
|  | if (type == OP_BACK_REF) | 
|  | { | 
|  | Idx subexp_idx = dfa->nodes[node].opr.idx + 1; | 
|  | naccepted = regs[subexp_idx].rm_eo - regs[subexp_idx].rm_so; | 
|  | if (fs != NULL) | 
|  | { | 
|  | if (regs[subexp_idx].rm_so == -1 || regs[subexp_idx].rm_eo == -1) | 
|  | return REG_MISSING; | 
|  | else if (naccepted) | 
|  | { | 
|  | char *buf = (char *) re_string_get_buffer (&mctx->input); | 
|  | if (memcmp (buf + regs[subexp_idx].rm_so, buf + *pidx, | 
|  | naccepted) != 0) | 
|  | return REG_MISSING; | 
|  | } | 
|  | } | 
|  |  | 
|  | if (naccepted == 0) | 
|  | { | 
|  | Idx dest_node; | 
|  | ok = re_node_set_insert (eps_via_nodes, node); | 
|  | if (BE (! ok, 0)) | 
|  | return REG_ERROR; | 
|  | dest_node = dfa->edests[node].elems[0]; | 
|  | if (re_node_set_contains (&mctx->state_log[*pidx]->nodes, | 
|  | dest_node)) | 
|  | return dest_node; | 
|  | } | 
|  | } | 
|  |  | 
|  | if (naccepted != 0 | 
|  | || check_node_accept (mctx, dfa->nodes + node, *pidx)) | 
|  | { | 
|  | Idx dest_node = dfa->nexts[node]; | 
|  | *pidx = (naccepted == 0) ? *pidx + 1 : *pidx + naccepted; | 
|  | if (fs && (*pidx > mctx->match_last || mctx->state_log[*pidx] == NULL | 
|  | || !re_node_set_contains (&mctx->state_log[*pidx]->nodes, | 
|  | dest_node))) | 
|  | return REG_MISSING; | 
|  | re_node_set_empty (eps_via_nodes); | 
|  | return dest_node; | 
|  | } | 
|  | } | 
|  | return REG_MISSING; | 
|  | } | 
|  |  | 
|  | static reg_errcode_t | 
|  | internal_function | 
|  | push_fail_stack (struct re_fail_stack_t *fs, Idx str_idx, Idx dest_node, | 
|  | Idx nregs, regmatch_t *regs, re_node_set *eps_via_nodes) | 
|  | { | 
|  | reg_errcode_t err; | 
|  | Idx num = fs->num++; | 
|  | if (fs->num == fs->alloc) | 
|  | { | 
|  | struct re_fail_stack_ent_t *new_array; | 
|  | new_array = realloc (fs->stack, (sizeof (struct re_fail_stack_ent_t) | 
|  | * fs->alloc * 2)); | 
|  | if (new_array == NULL) | 
|  | return REG_ESPACE; | 
|  | fs->alloc *= 2; | 
|  | fs->stack = new_array; | 
|  | } | 
|  | fs->stack[num].idx = str_idx; | 
|  | fs->stack[num].node = dest_node; | 
|  | fs->stack[num].regs = re_malloc (regmatch_t, nregs); | 
|  | if (fs->stack[num].regs == NULL) | 
|  | return REG_ESPACE; | 
|  | memcpy (fs->stack[num].regs, regs, sizeof (regmatch_t) * nregs); | 
|  | err = re_node_set_init_copy (&fs->stack[num].eps_via_nodes, eps_via_nodes); | 
|  | return err; | 
|  | } | 
|  |  | 
|  | static Idx | 
|  | internal_function | 
|  | pop_fail_stack (struct re_fail_stack_t *fs, Idx *pidx, Idx nregs, | 
|  | regmatch_t *regs, re_node_set *eps_via_nodes) | 
|  | { | 
|  | Idx num = --fs->num; | 
|  | assert (REG_VALID_INDEX (num)); | 
|  | *pidx = fs->stack[num].idx; | 
|  | memcpy (regs, fs->stack[num].regs, sizeof (regmatch_t) * nregs); | 
|  | re_node_set_free (eps_via_nodes); | 
|  | re_free (fs->stack[num].regs); | 
|  | *eps_via_nodes = fs->stack[num].eps_via_nodes; | 
|  | return fs->stack[num].node; | 
|  | } | 
|  |  | 
|  | /* Set the positions where the subexpressions are starts/ends to registers | 
|  | PMATCH. | 
|  | Note: We assume that pmatch[0] is already set, and | 
|  | pmatch[i].rm_so == pmatch[i].rm_eo == -1 for 0 < i < nmatch.  */ | 
|  |  | 
|  | static reg_errcode_t | 
|  | internal_function | 
|  | set_regs (const regex_t *preg, const re_match_context_t *mctx, size_t nmatch, | 
|  | regmatch_t *pmatch, bool fl_backtrack) | 
|  | { | 
|  | const re_dfa_t *dfa = (const re_dfa_t *) preg->buffer; | 
|  | Idx idx, cur_node; | 
|  | re_node_set eps_via_nodes; | 
|  | struct re_fail_stack_t *fs; | 
|  | struct re_fail_stack_t fs_body = { 0, 2, NULL }; | 
|  | regmatch_t *prev_idx_match; | 
|  | bool prev_idx_match_malloced = false; | 
|  |  | 
|  | #ifdef DEBUG | 
|  | assert (nmatch > 1); | 
|  | assert (mctx->state_log != NULL); | 
|  | #endif | 
|  | if (fl_backtrack) | 
|  | { | 
|  | fs = &fs_body; | 
|  | fs->stack = re_malloc (struct re_fail_stack_ent_t, fs->alloc); | 
|  | if (fs->stack == NULL) | 
|  | return REG_ESPACE; | 
|  | } | 
|  | else | 
|  | fs = NULL; | 
|  |  | 
|  | cur_node = dfa->init_node; | 
|  | re_node_set_init_empty (&eps_via_nodes); | 
|  |  | 
|  | if (__libc_use_alloca (nmatch * sizeof (regmatch_t))) | 
|  | prev_idx_match = (regmatch_t *) alloca (nmatch * sizeof (regmatch_t)); | 
|  | else | 
|  | { | 
|  | prev_idx_match = re_malloc (regmatch_t, nmatch); | 
|  | if (prev_idx_match == NULL) | 
|  | { | 
|  | free_fail_stack_return (fs); | 
|  | return REG_ESPACE; | 
|  | } | 
|  | prev_idx_match_malloced = true; | 
|  | } | 
|  | memcpy (prev_idx_match, pmatch, sizeof (regmatch_t) * nmatch); | 
|  |  | 
|  | for (idx = pmatch[0].rm_so; idx <= pmatch[0].rm_eo ;) | 
|  | { | 
|  | update_regs (dfa, pmatch, prev_idx_match, cur_node, idx, nmatch); | 
|  |  | 
|  | if (idx == pmatch[0].rm_eo && cur_node == mctx->last_node) | 
|  | { | 
|  | Idx reg_idx; | 
|  | if (fs) | 
|  | { | 
|  | for (reg_idx = 0; reg_idx < nmatch; ++reg_idx) | 
|  | if (pmatch[reg_idx].rm_so > -1 && pmatch[reg_idx].rm_eo == -1) | 
|  | break; | 
|  | if (reg_idx == nmatch) | 
|  | { | 
|  | re_node_set_free (&eps_via_nodes); | 
|  | if (prev_idx_match_malloced) | 
|  | re_free (prev_idx_match); | 
|  | return free_fail_stack_return (fs); | 
|  | } | 
|  | cur_node = pop_fail_stack (fs, &idx, nmatch, pmatch, | 
|  | &eps_via_nodes); | 
|  | } | 
|  | else | 
|  | { | 
|  | re_node_set_free (&eps_via_nodes); | 
|  | if (prev_idx_match_malloced) | 
|  | re_free (prev_idx_match); | 
|  | return REG_NOERROR; | 
|  | } | 
|  | } | 
|  |  | 
|  | /* Proceed to next node.  */ | 
|  | cur_node = proceed_next_node (mctx, nmatch, pmatch, &idx, cur_node, | 
|  | &eps_via_nodes, fs); | 
|  |  | 
|  | if (BE (! REG_VALID_INDEX (cur_node), 0)) | 
|  | { | 
|  | if (BE (cur_node == REG_ERROR, 0)) | 
|  | { | 
|  | re_node_set_free (&eps_via_nodes); | 
|  | if (prev_idx_match_malloced) | 
|  | re_free (prev_idx_match); | 
|  | free_fail_stack_return (fs); | 
|  | return REG_ESPACE; | 
|  | } | 
|  | if (fs) | 
|  | cur_node = pop_fail_stack (fs, &idx, nmatch, pmatch, | 
|  | &eps_via_nodes); | 
|  | else | 
|  | { | 
|  | re_node_set_free (&eps_via_nodes); | 
|  | if (prev_idx_match_malloced) | 
|  | re_free (prev_idx_match); | 
|  | return REG_NOMATCH; | 
|  | } | 
|  | } | 
|  | } | 
|  | re_node_set_free (&eps_via_nodes); | 
|  | if (prev_idx_match_malloced) | 
|  | re_free (prev_idx_match); | 
|  | return free_fail_stack_return (fs); | 
|  | } | 
|  |  | 
|  | static reg_errcode_t | 
|  | internal_function | 
|  | free_fail_stack_return (struct re_fail_stack_t *fs) | 
|  | { | 
|  | if (fs) | 
|  | { | 
|  | Idx fs_idx; | 
|  | for (fs_idx = 0; fs_idx < fs->num; ++fs_idx) | 
|  | { | 
|  | re_node_set_free (&fs->stack[fs_idx].eps_via_nodes); | 
|  | re_free (fs->stack[fs_idx].regs); | 
|  | } | 
|  | re_free (fs->stack); | 
|  | } | 
|  | return REG_NOERROR; | 
|  | } | 
|  |  | 
|  | static void | 
|  | internal_function | 
|  | update_regs (const re_dfa_t *dfa, regmatch_t *pmatch, | 
|  | regmatch_t *prev_idx_match, Idx cur_node, Idx cur_idx, Idx nmatch) | 
|  | { | 
|  | int type = dfa->nodes[cur_node].type; | 
|  | if (type == OP_OPEN_SUBEXP) | 
|  | { | 
|  | Idx reg_num = dfa->nodes[cur_node].opr.idx + 1; | 
|  |  | 
|  | /* We are at the first node of this sub expression.  */ | 
|  | if (reg_num < nmatch) | 
|  | { | 
|  | pmatch[reg_num].rm_so = cur_idx; | 
|  | pmatch[reg_num].rm_eo = -1; | 
|  | } | 
|  | } | 
|  | else if (type == OP_CLOSE_SUBEXP) | 
|  | { | 
|  | Idx reg_num = dfa->nodes[cur_node].opr.idx + 1; | 
|  | if (reg_num < nmatch) | 
|  | { | 
|  | /* We are at the last node of this sub expression.  */ | 
|  | if (pmatch[reg_num].rm_so < cur_idx) | 
|  | { | 
|  | pmatch[reg_num].rm_eo = cur_idx; | 
|  | /* This is a non-empty match or we are not inside an optional | 
|  | subexpression.  Accept this right away.  */ | 
|  | memcpy (prev_idx_match, pmatch, sizeof (regmatch_t) * nmatch); | 
|  | } | 
|  | else | 
|  | { | 
|  | if (dfa->nodes[cur_node].opt_subexp | 
|  | && prev_idx_match[reg_num].rm_so != -1) | 
|  | /* We transited through an empty match for an optional | 
|  | subexpression, like (a?)*, and this is not the subexp's | 
|  | first match.  Copy back the old content of the registers | 
|  | so that matches of an inner subexpression are undone as | 
|  | well, like in ((a?))*.  */ | 
|  | memcpy (pmatch, prev_idx_match, sizeof (regmatch_t) * nmatch); | 
|  | else | 
|  | /* We completed a subexpression, but it may be part of | 
|  | an optional one, so do not update PREV_IDX_MATCH.  */ | 
|  | pmatch[reg_num].rm_eo = cur_idx; | 
|  | } | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | /* This function checks the STATE_LOG from the SCTX->last_str_idx to 0 | 
|  | and sift the nodes in each states according to the following rules. | 
|  | Updated state_log will be wrote to STATE_LOG. | 
|  |  | 
|  | Rules: We throw away the Node `a' in the STATE_LOG[STR_IDX] if... | 
|  | 1. When STR_IDX == MATCH_LAST(the last index in the state_log): | 
|  | If `a' isn't the LAST_NODE and `a' can't epsilon transit to | 
|  | the LAST_NODE, we throw away the node `a'. | 
|  | 2. When 0 <= STR_IDX < MATCH_LAST and `a' accepts | 
|  | string `s' and transit to `b': | 
|  | i. If 'b' isn't in the STATE_LOG[STR_IDX+strlen('s')], we throw | 
|  | away the node `a'. | 
|  | ii. If 'b' is in the STATE_LOG[STR_IDX+strlen('s')] but 'b' is | 
|  | thrown away, we throw away the node `a'. | 
|  | 3. When 0 <= STR_IDX < MATCH_LAST and 'a' epsilon transit to 'b': | 
|  | i. If 'b' isn't in the STATE_LOG[STR_IDX], we throw away the | 
|  | node `a'. | 
|  | ii. If 'b' is in the STATE_LOG[STR_IDX] but 'b' is thrown away, | 
|  | we throw away the node `a'.  */ | 
|  |  | 
|  | #define STATE_NODE_CONTAINS(state,node) \ | 
|  | ((state) != NULL && re_node_set_contains (&(state)->nodes, node)) | 
|  |  | 
|  | static reg_errcode_t | 
|  | internal_function | 
|  | sift_states_backward (const re_match_context_t *mctx, re_sift_context_t *sctx) | 
|  | { | 
|  | reg_errcode_t err; | 
|  | int null_cnt = 0; | 
|  | Idx str_idx = sctx->last_str_idx; | 
|  | re_node_set cur_dest; | 
|  |  | 
|  | #ifdef DEBUG | 
|  | assert (mctx->state_log != NULL && mctx->state_log[str_idx] != NULL); | 
|  | #endif | 
|  |  | 
|  | /* Build sifted state_log[str_idx].  It has the nodes which can epsilon | 
|  | transit to the last_node and the last_node itself.  */ | 
|  | err = re_node_set_init_1 (&cur_dest, sctx->last_node); | 
|  | if (BE (err != REG_NOERROR, 0)) | 
|  | return err; | 
|  | err = update_cur_sifted_state (mctx, sctx, str_idx, &cur_dest); | 
|  | if (BE (err != REG_NOERROR, 0)) | 
|  | goto free_return; | 
|  |  | 
|  | /* Then check each states in the state_log.  */ | 
|  | while (str_idx > 0) | 
|  | { | 
|  | /* Update counters.  */ | 
|  | null_cnt = (sctx->sifted_states[str_idx] == NULL) ? null_cnt + 1 : 0; | 
|  | if (null_cnt > mctx->max_mb_elem_len) | 
|  | { | 
|  | memset (sctx->sifted_states, '\0', | 
|  | sizeof (re_dfastate_t *) * str_idx); | 
|  | re_node_set_free (&cur_dest); | 
|  | return REG_NOERROR; | 
|  | } | 
|  | re_node_set_empty (&cur_dest); | 
|  | --str_idx; | 
|  |  | 
|  | if (mctx->state_log[str_idx]) | 
|  | { | 
|  | err = build_sifted_states (mctx, sctx, str_idx, &cur_dest); | 
|  | if (BE (err != REG_NOERROR, 0)) | 
|  | goto free_return; | 
|  | } | 
|  |  | 
|  | /* Add all the nodes which satisfy the following conditions: | 
|  | - It can epsilon transit to a node in CUR_DEST. | 
|  | - It is in CUR_SRC. | 
|  | And update state_log.  */ | 
|  | err = update_cur_sifted_state (mctx, sctx, str_idx, &cur_dest); | 
|  | if (BE (err != REG_NOERROR, 0)) | 
|  | goto free_return; | 
|  | } | 
|  | err = REG_NOERROR; | 
|  | free_return: | 
|  | re_node_set_free (&cur_dest); | 
|  | return err; | 
|  | } | 
|  |  | 
|  | static reg_errcode_t | 
|  | internal_function | 
|  | build_sifted_states (const re_match_context_t *mctx, re_sift_context_t *sctx, | 
|  | Idx str_idx, re_node_set *cur_dest) | 
|  | { | 
|  | const re_dfa_t *const dfa = mctx->dfa; | 
|  | const re_node_set *cur_src = &mctx->state_log[str_idx]->non_eps_nodes; | 
|  | Idx i; | 
|  |  | 
|  | /* Then build the next sifted state. | 
|  | We build the next sifted state on `cur_dest', and update | 
|  | `sifted_states[str_idx]' with `cur_dest'. | 
|  | Note: | 
|  | `cur_dest' is the sifted state from `state_log[str_idx + 1]'. | 
|  | `cur_src' points the node_set of the old `state_log[str_idx]' | 
|  | (with the epsilon nodes pre-filtered out).  */ | 
|  | for (i = 0; i < cur_src->nelem; i++) | 
|  | { | 
|  | Idx prev_node = cur_src->elems[i]; | 
|  | int naccepted = 0; | 
|  | bool ok; | 
|  |  | 
|  | #ifdef DEBUG | 
|  | re_token_type_t type = dfa->nodes[prev_node].type; | 
|  | assert (!IS_EPSILON_NODE (type)); | 
|  | #endif | 
|  | #ifdef RE_ENABLE_I18N | 
|  | /* If the node may accept `multi byte'.  */ | 
|  | if (dfa->nodes[prev_node].accept_mb) | 
|  | naccepted = sift_states_iter_mb (mctx, sctx, prev_node, | 
|  | str_idx, sctx->last_str_idx); | 
|  | #endif /* RE_ENABLE_I18N */ | 
|  |  | 
|  | /* We don't check backreferences here. | 
|  | See update_cur_sifted_state().  */ | 
|  | if (!naccepted | 
|  | && check_node_accept (mctx, dfa->nodes + prev_node, str_idx) | 
|  | && STATE_NODE_CONTAINS (sctx->sifted_states[str_idx + 1], | 
|  | dfa->nexts[prev_node])) | 
|  | naccepted = 1; | 
|  |  | 
|  | if (naccepted == 0) | 
|  | continue; | 
|  |  | 
|  | if (sctx->limits.nelem) | 
|  | { | 
|  | Idx to_idx = str_idx + naccepted; | 
|  | if (check_dst_limits (mctx, &sctx->limits, | 
|  | dfa->nexts[prev_node], to_idx, | 
|  | prev_node, str_idx)) | 
|  | continue; | 
|  | } | 
|  | ok = re_node_set_insert (cur_dest, prev_node); | 
|  | if (BE (! ok, 0)) | 
|  | return REG_ESPACE; | 
|  | } | 
|  |  | 
|  | return REG_NOERROR; | 
|  | } | 
|  |  | 
|  | /* Helper functions.  */ | 
|  |  | 
|  | static reg_errcode_t | 
|  | internal_function | 
|  | clean_state_log_if_needed (re_match_context_t *mctx, Idx next_state_log_idx) | 
|  | { | 
|  | Idx top = mctx->state_log_top; | 
|  |  | 
|  | if (next_state_log_idx >= mctx->input.bufs_len | 
|  | || (next_state_log_idx >= mctx->input.valid_len | 
|  | && mctx->input.valid_len < mctx->input.len)) | 
|  | { | 
|  | reg_errcode_t err; | 
|  | err = extend_buffers (mctx); | 
|  | if (BE (err != REG_NOERROR, 0)) | 
|  | return err; | 
|  | } | 
|  |  | 
|  | if (top < next_state_log_idx) | 
|  | { | 
|  | memset (mctx->state_log + top + 1, '\0', | 
|  | sizeof (re_dfastate_t *) * (next_state_log_idx - top)); | 
|  | mctx->state_log_top = next_state_log_idx; | 
|  | } | 
|  | return REG_NOERROR; | 
|  | } | 
|  |  | 
|  | static reg_errcode_t | 
|  | internal_function | 
|  | merge_state_array (const re_dfa_t *dfa, re_dfastate_t **dst, | 
|  | re_dfastate_t **src, Idx num) | 
|  | { | 
|  | Idx st_idx; | 
|  | reg_errcode_t err; | 
|  | for (st_idx = 0; st_idx < num; ++st_idx) | 
|  | { | 
|  | if (dst[st_idx] == NULL) | 
|  | dst[st_idx] = src[st_idx]; | 
|  | else if (src[st_idx] != NULL) | 
|  | { | 
|  | re_node_set merged_set; | 
|  | err = re_node_set_init_union (&merged_set, &dst[st_idx]->nodes, | 
|  | &src[st_idx]->nodes); | 
|  | if (BE (err != REG_NOERROR, 0)) | 
|  | return err; | 
|  | dst[st_idx] = re_acquire_state (&err, dfa, &merged_set); | 
|  | re_node_set_free (&merged_set); | 
|  | if (BE (err != REG_NOERROR, 0)) | 
|  | return err; | 
|  | } | 
|  | } | 
|  | return REG_NOERROR; | 
|  | } | 
|  |  | 
|  | static reg_errcode_t | 
|  | internal_function | 
|  | update_cur_sifted_state (const re_match_context_t *mctx, | 
|  | re_sift_context_t *sctx, Idx str_idx, | 
|  | re_node_set *dest_nodes) | 
|  | { | 
|  | const re_dfa_t *const dfa = mctx->dfa; | 
|  | reg_errcode_t err = REG_NOERROR; | 
|  | const re_node_set *candidates; | 
|  | candidates = ((mctx->state_log[str_idx] == NULL) ? NULL | 
|  | : &mctx->state_log[str_idx]->nodes); | 
|  |  | 
|  | if (dest_nodes->nelem == 0) | 
|  | sctx->sifted_states[str_idx] = NULL; | 
|  | else | 
|  | { | 
|  | if (candidates) | 
|  | { | 
|  | /* At first, add the nodes which can epsilon transit to a node in | 
|  | DEST_NODE.  */ | 
|  | err = add_epsilon_src_nodes (dfa, dest_nodes, candidates); | 
|  | if (BE (err != REG_NOERROR, 0)) | 
|  | return err; | 
|  |  | 
|  | /* Then, check the limitations in the current sift_context.  */ | 
|  | if (sctx->limits.nelem) | 
|  | { | 
|  | err = check_subexp_limits (dfa, dest_nodes, candidates, &sctx->limits, | 
|  | mctx->bkref_ents, str_idx); | 
|  | if (BE (err != REG_NOERROR, 0)) | 
|  | return err; | 
|  | } | 
|  | } | 
|  |  | 
|  | sctx->sifted_states[str_idx] = re_acquire_state (&err, dfa, dest_nodes); | 
|  | if (BE (err != REG_NOERROR, 0)) | 
|  | return err; | 
|  | } | 
|  |  | 
|  | if (candidates && mctx->state_log[str_idx]->has_backref) | 
|  | { | 
|  | err = sift_states_bkref (mctx, sctx, str_idx, candidates); | 
|  | if (BE (err != REG_NOERROR, 0)) | 
|  | return err; | 
|  | } | 
|  | return REG_NOERROR; | 
|  | } | 
|  |  | 
|  | static reg_errcode_t | 
|  | internal_function | 
|  | add_epsilon_src_nodes (const re_dfa_t *dfa, re_node_set *dest_nodes, | 
|  | const re_node_set *candidates) | 
|  | { | 
|  | reg_errcode_t err = REG_NOERROR; | 
|  | Idx i; | 
|  |  | 
|  | re_dfastate_t *state = re_acquire_state (&err, dfa, dest_nodes); | 
|  | if (BE (err != REG_NOERROR, 0)) | 
|  | return err; | 
|  |  | 
|  | if (!state->inveclosure.alloc) | 
|  | { | 
|  | err = re_node_set_alloc (&state->inveclosure, dest_nodes->nelem); | 
|  | if (BE (err != REG_NOERROR, 0)) | 
|  | return REG_ESPACE; | 
|  | for (i = 0; i < dest_nodes->nelem; i++) | 
|  | re_node_set_merge (&state->inveclosure, | 
|  | dfa->inveclosures + dest_nodes->elems[i]); | 
|  | } | 
|  | return re_node_set_add_intersect (dest_nodes, candidates, | 
|  | &state->inveclosure); | 
|  | } | 
|  |  | 
|  | static reg_errcode_t | 
|  | internal_function | 
|  | sub_epsilon_src_nodes (const re_dfa_t *dfa, Idx node, re_node_set *dest_nodes, | 
|  | const re_node_set *candidates) | 
|  | { | 
|  | Idx ecl_idx; | 
|  | reg_errcode_t err; | 
|  | re_node_set *inv_eclosure = dfa->inveclosures + node; | 
|  | re_node_set except_nodes; | 
|  | re_node_set_init_empty (&except_nodes); | 
|  | for (ecl_idx = 0; ecl_idx < inv_eclosure->nelem; ++ecl_idx) | 
|  | { | 
|  | Idx cur_node = inv_eclosure->elems[ecl_idx]; | 
|  | if (cur_node == node) | 
|  | continue; | 
|  | if (IS_EPSILON_NODE (dfa->nodes[cur_node].type)) | 
|  | { | 
|  | Idx edst1 = dfa->edests[cur_node].elems[0]; | 
|  | Idx edst2 = ((dfa->edests[cur_node].nelem > 1) | 
|  | ? dfa->edests[cur_node].elems[1] : REG_MISSING); | 
|  | if ((!re_node_set_contains (inv_eclosure, edst1) | 
|  | && re_node_set_contains (dest_nodes, edst1)) | 
|  | || (REG_VALID_NONZERO_INDEX (edst2) | 
|  | && !re_node_set_contains (inv_eclosure, edst2) | 
|  | && re_node_set_contains (dest_nodes, edst2))) | 
|  | { | 
|  | err = re_node_set_add_intersect (&except_nodes, candidates, | 
|  | dfa->inveclosures + cur_node); | 
|  | if (BE (err != REG_NOERROR, 0)) | 
|  | { | 
|  | re_node_set_free (&except_nodes); | 
|  | return err; | 
|  | } | 
|  | } | 
|  | } | 
|  | } | 
|  | for (ecl_idx = 0; ecl_idx < inv_eclosure->nelem; ++ecl_idx) | 
|  | { | 
|  | Idx cur_node = inv_eclosure->elems[ecl_idx]; | 
|  | if (!re_node_set_contains (&except_nodes, cur_node)) | 
|  | { | 
|  | Idx idx = re_node_set_contains (dest_nodes, cur_node) - 1; | 
|  | re_node_set_remove_at (dest_nodes, idx); | 
|  | } | 
|  | } | 
|  | re_node_set_free (&except_nodes); | 
|  | return REG_NOERROR; | 
|  | } | 
|  |  | 
|  | static bool | 
|  | internal_function | 
|  | check_dst_limits (const re_match_context_t *mctx, const re_node_set *limits, | 
|  | Idx dst_node, Idx dst_idx, Idx src_node, Idx src_idx) | 
|  | { | 
|  | const re_dfa_t *const dfa = mctx->dfa; | 
|  | Idx lim_idx, src_pos, dst_pos; | 
|  |  | 
|  | Idx dst_bkref_idx = search_cur_bkref_entry (mctx, dst_idx); | 
|  | Idx src_bkref_idx = search_cur_bkref_entry (mctx, src_idx); | 
|  | for (lim_idx = 0; lim_idx < limits->nelem; ++lim_idx) | 
|  | { | 
|  | Idx subexp_idx; | 
|  | struct re_backref_cache_entry *ent; | 
|  | ent = mctx->bkref_ents + limits->elems[lim_idx]; | 
|  | subexp_idx = dfa->nodes[ent->node].opr.idx; | 
|  |  | 
|  | dst_pos = check_dst_limits_calc_pos (mctx, limits->elems[lim_idx], | 
|  | subexp_idx, dst_node, dst_idx, | 
|  | dst_bkref_idx); | 
|  | src_pos = check_dst_limits_calc_pos (mctx, limits->elems[lim_idx], | 
|  | subexp_idx, src_node, src_idx, | 
|  | src_bkref_idx); | 
|  |  | 
|  | /* In case of: | 
|  | <src> <dst> ( <subexp> ) | 
|  | ( <subexp> ) <src> <dst> | 
|  | ( <subexp1> <src> <subexp2> <dst> <subexp3> )  */ | 
|  | if (src_pos == dst_pos) | 
|  | continue; /* This is unrelated limitation.  */ | 
|  | else | 
|  | return true; | 
|  | } | 
|  | return false; | 
|  | } | 
|  |  | 
|  | static int | 
|  | internal_function | 
|  | check_dst_limits_calc_pos_1 (const re_match_context_t *mctx, int boundaries, | 
|  | Idx subexp_idx, Idx from_node, Idx bkref_idx) | 
|  | { | 
|  | const re_dfa_t *const dfa = mctx->dfa; | 
|  | const re_node_set *eclosures = dfa->eclosures + from_node; | 
|  | Idx node_idx; | 
|  |  | 
|  | /* Else, we are on the boundary: examine the nodes on the epsilon | 
|  | closure.  */ | 
|  | for (node_idx = 0; node_idx < eclosures->nelem; ++node_idx) | 
|  | { | 
|  | Idx node = eclosures->elems[node_idx]; | 
|  | switch (dfa->nodes[node].type) | 
|  | { | 
|  | case OP_BACK_REF: | 
|  | if (bkref_idx != REG_MISSING) | 
|  | { | 
|  | struct re_backref_cache_entry *ent = mctx->bkref_ents + bkref_idx; | 
|  | do | 
|  | { | 
|  | Idx dst; | 
|  | int cpos; | 
|  |  | 
|  | if (ent->node != node) | 
|  | continue; | 
|  |  | 
|  | if (subexp_idx < BITSET_WORD_BITS | 
|  | && !(ent->eps_reachable_subexps_map | 
|  | & ((bitset_word_t) 1 << subexp_idx))) | 
|  | continue; | 
|  |  | 
|  | /* Recurse trying to reach the OP_OPEN_SUBEXP and | 
|  | OP_CLOSE_SUBEXP cases below.  But, if the | 
|  | destination node is the same node as the source | 
|  | node, don't recurse because it would cause an | 
|  | infinite loop: a regex that exhibits this behavior | 
|  | is ()\1*\1*  */ | 
|  | dst = dfa->edests[node].elems[0]; | 
|  | if (dst == from_node) | 
|  | { | 
|  | if (boundaries & 1) | 
|  | return -1; | 
|  | else /* if (boundaries & 2) */ | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | cpos = | 
|  | check_dst_limits_calc_pos_1 (mctx, boundaries, subexp_idx, | 
|  | dst, bkref_idx); | 
|  | if (cpos == -1 /* && (boundaries & 1) */) | 
|  | return -1; | 
|  | if (cpos == 0 && (boundaries & 2)) | 
|  | return 0; | 
|  |  | 
|  | if (subexp_idx < BITSET_WORD_BITS) | 
|  | ent->eps_reachable_subexps_map | 
|  | &= ~((bitset_word_t) 1 << subexp_idx); | 
|  | } | 
|  | while (ent++->more); | 
|  | } | 
|  | break; | 
|  |  | 
|  | case OP_OPEN_SUBEXP: | 
|  | if ((boundaries & 1) && subexp_idx == dfa->nodes[node].opr.idx) | 
|  | return -1; | 
|  | break; | 
|  |  | 
|  | case OP_CLOSE_SUBEXP: | 
|  | if ((boundaries & 2) && subexp_idx == dfa->nodes[node].opr.idx) | 
|  | return 0; | 
|  | break; | 
|  |  | 
|  | default: | 
|  | break; | 
|  | } | 
|  | } | 
|  |  | 
|  | return (boundaries & 2) ? 1 : 0; | 
|  | } | 
|  |  | 
|  | static int | 
|  | internal_function | 
|  | check_dst_limits_calc_pos (const re_match_context_t *mctx, Idx limit, | 
|  | Idx subexp_idx, Idx from_node, Idx str_idx, | 
|  | Idx bkref_idx) | 
|  | { | 
|  | struct re_backref_cache_entry *lim = mctx->bkref_ents + limit; | 
|  | int boundaries; | 
|  |  | 
|  | /* If we are outside the range of the subexpression, return -1 or 1.  */ | 
|  | if (str_idx < lim->subexp_from) | 
|  | return -1; | 
|  |  | 
|  | if (lim->subexp_to < str_idx) | 
|  | return 1; | 
|  |  | 
|  | /* If we are within the subexpression, return 0.  */ | 
|  | boundaries = (str_idx == lim->subexp_from); | 
|  | boundaries |= (str_idx == lim->subexp_to) << 1; | 
|  | if (boundaries == 0) | 
|  | return 0; | 
|  |  | 
|  | /* Else, examine epsilon closure.  */ | 
|  | return check_dst_limits_calc_pos_1 (mctx, boundaries, subexp_idx, | 
|  | from_node, bkref_idx); | 
|  | } | 
|  |  | 
|  | /* Check the limitations of sub expressions LIMITS, and remove the nodes | 
|  | which are against limitations from DEST_NODES. */ | 
|  |  | 
|  | static reg_errcode_t | 
|  | internal_function | 
|  | check_subexp_limits (const re_dfa_t *dfa, re_node_set *dest_nodes, | 
|  | const re_node_set *candidates, re_node_set *limits, | 
|  | struct re_backref_cache_entry *bkref_ents, Idx str_idx) | 
|  | { | 
|  | reg_errcode_t err; | 
|  | Idx node_idx, lim_idx; | 
|  |  | 
|  | for (lim_idx = 0; lim_idx < limits->nelem; ++lim_idx) | 
|  | { | 
|  | Idx subexp_idx; | 
|  | struct re_backref_cache_entry *ent; | 
|  | ent = bkref_ents + limits->elems[lim_idx]; | 
|  |  | 
|  | if (str_idx <= ent->subexp_from || ent->str_idx < str_idx) | 
|  | continue; /* This is unrelated limitation.  */ | 
|  |  | 
|  | subexp_idx = dfa->nodes[ent->node].opr.idx; | 
|  | if (ent->subexp_to == str_idx) | 
|  | { | 
|  | Idx ops_node = REG_MISSING; | 
|  | Idx cls_node = REG_MISSING; | 
|  | for (node_idx = 0; node_idx < dest_nodes->nelem; ++node_idx) | 
|  | { | 
|  | Idx node = dest_nodes->elems[node_idx]; | 
|  | re_token_type_t type = dfa->nodes[node].type; | 
|  | if (type == OP_OPEN_SUBEXP | 
|  | && subexp_idx == dfa->nodes[node].opr.idx) | 
|  | ops_node = node; | 
|  | else if (type == OP_CLOSE_SUBEXP | 
|  | && subexp_idx == dfa->nodes[node].opr.idx) | 
|  | cls_node = node; | 
|  | } | 
|  |  | 
|  | /* Check the limitation of the open subexpression.  */ | 
|  | /* Note that (ent->subexp_to = str_idx != ent->subexp_from).  */ | 
|  | if (REG_VALID_INDEX (ops_node)) | 
|  | { | 
|  | err = sub_epsilon_src_nodes (dfa, ops_node, dest_nodes, | 
|  | candidates); | 
|  | if (BE (err != REG_NOERROR, 0)) | 
|  | return err; | 
|  | } | 
|  |  | 
|  | /* Check the limitation of the close subexpression.  */ | 
|  | if (REG_VALID_INDEX (cls_node)) | 
|  | for (node_idx = 0; node_idx < dest_nodes->nelem; ++node_idx) | 
|  | { | 
|  | Idx node = dest_nodes->elems[node_idx]; | 
|  | if (!re_node_set_contains (dfa->inveclosures + node, | 
|  | cls_node) | 
|  | && !re_node_set_contains (dfa->eclosures + node, | 
|  | cls_node)) | 
|  | { | 
|  | /* It is against this limitation. | 
|  | Remove it form the current sifted state.  */ | 
|  | err = sub_epsilon_src_nodes (dfa, node, dest_nodes, | 
|  | candidates); | 
|  | if (BE (err != REG_NOERROR, 0)) | 
|  | return err; | 
|  | --node_idx; | 
|  | } | 
|  | } | 
|  | } | 
|  | else /* (ent->subexp_to != str_idx)  */ | 
|  | { | 
|  | for (node_idx = 0; node_idx < dest_nodes->nelem; ++node_idx) | 
|  | { | 
|  | Idx node = dest_nodes->elems[node_idx]; | 
|  | re_token_type_t type = dfa->nodes[node].type; | 
|  | if (type == OP_CLOSE_SUBEXP || type == OP_OPEN_SUBEXP) | 
|  | { | 
|  | if (subexp_idx != dfa->nodes[node].opr.idx) | 
|  | continue; | 
|  | /* It is against this limitation. | 
|  | Remove it form the current sifted state.  */ | 
|  | err = sub_epsilon_src_nodes (dfa, node, dest_nodes, | 
|  | candidates); | 
|  | if (BE (err != REG_NOERROR, 0)) | 
|  | return err; | 
|  | } | 
|  | } | 
|  | } | 
|  | } | 
|  | return REG_NOERROR; | 
|  | } | 
|  |  | 
|  | static reg_errcode_t | 
|  | internal_function | 
|  | sift_states_bkref (const re_match_context_t *mctx, re_sift_context_t *sctx, | 
|  | Idx str_idx, const re_node_set *candidates) | 
|  | { | 
|  | const re_dfa_t *const dfa = mctx->dfa; | 
|  | reg_errcode_t err; | 
|  | Idx node_idx, node; | 
|  | re_sift_context_t local_sctx; | 
|  | Idx first_idx = search_cur_bkref_entry (mctx, str_idx); | 
|  |  | 
|  | if (first_idx == REG_MISSING) | 
|  | return REG_NOERROR; | 
|  |  | 
|  | local_sctx.sifted_states = NULL; /* Mark that it hasn't been initialized.  */ | 
|  |  | 
|  | for (node_idx = 0; node_idx < candidates->nelem; ++node_idx) | 
|  | { | 
|  | Idx enabled_idx; | 
|  | re_token_type_t type; | 
|  | struct re_backref_cache_entry *entry; | 
|  | node = candidates->elems[node_idx]; | 
|  | type = dfa->nodes[node].type; | 
|  | /* Avoid infinite loop for the REs like "()\1+".  */ | 
|  | if (node == sctx->last_node && str_idx == sctx->last_str_idx) | 
|  | continue; | 
|  | if (type != OP_BACK_REF) | 
|  | continue; | 
|  |  | 
|  | entry = mctx->bkref_ents + first_idx; | 
|  | enabled_idx = first_idx; | 
|  | do | 
|  | { | 
|  | Idx subexp_len; | 
|  | Idx to_idx; | 
|  | Idx dst_node; | 
|  | bool ok; | 
|  | re_dfastate_t *cur_state; | 
|  |  | 
|  | if (entry->node != node) | 
|  | continue; | 
|  | subexp_len = entry->subexp_to - entry->subexp_from; | 
|  | to_idx = str_idx + subexp_len; | 
|  | dst_node = (subexp_len ? dfa->nexts[node] | 
|  | : dfa->edests[node].elems[0]); | 
|  |  | 
|  | if (to_idx > sctx->last_str_idx | 
|  | || sctx->sifted_states[to_idx] == NULL | 
|  | || !STATE_NODE_CONTAINS (sctx->sifted_states[to_idx], dst_node) | 
|  | || check_dst_limits (mctx, &sctx->limits, node, | 
|  | str_idx, dst_node, to_idx)) | 
|  | continue; | 
|  |  | 
|  | if (local_sctx.sifted_states == NULL) | 
|  | { | 
|  | local_sctx = *sctx; | 
|  | err = re_node_set_init_copy (&local_sctx.limits, &sctx->limits); | 
|  | if (BE (err != REG_NOERROR, 0)) | 
|  | goto free_return; | 
|  | } | 
|  | local_sctx.last_node = node; | 
|  | local_sctx.last_str_idx = str_idx; | 
|  | ok = re_node_set_insert (&local_sctx.limits, enabled_idx); | 
|  | if (BE (! ok, 0)) | 
|  | { | 
|  | err = REG_ESPACE; | 
|  | goto free_return; | 
|  | } | 
|  | cur_state = local_sctx.sifted_states[str_idx]; | 
|  | err = sift_states_backward (mctx, &local_sctx); | 
|  | if (BE (err != REG_NOERROR, 0)) | 
|  | goto free_return; | 
|  | if (sctx->limited_states != NULL) | 
|  | { | 
|  | err = merge_state_array (dfa, sctx->limited_states, | 
|  | local_sctx.sifted_states, | 
|  | str_idx + 1); | 
|  | if (BE (err != REG_NOERROR, 0)) | 
|  | goto free_return; | 
|  | } | 
|  | local_sctx.sifted_states[str_idx] = cur_state; | 
|  | re_node_set_remove (&local_sctx.limits, enabled_idx); | 
|  |  | 
|  | /* mctx->bkref_ents may have changed, reload the pointer.  */ | 
|  | entry = mctx->bkref_ents + enabled_idx; | 
|  | } | 
|  | while (enabled_idx++, entry++->more); | 
|  | } | 
|  | err = REG_NOERROR; | 
|  | free_return: | 
|  | if (local_sctx.sifted_states != NULL) | 
|  | { | 
|  | re_node_set_free (&local_sctx.limits); | 
|  | } | 
|  |  | 
|  | return err; | 
|  | } | 
|  |  | 
|  |  | 
|  | #ifdef RE_ENABLE_I18N | 
|  | static int | 
|  | internal_function | 
|  | sift_states_iter_mb (const re_match_context_t *mctx, re_sift_context_t *sctx, | 
|  | Idx node_idx, Idx str_idx, Idx max_str_idx) | 
|  | { | 
|  | const re_dfa_t *const dfa = mctx->dfa; | 
|  | int naccepted; | 
|  | /* Check the node can accept `multi byte'.  */ | 
|  | naccepted = check_node_accept_bytes (dfa, node_idx, &mctx->input, str_idx); | 
|  | if (naccepted > 0 && str_idx + naccepted <= max_str_idx && | 
|  | !STATE_NODE_CONTAINS (sctx->sifted_states[str_idx + naccepted], | 
|  | dfa->nexts[node_idx])) | 
|  | /* The node can't accept the `multi byte', or the | 
|  | destination was already thrown away, then the node | 
|  | could't accept the current input `multi byte'.   */ | 
|  | naccepted = 0; | 
|  | /* Otherwise, it is sure that the node could accept | 
|  | `naccepted' bytes input.  */ | 
|  | return naccepted; | 
|  | } | 
|  | #endif /* RE_ENABLE_I18N */ | 
|  |  | 
|  |  | 
|  | /* Functions for state transition.  */ | 
|  |  | 
|  | /* Return the next state to which the current state STATE will transit by | 
|  | accepting the current input byte, and update STATE_LOG if necessary. | 
|  | If STATE can accept a multibyte char/collating element/back reference | 
|  | update the destination of STATE_LOG.  */ | 
|  |  | 
|  | static re_dfastate_t * | 
|  | internal_function | 
|  | transit_state (reg_errcode_t *err, re_match_context_t *mctx, | 
|  | re_dfastate_t *state) | 
|  | { | 
|  | re_dfastate_t **trtable; | 
|  | unsigned char ch; | 
|  |  | 
|  | #ifdef RE_ENABLE_I18N | 
|  | /* If the current state can accept multibyte.  */ | 
|  | if (BE (state->accept_mb, 0)) | 
|  | { | 
|  | *err = transit_state_mb (mctx, state); | 
|  | if (BE (*err != REG_NOERROR, 0)) | 
|  | return NULL; | 
|  | } | 
|  | #endif /* RE_ENABLE_I18N */ | 
|  |  | 
|  | /* Then decide the next state with the single byte.  */ | 
|  | #if 0 | 
|  | if (0) | 
|  | /* don't use transition table  */ | 
|  | return transit_state_sb (err, mctx, state); | 
|  | #endif | 
|  |  | 
|  | /* Use transition table  */ | 
|  | ch = re_string_fetch_byte (&mctx->input); | 
|  | for (;;) | 
|  | { | 
|  | trtable = state->trtable; | 
|  | if (BE (trtable != NULL, 1)) | 
|  | return trtable[ch]; | 
|  |  | 
|  | trtable = state->word_trtable; | 
|  | if (BE (trtable != NULL, 1)) | 
|  | { | 
|  | unsigned int context; | 
|  | context | 
|  | = re_string_context_at (&mctx->input, | 
|  | re_string_cur_idx (&mctx->input) - 1, | 
|  | mctx->eflags); | 
|  | if (IS_WORD_CONTEXT (context)) | 
|  | return trtable[ch + SBC_MAX]; | 
|  | else | 
|  | return trtable[ch]; | 
|  | } | 
|  |  | 
|  | if (!build_trtable (mctx->dfa, state)) | 
|  | { | 
|  | *err = REG_ESPACE; | 
|  | return NULL; | 
|  | } | 
|  |  | 
|  | /* Retry, we now have a transition table.  */ | 
|  | } | 
|  | } | 
|  |  | 
|  | /* Update the state_log if we need */ | 
|  | static re_dfastate_t * | 
|  | internal_function | 
|  | merge_state_with_log (reg_errcode_t *err, re_match_context_t *mctx, | 
|  | re_dfastate_t *next_state) | 
|  | { | 
|  | const re_dfa_t *const dfa = mctx->dfa; | 
|  | Idx cur_idx = re_string_cur_idx (&mctx->input); | 
|  |  | 
|  | if (cur_idx > mctx->state_log_top) | 
|  | { | 
|  | mctx->state_log[cur_idx] = next_state; | 
|  | mctx->state_log_top = cur_idx; | 
|  | } | 
|  | else if (mctx->state_log[cur_idx] == 0) | 
|  | { | 
|  | mctx->state_log[cur_idx] = next_state; | 
|  | } | 
|  | else | 
|  | { | 
|  | re_dfastate_t *pstate; | 
|  | unsigned int context; | 
|  | re_node_set next_nodes, *log_nodes, *table_nodes = NULL; | 
|  | /* If (state_log[cur_idx] != 0), it implies that cur_idx is | 
|  | the destination of a multibyte char/collating element/ | 
|  | back reference.  Then the next state is the union set of | 
|  | these destinations and the results of the transition table.  */ | 
|  | pstate = mctx->state_log[cur_idx]; | 
|  | log_nodes = pstate->entrance_nodes; | 
|  | if (next_state != NULL) | 
|  | { | 
|  | table_nodes = next_state->entrance_nodes; | 
|  | *err = re_node_set_init_union (&next_nodes, table_nodes, | 
|  | log_nodes); | 
|  | if (BE (*err != REG_NOERROR, 0)) | 
|  | return NULL; | 
|  | } | 
|  | else | 
|  | next_nodes = *log_nodes; | 
|  | /* Note: We already add the nodes of the initial state, | 
|  | then we don't need to add them here.  */ | 
|  |  | 
|  | context = re_string_context_at (&mctx->input, | 
|  | re_string_cur_idx (&mctx->input) - 1, | 
|  | mctx->eflags); | 
|  | next_state = mctx->state_log[cur_idx] | 
|  | = re_acquire_state_context (err, dfa, &next_nodes, context); | 
|  | /* We don't need to check errors here, since the return value of | 
|  | this function is next_state and ERR is already set.  */ | 
|  |  | 
|  | if (table_nodes != NULL) | 
|  | re_node_set_free (&next_nodes); | 
|  | } | 
|  |  | 
|  | if (BE (dfa->nbackref, 0) && next_state != NULL) | 
|  | { | 
|  | /* Check OP_OPEN_SUBEXP in the current state in case that we use them | 
|  | later.  We must check them here, since the back references in the | 
|  | next state might use them.  */ | 
|  | *err = check_subexp_matching_top (mctx, &next_state->nodes, | 
|  | cur_idx); | 
|  | if (BE (*err != REG_NOERROR, 0)) | 
|  | return NULL; | 
|  |  | 
|  | /* If the next state has back references.  */ | 
|  | if (next_state->has_backref) | 
|  | { | 
|  | *err = transit_state_bkref (mctx, &next_state->nodes); | 
|  | if (BE (*err != REG_NOERROR, 0)) | 
|  | return NULL; | 
|  | next_state = mctx->state_log[cur_idx]; | 
|  | } | 
|  | } | 
|  |  | 
|  | return next_state; | 
|  | } | 
|  |  | 
|  | /* Skip bytes in the input that correspond to part of a | 
|  | multi-byte match, then look in the log for a state | 
|  | from which to restart matching.  */ | 
|  | static re_dfastate_t * | 
|  | internal_function | 
|  | find_recover_state (reg_errcode_t *err, re_match_context_t *mctx) | 
|  | { | 
|  | re_dfastate_t *cur_state; | 
|  | do | 
|  | { | 
|  | Idx max = mctx->state_log_top; | 
|  | Idx cur_str_idx = re_string_cur_idx (&mctx->input); | 
|  |  | 
|  | do | 
|  | { | 
|  | if (++cur_str_idx > max) | 
|  | return NULL; | 
|  | re_string_skip_bytes (&mctx->input, 1); | 
|  | } | 
|  | while (mctx->state_log[cur_str_idx] == NULL); | 
|  |  | 
|  | cur_state = merge_state_with_log (err, mctx, NULL); | 
|  | } | 
|  | while (*err == REG_NOERROR && cur_state == NULL); | 
|  | return cur_state; | 
|  | } | 
|  |  | 
|  | /* Helper functions for transit_state.  */ | 
|  |  | 
|  | /* From the node set CUR_NODES, pick up the nodes whose types are | 
|  | OP_OPEN_SUBEXP and which have corresponding back references in the regular | 
|  | expression. And register them to use them later for evaluating the | 
|  | correspoding back references.  */ | 
|  |  | 
|  | static reg_errcode_t | 
|  | internal_function | 
|  | check_subexp_matching_top (re_match_context_t *mctx, re_node_set *cur_nodes, | 
|  | Idx str_idx) | 
|  | { | 
|  | const re_dfa_t *const dfa = mctx->dfa; | 
|  | Idx node_idx; | 
|  | reg_errcode_t err; | 
|  |  | 
|  | /* TODO: This isn't efficient. | 
|  | Because there might be more than one nodes whose types are | 
|  | OP_OPEN_SUBEXP and whose index is SUBEXP_IDX, we must check all | 
|  | nodes. | 
|  | E.g. RE: (a){2}  */ | 
|  | for (node_idx = 0; node_idx < cur_nodes->nelem; ++node_idx) | 
|  | { | 
|  | Idx node = cur_nodes->elems[node_idx]; | 
|  | if (dfa->nodes[node].type == OP_OPEN_SUBEXP | 
|  | && dfa->nodes[node].opr.idx < BITSET_WORD_BITS | 
|  | && (dfa->used_bkref_map | 
|  | & ((bitset_word_t) 1 << dfa->nodes[node].opr.idx))) | 
|  | { | 
|  | err = match_ctx_add_subtop (mctx, node, str_idx); | 
|  | if (BE (err != REG_NOERROR, 0)) | 
|  | return err; | 
|  | } | 
|  | } | 
|  | return REG_NOERROR; | 
|  | } | 
|  |  | 
|  | #if 0 | 
|  | /* Return the next state to which the current state STATE will transit by | 
|  | accepting the current input byte.  */ | 
|  |  | 
|  | static re_dfastate_t * | 
|  | transit_state_sb (reg_errcode_t *err, re_match_context_t *mctx, | 
|  | re_dfastate_t *state) | 
|  | { | 
|  | const re_dfa_t *const dfa = mctx->dfa; | 
|  | re_node_set next_nodes; | 
|  | re_dfastate_t *next_state; | 
|  | Idx node_cnt, cur_str_idx = re_string_cur_idx (&mctx->input); | 
|  | unsigned int context; | 
|  |  | 
|  | *err = re_node_set_alloc (&next_nodes, state->nodes.nelem + 1); | 
|  | if (BE (*err != REG_NOERROR, 0)) | 
|  | return NULL; | 
|  | for (node_cnt = 0; node_cnt < state->nodes.nelem; ++node_cnt) | 
|  | { | 
|  | Idx cur_node = state->nodes.elems[node_cnt]; | 
|  | if (check_node_accept (mctx, dfa->nodes + cur_node, cur_str_idx)) | 
|  | { | 
|  | *err = re_node_set_merge (&next_nodes, | 
|  | dfa->eclosures + dfa->nexts[cur_node]); | 
|  | if (BE (*err != REG_NOERROR, 0)) | 
|  | { | 
|  | re_node_set_free (&next_nodes); | 
|  | return NULL; | 
|  | } | 
|  | } | 
|  | } | 
|  | context = re_string_context_at (&mctx->input, cur_str_idx, mctx->eflags); | 
|  | next_state = re_acquire_state_context (err, dfa, &next_nodes, context); | 
|  | /* We don't need to check errors here, since the return value of | 
|  | this function is next_state and ERR is already set.  */ | 
|  |  | 
|  | re_node_set_free (&next_nodes); | 
|  | re_string_skip_bytes (&mctx->input, 1); | 
|  | return next_state; | 
|  | } | 
|  | #endif | 
|  |  | 
|  | #ifdef RE_ENABLE_I18N | 
|  | static reg_errcode_t | 
|  | internal_function | 
|  | transit_state_mb (re_match_context_t *mctx, re_dfastate_t *pstate) | 
|  | { | 
|  | const re_dfa_t *const dfa = mctx->dfa; | 
|  | reg_errcode_t err; | 
|  | Idx i; | 
|  |  | 
|  | for (i = 0; i < pstate->nodes.nelem; ++i) | 
|  | { | 
|  | re_node_set dest_nodes, *new_nodes; | 
|  | Idx cur_node_idx = pstate->nodes.elems[i]; | 
|  | int naccepted; | 
|  | Idx dest_idx; | 
|  | unsigned int context; | 
|  | re_dfastate_t *dest_state; | 
|  |  | 
|  | if (!dfa->nodes[cur_node_idx].accept_mb) | 
|  | continue; | 
|  |  | 
|  | if (dfa->nodes[cur_node_idx].constraint) | 
|  | { | 
|  | context = re_string_context_at (&mctx->input, | 
|  | re_string_cur_idx (&mctx->input), | 
|  | mctx->eflags); | 
|  | if (NOT_SATISFY_NEXT_CONSTRAINT (dfa->nodes[cur_node_idx].constraint, | 
|  | context)) | 
|  | continue; | 
|  | } | 
|  |  | 
|  | /* How many bytes the node can accept?  */ | 
|  | naccepted = check_node_accept_bytes (dfa, cur_node_idx, &mctx->input, | 
|  | re_string_cur_idx (&mctx->input)); | 
|  | if (naccepted == 0) | 
|  | continue; | 
|  |  | 
|  | /* The node can accepts `naccepted' bytes.  */ | 
|  | dest_idx = re_string_cur_idx (&mctx->input) + naccepted; | 
|  | mctx->max_mb_elem_len = ((mctx->max_mb_elem_len < naccepted) ? naccepted | 
|  | : mctx->max_mb_elem_len); | 
|  | err = clean_state_log_if_needed (mctx, dest_idx); | 
|  | if (BE (err != REG_NOERROR, 0)) | 
|  | return err; | 
|  | #ifdef DEBUG | 
|  | assert (dfa->nexts[cur_node_idx] != REG_MISSING); | 
|  | #endif | 
|  | new_nodes = dfa->eclosures + dfa->nexts[cur_node_idx]; | 
|  |  | 
|  | dest_state = mctx->state_log[dest_idx]; | 
|  | if (dest_state == NULL) | 
|  | dest_nodes = *new_nodes; | 
|  | else | 
|  | { | 
|  | err = re_node_set_init_union (&dest_nodes, | 
|  | dest_state->entrance_nodes, new_nodes); | 
|  | if (BE (err != REG_NOERROR, 0)) | 
|  | return err; | 
|  | } | 
|  | context = re_string_context_at (&mctx->input, dest_idx - 1, | 
|  | mctx->eflags); | 
|  | mctx->state_log[dest_idx] | 
|  | = re_acquire_state_context (&err, dfa, &dest_nodes, context); | 
|  | if (dest_state != NULL) | 
|  | re_node_set_free (&dest_nodes); | 
|  | if (BE (mctx->state_log[dest_idx] == NULL && err != REG_NOERROR, 0)) | 
|  | return err; | 
|  | } | 
|  | return REG_NOERROR; | 
|  | } | 
|  | #endif /* RE_ENABLE_I18N */ | 
|  |  | 
|  | static reg_errcode_t | 
|  | internal_function | 
|  | transit_state_bkref (re_match_context_t *mctx, const re_node_set *nodes) | 
|  | { | 
|  | const re_dfa_t *const dfa = mctx->dfa; | 
|  | reg_errcode_t err; | 
|  | Idx i; | 
|  | Idx cur_str_idx = re_string_cur_idx (&mctx->input); | 
|  |  | 
|  | for (i = 0; i < nodes->nelem; ++i) | 
|  | { | 
|  | Idx dest_str_idx, prev_nelem, bkc_idx; | 
|  | Idx node_idx = nodes->elems[i]; | 
|  | unsigned int context; | 
|  | const re_token_t *node = dfa->nodes + node_idx; | 
|  | re_node_set *new_dest_nodes; | 
|  |  | 
|  | /* Check whether `node' is a backreference or not.  */ | 
|  | if (node->type != OP_BACK_REF) | 
|  | continue; | 
|  |  | 
|  | if (node->constraint) | 
|  | { | 
|  | context = re_string_context_at (&mctx->input, cur_str_idx, | 
|  | mctx->eflags); | 
|  | if (NOT_SATISFY_NEXT_CONSTRAINT (node->constraint, context)) | 
|  | continue; | 
|  | } | 
|  |  | 
|  | /* `node' is a backreference. | 
|  | Check the substring which the substring matched.  */ | 
|  | bkc_idx = mctx->nbkref_ents; | 
|  | err = get_subexp (mctx, node_idx, cur_str_idx); | 
|  | if (BE (err != REG_NOERROR, 0)) | 
|  | goto free_return; | 
|  |  | 
|  | /* And add the epsilon closures (which is `new_dest_nodes') of | 
|  | the backreference to appropriate state_log.  */ | 
|  | #ifdef DEBUG | 
|  | assert (dfa->nexts[node_idx] != REG_MISSING); | 
|  | #endif | 
|  | for (; bkc_idx < mctx->nbkref_ents; ++bkc_idx) | 
|  | { | 
|  | Idx subexp_len; | 
|  | re_dfastate_t *dest_state; | 
|  | struct re_backref_cache_entry *bkref_ent; | 
|  | bkref_ent = mctx->bkref_ents + bkc_idx; | 
|  | if (bkref_ent->node != node_idx || bkref_ent->str_idx != cur_str_idx) | 
|  | continue; | 
|  | subexp_len = bkref_ent->subexp_to - bkref_ent->subexp_from; | 
|  | new_dest_nodes = (subexp_len == 0 | 
|  | ? dfa->eclosures + dfa->edests[node_idx].elems[0] | 
|  | : dfa->eclosures + dfa->nexts[node_idx]); | 
|  | dest_str_idx = (cur_str_idx + bkref_ent->subexp_to | 
|  | - bkref_ent->subexp_from); | 
|  | context = re_string_context_at (&mctx->input, dest_str_idx - 1, | 
|  | mctx->eflags); | 
|  | dest_state = mctx->state_log[dest_str_idx]; | 
|  | prev_nelem = ((mctx->state_log[cur_str_idx] == NULL) ? 0 | 
|  | : mctx->state_log[cur_str_idx]->nodes.nelem); | 
|  | /* Add `new_dest_node' to state_log.  */ | 
|  | if (dest_state == NULL) | 
|  | { | 
|  | mctx->state_log[dest_str_idx] | 
|  | = re_acquire_state_context (&err, dfa, new_dest_nodes, | 
|  | context); | 
|  | if (BE (mctx->state_log[dest_str_idx] == NULL | 
|  | && err != REG_NOERROR, 0)) | 
|  | goto free_return; | 
|  | } | 
|  | else | 
|  | { | 
|  | re_node_set dest_nodes; | 
|  | err = re_node_set_init_union (&dest_nodes, | 
|  | dest_state->entrance_nodes, | 
|  | new_dest_nodes); | 
|  | if (BE (err != REG_NOERROR, 0)) | 
|  | { | 
|  | re_node_set_free (&dest_nodes); | 
|  | goto free_return; | 
|  | } | 
|  | mctx->state_log[dest_str_idx] | 
|  | = re_acquire_state_context (&err, dfa, &dest_nodes, context); | 
|  | re_node_set_free (&dest_nodes); | 
|  | if (BE (mctx->state_log[dest_str_idx] == NULL | 
|  | && err != REG_NOERROR, 0)) | 
|  | goto free_return; | 
|  | } | 
|  | /* We need to check recursively if the backreference can epsilon | 
|  | transit.  */ | 
|  | if (subexp_len == 0 | 
|  | && mctx->state_log[cur_str_idx]->nodes.nelem > prev_nelem) | 
|  | { | 
|  | err = check_subexp_matching_top (mctx, new_dest_nodes, | 
|  | cur_str_idx); | 
|  | if (BE (err != REG_NOERROR, 0)) | 
|  | goto free_return; | 
|  | err = transit_state_bkref (mctx, new_dest_nodes); | 
|  | if (BE (err != REG_NOERROR, 0)) | 
|  | goto free_return; | 
|  | } | 
|  | } | 
|  | } | 
|  | err = REG_NOERROR; | 
|  | free_return: | 
|  | return err; | 
|  | } | 
|  |  | 
|  | /* Enumerate all the candidates which the backreference BKREF_NODE can match | 
|  | at BKREF_STR_IDX, and register them by match_ctx_add_entry(). | 
|  | Note that we might collect inappropriate candidates here. | 
|  | However, the cost of checking them strictly here is too high, then we | 
|  | delay these checking for prune_impossible_nodes().  */ | 
|  |  | 
|  | static reg_errcode_t | 
|  | internal_function | 
|  | get_subexp (re_match_context_t *mctx, Idx bkref_node, Idx bkref_str_idx) | 
|  | { | 
|  | const re_dfa_t *const dfa = mctx->dfa; | 
|  | Idx subexp_num, sub_top_idx; | 
|  | const char *buf = (const char *) re_string_get_buffer (&mctx->input); | 
|  | /* Return if we have already checked BKREF_NODE at BKREF_STR_IDX.  */ | 
|  | Idx cache_idx = search_cur_bkref_entry (mctx, bkref_str_idx); | 
|  | if (cache_idx != REG_MISSING) | 
|  | { | 
|  | const struct re_backref_cache_entry *entry | 
|  | = mctx->bkref_ents + cache_idx; | 
|  | do | 
|  | if (entry->node == bkref_node) | 
|  | return REG_NOERROR; /* We already checked it.  */ | 
|  | while (entry++->more); | 
|  | } | 
|  |  | 
|  | subexp_num = dfa->nodes[bkref_node].opr.idx; | 
|  |  | 
|  | /* For each sub expression  */ | 
|  | for (sub_top_idx = 0; sub_top_idx < mctx->nsub_tops; ++sub_top_idx) | 
|  | { | 
|  | reg_errcode_t err; | 
|  | re_sub_match_top_t *sub_top = mctx->sub_tops[sub_top_idx]; | 
|  | re_sub_match_last_t *sub_last; | 
|  | Idx sub_last_idx, sl_str, bkref_str_off; | 
|  |  | 
|  | if (dfa->nodes[sub_top->node].opr.idx != subexp_num) | 
|  | continue; /* It isn't related.  */ | 
|  |  | 
|  | sl_str = sub_top->str_idx; | 
|  | bkref_str_off = bkref_str_idx; | 
|  | /* At first, check the last node of sub expressions we already | 
|  | evaluated.  */ | 
|  | for (sub_last_idx = 0; sub_last_idx < sub_top->nlasts; ++sub_last_idx) | 
|  | { | 
|  | regoff_t sl_str_diff; | 
|  | sub_last = sub_top->lasts[sub_last_idx]; | 
|  | sl_str_diff = sub_last->str_idx - sl_str; | 
|  | /* The matched string by the sub expression match with the substring | 
|  | at the back reference?  */ | 
|  | if (sl_str_diff > 0) | 
|  | { | 
|  | if (BE (bkref_str_off + sl_str_diff > mctx->input.valid_len, 0)) | 
|  | { | 
|  | /* Not enough chars for a successful match.  */ | 
|  | if (bkref_str_off + sl_str_diff > mctx->input.len) | 
|  | break; | 
|  |  | 
|  | err = clean_state_log_if_needed (mctx, | 
|  | bkref_str_off | 
|  | + sl_str_diff); | 
|  | if (BE (err != REG_NOERROR, 0)) | 
|  | return err; | 
|  | buf = (const char *) re_string_get_buffer (&mctx->input); | 
|  | } | 
|  | if (memcmp (buf + bkref_str_off, buf + sl_str, sl_str_diff) != 0) | 
|  | /* We don't need to search this sub expression any more.  */ | 
|  | break; | 
|  | } | 
|  | bkref_str_off += sl_str_diff; | 
|  | sl_str += sl_str_diff; | 
|  | err = get_subexp_sub (mctx, sub_top, sub_last, bkref_node, | 
|  | bkref_str_idx); | 
|  |  | 
|  | /* Reload buf, since the preceding call might have reallocated | 
|  | the buffer.  */ | 
|  | buf = (const char *) re_string_get_buffer (&mctx->input); | 
|  |  | 
|  | if (err == REG_NOMATCH) | 
|  | continue; | 
|  | if (BE (err != REG_NOERROR, 0)) | 
|  | return err; | 
|  | } | 
|  |  | 
|  | if (sub_last_idx < sub_top->nlasts) | 
|  | continue; | 
|  | if (sub_last_idx > 0) | 
|  | ++sl_str; | 
|  | /* Then, search for the other last nodes of the sub expression.  */ | 
|  | for (; sl_str <= bkref_str_idx; ++sl_str) | 
|  | { | 
|  | Idx cls_node; | 
|  | regoff_t sl_str_off; | 
|  | const re_node_set *nodes; | 
|  | sl_str_off = sl_str - sub_top->str_idx; | 
|  | /* The matched string by the sub expression match with the substring | 
|  | at the back reference?  */ | 
|  | if (sl_str_off > 0) | 
|  | { | 
|  | if (BE (bkref_str_off >= mctx->input.valid_len, 0)) | 
|  | { | 
|  | /* If we are at the end of the input, we cannot match.  */ | 
|  | if (bkref_str_off >= mctx->input.len) | 
|  | break; | 
|  |  | 
|  | err = extend_buffers (mctx); | 
|  | if (BE (err != REG_NOERROR, 0)) | 
|  | return err; | 
|  |  | 
|  | buf = (const char *) re_string_get_buffer (&mctx->input); | 
|  | } | 
|  | if (buf [bkref_str_off++] != buf[sl_str - 1]) | 
|  | break; /* We don't need to search this sub expression | 
|  | any more.  */ | 
|  | } | 
|  | if (mctx->state_log[sl_str] == NULL) | 
|  | continue; | 
|  | /* Does this state have a ')' of the sub expression?  */ | 
|  | nodes = &mctx->state_log[sl_str]->nodes; | 
|  | cls_node = find_subexp_node (dfa, nodes, subexp_num, | 
|  | OP_CLOSE_SUBEXP); | 
|  | if (cls_node == REG_MISSING) | 
|  | continue; /* No.  */ | 
|  | if (sub_top->path == NULL) | 
|  | { | 
|  | sub_top->path = calloc (sizeof (state_array_t), | 
|  | sl_str - sub_top->str_idx + 1); | 
|  | if (sub_top->path == NULL) | 
|  | return REG_ESPACE; | 
|  | } | 
|  | /* Can the OP_OPEN_SUBEXP node arrive the OP_CLOSE_SUBEXP node | 
|  | in the current context?  */ | 
|  | err = check_arrival (mctx, sub_top->path, sub_top->node, | 
|  | sub_top->str_idx, cls_node, sl_str, | 
|  | OP_CLOSE_SUBEXP); | 
|  | if (err == REG_NOMATCH) | 
|  | continue; | 
|  | if (BE (err != REG_NOERROR, 0)) | 
|  | return err; | 
|  | sub_last = match_ctx_add_sublast (sub_top, cls_node, sl_str); | 
|  | if (BE (sub_last == NULL, 0)) | 
|  | return REG_ESPACE; | 
|  | err = get_subexp_sub (mctx, sub_top, sub_last, bkref_node, | 
|  | bkref_str_idx); | 
|  | if (err == REG_NOMATCH) | 
|  | continue; | 
|  | } | 
|  | } | 
|  | return REG_NOERROR; | 
|  | } | 
|  |  | 
|  | /* Helper functions for get_subexp().  */ | 
|  |  | 
|  | /* Check SUB_LAST can arrive to the back reference BKREF_NODE at BKREF_STR. | 
|  | If it can arrive, register the sub expression expressed with SUB_TOP | 
|  | and SUB_LAST.  */ | 
|  |  | 
|  | static reg_errcode_t | 
|  | internal_function | 
|  | get_subexp_sub (re_match_context_t *mctx, const re_sub_match_top_t *sub_top, | 
|  | re_sub_match_last_t *sub_last, Idx bkref_node, Idx bkref_str) | 
|  | { | 
|  | reg_errcode_t err; | 
|  | Idx to_idx; | 
|  | /* Can the subexpression arrive the back reference?  */ | 
|  | err = check_arrival (mctx, &sub_last->path, sub_last->node, | 
|  | sub_last->str_idx, bkref_node, bkref_str, | 
|  | OP_OPEN_SUBEXP); | 
|  | if (err != REG_NOERROR) | 
|  | return err; | 
|  | err = match_ctx_add_entry (mctx, bkref_node, bkref_str, sub_top->str_idx, | 
|  | sub_last->str_idx); | 
|  | if (BE (err != REG_NOERROR, 0)) | 
|  | return err; | 
|  | to_idx = bkref_str + sub_last->str_idx - sub_top->str_idx; | 
|  | return clean_state_log_if_needed (mctx, to_idx); | 
|  | } | 
|  |  | 
|  | /* Find the first node which is '(' or ')' and whose index is SUBEXP_IDX. | 
|  | Search '(' if FL_OPEN, or search ')' otherwise. | 
|  | TODO: This function isn't efficient... | 
|  | Because there might be more than one nodes whose types are | 
|  | OP_OPEN_SUBEXP and whose index is SUBEXP_IDX, we must check all | 
|  | nodes. | 
|  | E.g. RE: (a){2}  */ | 
|  |  | 
|  | static Idx | 
|  | internal_function | 
|  | find_subexp_node (const re_dfa_t *dfa, const re_node_set *nodes, | 
|  | Idx subexp_idx, int type) | 
|  | { | 
|  | Idx cls_idx; | 
|  | for (cls_idx = 0; cls_idx < nodes->nelem; ++cls_idx) | 
|  | { | 
|  | Idx cls_node = nodes->elems[cls_idx]; | 
|  | const re_token_t *node = dfa->nodes + cls_node; | 
|  | if (node->type == type | 
|  | && node->opr.idx == subexp_idx) | 
|  | return cls_node; | 
|  | } | 
|  | return REG_MISSING; | 
|  | } | 
|  |  | 
|  | /* Check whether the node TOP_NODE at TOP_STR can arrive to the node | 
|  | LAST_NODE at LAST_STR.  We record the path onto PATH since it will be | 
|  | heavily reused. | 
|  | Return REG_NOERROR if it can arrive, or REG_NOMATCH otherwise.  */ | 
|  |  | 
|  | static reg_errcode_t | 
|  | internal_function | 
|  | check_arrival (re_match_context_t *mctx, state_array_t *path, Idx top_node, | 
|  | Idx top_str, Idx last_node, Idx last_str, int type) | 
|  | { | 
|  | const re_dfa_t *const dfa = mctx->dfa; | 
|  | reg_errcode_t err = REG_NOERROR; | 
|  | Idx subexp_num, backup_cur_idx, str_idx, null_cnt; | 
|  | re_dfastate_t *cur_state = NULL; | 
|  | re_node_set *cur_nodes, next_nodes; | 
|  | re_dfastate_t **backup_state_log; | 
|  | unsigned int context; | 
|  |  | 
|  | subexp_num = dfa->nodes[top_node].opr.idx; | 
|  | /* Extend the buffer if we need.  */ | 
|  | if (BE (path->alloc < last_str + mctx->max_mb_elem_len + 1, 0)) | 
|  | { | 
|  | re_dfastate_t **new_array; | 
|  | Idx old_alloc = path->alloc; | 
|  | Idx new_alloc = old_alloc + last_str + mctx->max_mb_elem_len + 1; | 
|  | if (BE (new_alloc < old_alloc, 0) | 
|  | || BE (SIZE_MAX / sizeof (re_dfastate_t *) < new_alloc, 0)) | 
|  | return REG_ESPACE; | 
|  | new_array = re_realloc (path->array, re_dfastate_t *, new_alloc); | 
|  | if (BE (new_array == NULL, 0)) | 
|  | return REG_ESPACE; | 
|  | path->array = new_array; | 
|  | path->alloc = new_alloc; | 
|  | memset (new_array + old_alloc, '\0', | 
|  | sizeof (re_dfastate_t *) * (path->alloc - old_alloc)); | 
|  | } | 
|  |  | 
|  | str_idx = path->next_idx ? path->next_idx : top_str; | 
|  |  | 
|  | /* Temporary modify MCTX.  */ | 
|  | backup_state_log = mctx->state_log; | 
|  | backup_cur_idx = mctx->input.cur_idx; | 
|  | mctx->state_log = path->array; | 
|  | mctx->input.cur_idx = str_idx; | 
|  |  | 
|  | /* Setup initial node set.  */ | 
|  | context = re_string_context_at (&mctx->input, str_idx - 1, mctx->eflags); | 
|  | if (str_idx == top_str) | 
|  | { | 
|  | err = re_node_set_init_1 (&next_nodes, top_node); | 
|  | if (BE (err != REG_NOERROR, 0)) | 
|  | return err; | 
|  | err = check_arrival_expand_ecl (dfa, &next_nodes, subexp_num, type); | 
|  | if (BE (err != REG_NOERROR, 0)) | 
|  | { | 
|  | re_node_set_free (&next_nodes); | 
|  | return err; | 
|  | } | 
|  | } | 
|  | else | 
|  | { | 
|  | cur_state = mctx->state_log[str_idx]; | 
|  | if (cur_state && cur_state->has_backref) | 
|  | { | 
|  | err = re_node_set_init_copy (&next_nodes, &cur_state->nodes); | 
|  | if (BE (err != REG_NOERROR, 0)) | 
|  | return err; | 
|  | } | 
|  | else | 
|  | re_node_set_init_empty (&next_nodes); | 
|  | } | 
|  | if (str_idx == top_str || (cur_state && cur_state->has_backref)) | 
|  | { | 
|  | if (next_nodes.nelem) | 
|  | { | 
|  | err = expand_bkref_cache (mctx, &next_nodes, str_idx, | 
|  | subexp_num, type); | 
|  | if (BE (err != REG_NOERROR, 0)) | 
|  | { | 
|  | re_node_set_free (&next_nodes); | 
|  | return err; | 
|  | } | 
|  | } | 
|  | cur_state = re_acquire_state_context (&err, dfa, &next_nodes, context); | 
|  | if (BE (cur_state == NULL && err != REG_NOERROR, 0)) | 
|  | { | 
|  | re_node_set_free (&next_nodes); | 
|  | return err; | 
|  | } | 
|  | mctx->state_log[str_idx] = cur_state; | 
|  | } | 
|  |  | 
|  | for (null_cnt = 0; str_idx < last_str && null_cnt <= mctx->max_mb_elem_len;) | 
|  | { | 
|  | re_node_set_empty (&next_nodes); | 
|  | if (mctx->state_log[str_idx + 1]) | 
|  | { | 
|  | err = re_node_set_merge (&next_nodes, | 
|  | &mctx->state_log[str_idx + 1]->nodes); | 
|  | if (BE (err != REG_NOERROR, 0)) | 
|  | { | 
|  | re_node_set_free (&next_nodes); | 
|  | return err; | 
|  | } | 
|  | } | 
|  | if (cur_state) | 
|  | { | 
|  | err = check_arrival_add_next_nodes (mctx, str_idx, | 
|  | &cur_state->non_eps_nodes, | 
|  | &next_nodes); | 
|  | if (BE (err != REG_NOERROR, 0)) | 
|  | { | 
|  | re_node_set_free (&next_nodes); | 
|  | return err; | 
|  | } | 
|  | } | 
|  | ++str_idx; | 
|  | if (next_nodes.nelem) | 
|  | { | 
|  | err = check_arrival_expand_ecl (dfa, &next_nodes, subexp_num, type); | 
|  | if (BE (err != REG_NOERROR, 0)) | 
|  | { | 
|  | re_node_set_free (&next_nodes); | 
|  | return err; | 
|  | } | 
|  | err = expand_bkref_cache (mctx, &next_nodes, str_idx, | 
|  | subexp_num, type); | 
|  | if (BE (err != REG_NOERROR, 0)) | 
|  | { | 
|  | re_node_set_free (&next_nodes); | 
|  | return err; | 
|  | } | 
|  | } | 
|  | context = re_string_context_at (&mctx->input, str_idx - 1, mctx->eflags); | 
|  | cur_state = re_acquire_state_context (&err, dfa, &next_nodes, context); | 
|  | if (BE (cur_state == NULL && err != REG_NOERROR, 0)) | 
|  | { | 
|  | re_node_set_free (&next_nodes); | 
|  | return err; | 
|  | } | 
|  | mctx->state_log[str_idx] = cur_state; | 
|  | null_cnt = cur_state == NULL ? null_cnt + 1 : 0; | 
|  | } | 
|  | re_node_set_free (&next_nodes); | 
|  | cur_nodes = (mctx->state_log[last_str] == NULL ? NULL | 
|  | : &mctx->state_log[last_str]->nodes); | 
|  | path->next_idx = str_idx; | 
|  |  | 
|  | /* Fix MCTX.  */ | 
|  | mctx->state_log = backup_state_log; | 
|  | mctx->input.cur_idx = backup_cur_idx; | 
|  |  | 
|  | /* Then check the current node set has the node LAST_NODE.  */ | 
|  | if (cur_nodes != NULL && re_node_set_contains (cur_nodes, last_node)) | 
|  | return REG_NOERROR; | 
|  |  | 
|  | return REG_NOMATCH; | 
|  | } | 
|  |  | 
|  | /* Helper functions for check_arrival.  */ | 
|  |  | 
|  | /* Calculate the destination nodes of CUR_NODES at STR_IDX, and append them | 
|  | to NEXT_NODES. | 
|  | TODO: This function is similar to the functions transit_state*(), | 
|  | however this function has many additional works. | 
|  | Can't we unify them?  */ | 
|  |  | 
|  | static reg_errcode_t | 
|  | internal_function | 
|  | check_arrival_add_next_nodes (re_match_context_t *mctx, Idx str_idx, | 
|  | re_node_set *cur_nodes, re_node_set *next_nodes) | 
|  | { | 
|  | const re_dfa_t *const dfa = mctx->dfa; | 
|  | bool ok; | 
|  | Idx cur_idx; | 
|  | reg_errcode_t err = REG_NOERROR; | 
|  | re_node_set union_set; | 
|  | re_node_set_init_empty (&union_set); | 
|  | for (cur_idx = 0; cur_idx < cur_nodes->nelem; ++cur_idx) | 
|  | { | 
|  | int naccepted = 0; | 
|  | Idx cur_node = cur_nodes->elems[cur_idx]; | 
|  | #ifdef DEBUG | 
|  | re_token_type_t type = dfa->nodes[cur_node].type; | 
|  | assert (!IS_EPSILON_NODE (type)); | 
|  | #endif | 
|  | #ifdef RE_ENABLE_I18N | 
|  | /* If the node may accept `multi byte'.  */ | 
|  | if (dfa->nodes[cur_node].accept_mb) | 
|  | { | 
|  | naccepted = check_node_accept_bytes (dfa, cur_node, &mctx->input, | 
|  | str_idx); | 
|  | if (naccepted > 1) | 
|  | { | 
|  | re_dfastate_t *dest_state; | 
|  | Idx next_node = dfa->nexts[cur_node]; | 
|  | Idx next_idx = str_idx + naccepted; | 
|  | dest_state = mctx->state_log[next_idx]; | 
|  | re_node_set_empty (&union_set); | 
|  | if (dest_state) | 
|  | { | 
|  | err = re_node_set_merge (&union_set, &dest_state->nodes); | 
|  | if (BE (err != REG_NOERROR, 0)) | 
|  | { | 
|  | re_node_set_free (&union_set); | 
|  | return err; | 
|  | } | 
|  | } | 
|  | ok = re_node_set_insert (&union_set, next_node); | 
|  | if (BE (! ok, 0)) | 
|  | { | 
|  | re_node_set_free (&union_set); | 
|  | return REG_ESPACE; | 
|  | } | 
|  | mctx->state_log[next_idx] = re_acquire_state (&err, dfa, | 
|  | &union_set); | 
|  | if (BE (mctx->state_log[next_idx] == NULL | 
|  | && err != REG_NOERROR, 0)) | 
|  | { | 
|  | re_node_set_free (&union_set); | 
|  | return err; | 
|  | } | 
|  | } | 
|  | } | 
|  | #endif /* RE_ENABLE_I18N */ | 
|  | if (naccepted | 
|  | || check_node_accept (mctx, dfa->nodes + cur_node, str_idx)) | 
|  | { | 
|  | ok = re_node_set_insert (next_nodes, dfa->nexts[cur_node]); | 
|  | if (BE (! ok, 0)) | 
|  | { | 
|  | re_node_set_free (&union_set); | 
|  | return REG_ESPACE; | 
|  | } | 
|  | } | 
|  | } | 
|  | re_node_set_free (&union_set); | 
|  | return REG_NOERROR; | 
|  | } | 
|  |  | 
|  | /* For all the nodes in CUR_NODES, add the epsilon closures of them to | 
|  | CUR_NODES, however exclude the nodes which are: | 
|  | - inside the sub expression whose number is EX_SUBEXP, if FL_OPEN. | 
|  | - out of the sub expression whose number is EX_SUBEXP, if !FL_OPEN. | 
|  | */ | 
|  |  | 
|  | static reg_errcode_t | 
|  | internal_function | 
|  | check_arrival_expand_ecl (const re_dfa_t *dfa, re_node_set *cur_nodes, | 
|  | Idx ex_subexp, int type) | 
|  | { | 
|  | reg_errcode_t err; | 
|  | Idx idx, outside_node; | 
|  | re_node_set new_nodes; | 
|  | #ifdef DEBUG | 
|  | assert (cur_nodes->nelem); | 
|  | #endif | 
|  | err = re_node_set_alloc (&new_nodes, cur_nodes->nelem); | 
|  | if (BE (err != REG_NOERROR, 0)) | 
|  | return err; | 
|  | /* Create a new node set NEW_NODES with the nodes which are epsilon | 
|  | closures of the node in CUR_NODES.  */ | 
|  |  | 
|  | for (idx = 0; idx < cur_nodes->nelem; ++idx) | 
|  | { | 
|  | Idx cur_node = cur_nodes->elems[idx]; | 
|  | const re_node_set *eclosure = dfa->eclosures + cur_node; | 
|  | outside_node = find_subexp_node (dfa, eclosure, ex_subexp, type); | 
|  | if (outside_node == REG_MISSING) | 
|  | { | 
|  | /* There are no problematic nodes, just merge them.  */ | 
|  | err = re_node_set_merge (&new_nodes, eclosure); | 
|  | if (BE (err != REG_NOERROR, 0)) | 
|  | { | 
|  | re_node_set_free (&new_nodes); | 
|  | return err; | 
|  | } | 
|  | } | 
|  | else | 
|  | { | 
|  | /* There are problematic nodes, re-calculate incrementally.  */ | 
|  | err = check_arrival_expand_ecl_sub (dfa, &new_nodes, cur_node, | 
|  | ex_subexp, type); | 
|  | if (BE (err != REG_NOERROR, 0)) | 
|  | { | 
|  | re_node_set_free (&new_nodes); | 
|  | return err; | 
|  | } | 
|  | } | 
|  | } | 
|  | re_node_set_free (cur_nodes); | 
|  | *cur_nodes = new_nodes; | 
|  | return REG_NOERROR; | 
|  | } | 
|  |  | 
|  | /* Helper function for check_arrival_expand_ecl. | 
|  | Check incrementally the epsilon closure of TARGET, and if it isn't | 
|  | problematic append it to DST_NODES.  */ | 
|  |  | 
|  | static reg_errcode_t | 
|  | internal_function | 
|  | check_arrival_expand_ecl_sub (const re_dfa_t *dfa, re_node_set *dst_nodes, | 
|  | Idx target, Idx ex_subexp, int type) | 
|  | { | 
|  | Idx cur_node; | 
|  | for (cur_node = target; !re_node_set_contains (dst_nodes, cur_node);) | 
|  | { | 
|  | bool ok; | 
|  |  | 
|  | if (dfa->nodes[cur_node].type == type | 
|  | && dfa->nodes[cur_node].opr.idx == ex_subexp) | 
|  | { | 
|  | if (type == OP_CLOSE_SUBEXP) | 
|  | { | 
|  | ok = re_node_set_insert (dst_nodes, cur_node); | 
|  | if (BE (! ok, 0)) | 
|  | return REG_ESPACE; | 
|  | } | 
|  | break; | 
|  | } | 
|  | ok = re_node_set_insert (dst_nodes, cur_node); | 
|  | if (BE (! ok, 0)) | 
|  | return REG_ESPACE; | 
|  | if (dfa->edests[cur_node].nelem == 0) | 
|  | break; | 
|  | if (dfa->edests[cur_node].nelem == 2) | 
|  | { | 
|  | reg_errcode_t err; | 
|  | err = check_arrival_expand_ecl_sub (dfa, dst_nodes, | 
|  | dfa->edests[cur_node].elems[1], | 
|  | ex_subexp, type); | 
|  | if (BE (err != REG_NOERROR, 0)) | 
|  | return err; | 
|  | } | 
|  | cur_node = dfa->edests[cur_node].elems[0]; | 
|  | } | 
|  | return REG_NOERROR; | 
|  | } | 
|  |  | 
|  |  | 
|  | /* For all the back references in the current state, calculate the | 
|  | destination of the back references by the appropriate entry | 
|  | in MCTX->BKREF_ENTS.  */ | 
|  |  | 
|  | static reg_errcode_t | 
|  | internal_function | 
|  | expand_bkref_cache (re_match_context_t *mctx, re_node_set *cur_nodes, | 
|  | Idx cur_str, Idx subexp_num, int type) | 
|  | { | 
|  | const re_dfa_t *const dfa = mctx->dfa; | 
|  | reg_errcode_t err; | 
|  | Idx cache_idx_start = search_cur_bkref_entry (mctx, cur_str); | 
|  | struct re_backref_cache_entry *ent; | 
|  |  | 
|  | if (cache_idx_start == REG_MISSING) | 
|  | return REG_NOERROR; | 
|  |  | 
|  | restart: | 
|  | ent = mctx->bkref_ents + cache_idx_start; | 
|  | do | 
|  | { | 
|  | Idx to_idx, next_node; | 
|  |  | 
|  | /* Is this entry ENT is appropriate?  */ | 
|  | if (!re_node_set_contains (cur_nodes, ent->node)) | 
|  | continue; /* No.  */ | 
|  |  | 
|  | to_idx = cur_str + ent->subexp_to - ent->subexp_from; | 
|  | /* Calculate the destination of the back reference, and append it | 
|  | to MCTX->STATE_LOG.  */ | 
|  | if (to_idx == cur_str) | 
|  | { | 
|  | /* The backreference did epsilon transit, we must re-check all the | 
|  | node in the current state.  */ | 
|  | re_node_set new_dests; | 
|  | reg_errcode_t err2, err3; | 
|  | next_node = dfa->edests[ent->node].elems[0]; | 
|  | if (re_node_set_contains (cur_nodes, next_node)) | 
|  | continue; | 
|  | err = re_node_set_init_1 (&new_dests, next_node); | 
|  | err2 = check_arrival_expand_ecl (dfa, &new_dests, subexp_num, type); | 
|  | err3 = re_node_set_merge (cur_nodes, &new_dests); | 
|  | re_node_set_free (&new_dests); | 
|  | if (BE (err != REG_NOERROR || err2 != REG_NOERROR | 
|  | || err3 != REG_NOERROR, 0)) | 
|  | { | 
|  | err = (err != REG_NOERROR ? err | 
|  | : (err2 != REG_NOERROR ? err2 : err3)); | 
|  | return err; | 
|  | } | 
|  | /* TODO: It is still inefficient...  */ | 
|  | goto restart; | 
|  | } | 
|  | else | 
|  | { | 
|  | re_node_set union_set; | 
|  | next_node = dfa->nexts[ent->node]; | 
|  | if (mctx->state_log[to_idx]) | 
|  | { | 
|  | bool ok; | 
|  | if (re_node_set_contains (&mctx->state_log[to_idx]->nodes, | 
|  | next_node)) | 
|  | continue; | 
|  | err = re_node_set_init_copy (&union_set, | 
|  | &mctx->state_log[to_idx]->nodes); | 
|  | ok = re_node_set_insert (&union_set, next_node); | 
|  | if (BE (err != REG_NOERROR || ! ok, 0)) | 
|  | { | 
|  | re_node_set_free (&union_set); | 
|  | err = err != REG_NOERROR ? err : REG_ESPACE; | 
|  | return err; | 
|  | } | 
|  | } | 
|  | else | 
|  | { | 
|  | err = re_node_set_init_1 (&union_set, next_node); | 
|  | if (BE (err != REG_NOERROR, 0)) | 
|  | return err; | 
|  | } | 
|  | mctx->state_log[to_idx] = re_acquire_state (&err, dfa, &union_set); | 
|  | re_node_set_free (&union_set); | 
|  | if (BE (mctx->state_log[to_idx] == NULL | 
|  | && err != REG_NOERROR, 0)) | 
|  | return err; | 
|  | } | 
|  | } | 
|  | while (ent++->more); | 
|  | return REG_NOERROR; | 
|  | } | 
|  |  | 
|  | /* Build transition table for the state. | 
|  | Return true if successful.  */ | 
|  |  | 
|  | static bool | 
|  | internal_function | 
|  | build_trtable (const re_dfa_t *dfa, re_dfastate_t *state) | 
|  | { | 
|  | reg_errcode_t err; | 
|  | Idx i, j; | 
|  | int ch; | 
|  | bool need_word_trtable = false; | 
|  | bitset_word_t elem, mask; | 
|  | bool dests_node_malloced = false; | 
|  | bool dest_states_malloced = false; | 
|  | Idx ndests; /* Number of the destination states from `state'.  */ | 
|  | re_dfastate_t **trtable; | 
|  | re_dfastate_t **dest_states = NULL, **dest_states_word, **dest_states_nl; | 
|  | re_node_set follows, *dests_node; | 
|  | bitset_t *dests_ch; | 
|  | bitset_t acceptable; | 
|  |  | 
|  | struct dests_alloc | 
|  | { | 
|  | re_node_set dests_node[SBC_MAX]; | 
|  | bitset_t dests_ch[SBC_MAX]; | 
|  | } *dests_alloc; | 
|  |  | 
|  | /* We build DFA states which corresponds to the destination nodes | 
|  | from `state'.  `dests_node[i]' represents the nodes which i-th | 
|  | destination state contains, and `dests_ch[i]' represents the | 
|  | characters which i-th destination state accepts.  */ | 
|  | if (__libc_use_alloca (sizeof (struct dests_alloc))) | 
|  | dests_alloc = (struct dests_alloc *) alloca (sizeof (struct dests_alloc)); | 
|  | else | 
|  | { | 
|  | dests_alloc = re_malloc (struct dests_alloc, 1); | 
|  | if (BE (dests_alloc == NULL, 0)) | 
|  | return false; | 
|  | dests_node_malloced = true; | 
|  | } | 
|  | dests_node = dests_alloc->dests_node; | 
|  | dests_ch = dests_alloc->dests_ch; | 
|  |  | 
|  | /* Initialize transiton table.  */ | 
|  | state->word_trtable = state->trtable = NULL; | 
|  |  | 
|  | /* At first, group all nodes belonging to `state' into several | 
|  | destinations.  */ | 
|  | ndests = group_nodes_into_DFAstates (dfa, state, dests_node, dests_ch); | 
|  | if (BE (! REG_VALID_NONZERO_INDEX (ndests), 0)) | 
|  | { | 
|  | if (dests_node_malloced) | 
|  | free (dests_alloc); | 
|  | if (ndests == 0) | 
|  | { | 
|  | state->trtable = (re_dfastate_t **) | 
|  | calloc (sizeof (re_dfastate_t *), SBC_MAX); | 
|  | return true; | 
|  | } | 
|  | return false; | 
|  | } | 
|  |  | 
|  | err = re_node_set_alloc (&follows, ndests + 1); | 
|  | if (BE (err != REG_NOERROR, 0)) | 
|  | goto out_free; | 
|  |  | 
|  | /* Avoid arithmetic overflow in size calculation.  */ | 
|  | if (BE ((((SIZE_MAX - (sizeof (re_node_set) + sizeof (bitset_t)) * SBC_MAX) | 
|  | / (3 * sizeof (re_dfastate_t *))) | 
|  | < ndests), | 
|  | 0)) | 
|  | goto out_free; | 
|  |  | 
|  | if (__libc_use_alloca ((sizeof (re_node_set) + sizeof (bitset_t)) * SBC_MAX | 
|  | + ndests * 3 * sizeof (re_dfastate_t *))) | 
|  | dest_states = (re_dfastate_t **) | 
|  | alloca (ndests * 3 * sizeof (re_dfastate_t *)); | 
|  | else | 
|  | { | 
|  | dest_states = (re_dfastate_t **) | 
|  | malloc (ndests * 3 * sizeof (re_dfastate_t *)); | 
|  | if (BE (dest_states == NULL, 0)) | 
|  | { | 
|  | out_free: | 
|  | if (dest_states_malloced) | 
|  | free (dest_states); | 
|  | re_node_set_free (&follows); | 
|  | for (i = 0; i < ndests; ++i) | 
|  | re_node_set_free (dests_node + i); | 
|  | if (dests_node_malloced) | 
|  | free (dests_alloc); | 
|  | return false; | 
|  | } | 
|  | dest_states_malloced = true; | 
|  | } | 
|  | dest_states_word = dest_states + ndests; | 
|  | dest_states_nl = dest_states_word + ndests; | 
|  | bitset_empty (acceptable); | 
|  |  | 
|  | /* Then build the states for all destinations.  */ | 
|  | for (i = 0; i < ndests; ++i) | 
|  | { | 
|  | Idx next_node; | 
|  | re_node_set_empty (&follows); | 
|  | /* Merge the follows of this destination states.  */ | 
|  | for (j = 0; j < dests_node[i].nelem; ++j) | 
|  | { | 
|  | next_node = dfa->nexts[dests_node[i].elems[j]]; | 
|  | if (next_node != REG_MISSING) | 
|  | { | 
|  | err = re_node_set_merge (&follows, dfa->eclosures + next_node); | 
|  | if (BE (err != REG_NOERROR, 0)) | 
|  | goto out_free; | 
|  | } | 
|  | } | 
|  | dest_states[i] = re_acquire_state_context (&err, dfa, &follows, 0); | 
|  | if (BE (dest_states[i] == NULL && err != REG_NOERROR, 0)) | 
|  | goto out_free; | 
|  | /* If the new state has context constraint, | 
|  | build appropriate states for these contexts.  */ | 
|  | if (dest_states[i]->has_constraint) | 
|  | { | 
|  | dest_states_word[i] = re_acquire_state_context (&err, dfa, &follows, | 
|  | CONTEXT_WORD); | 
|  | if (BE (dest_states_word[i] == NULL && err != REG_NOERROR, 0)) | 
|  | goto out_free; | 
|  |  | 
|  | if (dest_states[i] != dest_states_word[i] && dfa->mb_cur_max > 1) | 
|  | need_word_trtable = true; | 
|  |  | 
|  | dest_states_nl[i] = re_acquire_state_context (&err, dfa, &follows, | 
|  | CONTEXT_NEWLINE); | 
|  | if (BE (dest_states_nl[i] == NULL && err != REG_NOERROR, 0)) | 
|  | goto out_free; | 
|  | } | 
|  | else | 
|  | { | 
|  | dest_states_word[i] = dest_states[i]; | 
|  | dest_states_nl[i] = dest_states[i]; | 
|  | } | 
|  | bitset_merge (acceptable, dests_ch[i]); | 
|  | } | 
|  |  | 
|  | if (!BE (need_word_trtable, 0)) | 
|  | { | 
|  | /* We don't care about whether the following character is a word | 
|  | character, or we are in a single-byte character set so we can | 
|  | discern by looking at the character code: allocate a | 
|  | 256-entry transition table.  */ | 
|  | trtable = state->trtable = | 
|  | (re_dfastate_t **) calloc (sizeof (re_dfastate_t *), SBC_MAX); | 
|  | if (BE (trtable == NULL, 0)) | 
|  | goto out_free; | 
|  |  | 
|  | /* For all characters ch...:  */ | 
|  | for (i = 0; i < BITSET_WORDS; ++i) | 
|  | for (ch = i * BITSET_WORD_BITS, elem = acceptable[i], mask = 1; | 
|  | elem; | 
|  | mask <<= 1, elem >>= 1, ++ch) | 
|  | if (BE (elem & 1, 0)) | 
|  | { | 
|  | /* There must be exactly one destination which accepts | 
|  | character ch.  See group_nodes_into_DFAstates.  */ | 
|  | for (j = 0; (dests_ch[j][i] & mask) == 0; ++j) | 
|  | ; | 
|  |  | 
|  | /* j-th destination accepts the word character ch.  */ | 
|  | if (dfa->word_char[i] & mask) | 
|  | trtable[ch] = dest_states_word[j]; | 
|  | else | 
|  | trtable[ch] = dest_states[j]; | 
|  | } | 
|  | } | 
|  | else | 
|  | { | 
|  | /* We care about whether the following character is a word | 
|  | character, and we are in a multi-byte character set: discern | 
|  | by looking at the character code: build two 256-entry | 
|  | transition tables, one starting at trtable[0] and one | 
|  | starting at trtable[SBC_MAX].  */ | 
|  | trtable = state->word_trtable = | 
|  | (re_dfastate_t **) calloc (sizeof (re_dfastate_t *), 2 * SBC_MAX); | 
|  | if (BE (trtable == NULL, 0)) | 
|  | goto out_free; | 
|  |  | 
|  | /* For all characters ch...:  */ | 
|  | for (i = 0; i < BITSET_WORDS; ++i) | 
|  | for (ch = i * BITSET_WORD_BITS, elem = acceptable[i], mask = 1; | 
|  | elem; | 
|  | mask <<= 1, elem >>= 1, ++ch) | 
|  | if (BE (elem & 1, 0)) | 
|  | { | 
|  | /* There must be exactly one destination which accepts | 
|  | character ch.  See group_nodes_into_DFAstates.  */ | 
|  | for (j = 0; (dests_ch[j][i] & mask) == 0; ++j) | 
|  | ; | 
|  |  | 
|  | /* j-th destination accepts the word character ch.  */ | 
|  | trtable[ch] = dest_states[j]; | 
|  | trtable[ch + SBC_MAX] = dest_states_word[j]; | 
|  | } | 
|  | } | 
|  |  | 
|  | /* new line */ | 
|  | if (bitset_contain (acceptable, NEWLINE_CHAR)) | 
|  | { | 
|  | /* The current state accepts newline character.  */ | 
|  | for (j = 0; j < ndests; ++j) | 
|  | if (bitset_contain (dests_ch[j], NEWLINE_CHAR)) | 
|  | { | 
|  | /* k-th destination accepts newline character.  */ | 
|  | trtable[NEWLINE_CHAR] = dest_states_nl[j]; | 
|  | if (need_word_trtable) | 
|  | trtable[NEWLINE_CHAR + SBC_MAX] = dest_states_nl[j]; | 
|  | /* There must be only one destination which accepts | 
|  | newline.  See group_nodes_into_DFAstates.  */ | 
|  | break; | 
|  | } | 
|  | } | 
|  |  | 
|  | if (dest_states_malloced) | 
|  | free (dest_states); | 
|  |  | 
|  | re_node_set_free (&follows); | 
|  | for (i = 0; i < ndests; ++i) | 
|  | re_node_set_free (dests_node + i); | 
|  |  | 
|  | if (dests_node_malloced) | 
|  | free (dests_alloc); | 
|  |  | 
|  | return true; | 
|  | } | 
|  |  | 
|  | /* Group all nodes belonging to STATE into several destinations. | 
|  | Then for all destinations, set the nodes belonging to the destination | 
|  | to DESTS_NODE[i] and set the characters accepted by the destination | 
|  | to DEST_CH[i].  This function return the number of destinations.  */ | 
|  |  | 
|  | static Idx | 
|  | internal_function | 
|  | group_nodes_into_DFAstates (const re_dfa_t *dfa, const re_dfastate_t *state, | 
|  | re_node_set *dests_node, bitset_t *dests_ch) | 
|  | { | 
|  | reg_errcode_t err; | 
|  | bool ok; | 
|  | Idx i, j, k; | 
|  | Idx ndests; /* Number of the destinations from `state'.  */ | 
|  | bitset_t accepts; /* Characters a node can accept.  */ | 
|  | const re_node_set *cur_nodes = &state->nodes; | 
|  | bitset_empty (accepts); | 
|  | ndests = 0; | 
|  |  | 
|  | /* For all the nodes belonging to `state',  */ | 
|  | for (i = 0; i < cur_nodes->nelem; ++i) | 
|  | { | 
|  | re_token_t *node = &dfa->nodes[cur_nodes->elems[i]]; | 
|  | re_token_type_t type = node->type; | 
|  | unsigned int constraint = node->constraint; | 
|  |  | 
|  | /* Enumerate all single byte character this node can accept.  */ | 
|  | if (type == CHARACTER) | 
|  | bitset_set (accepts, node->opr.c); | 
|  | else if (type == SIMPLE_BRACKET) | 
|  | { | 
|  | bitset_merge (accepts, node->opr.sbcset); | 
|  | } | 
|  | else if (type == OP_PERIOD) | 
|  | { | 
|  | #ifdef RE_ENABLE_I18N | 
|  | if (dfa->mb_cur_max > 1) | 
|  | bitset_merge (accepts, dfa->sb_char); | 
|  | else | 
|  | #endif | 
|  | bitset_set_all (accepts); | 
|  | if (!(dfa->syntax & RE_DOT_NEWLINE)) | 
|  | bitset_clear (accepts, '\n'); | 
|  | if (dfa->syntax & RE_DOT_NOT_NULL) | 
|  | bitset_clear (accepts, '\0'); | 
|  | } | 
|  | #ifdef RE_ENABLE_I18N | 
|  | else if (type == OP_UTF8_PERIOD) | 
|  | { | 
|  | if (ASCII_CHARS % BITSET_WORD_BITS == 0) | 
|  | memset (accepts, -1, ASCII_CHARS / CHAR_BIT); | 
|  | else | 
|  | bitset_merge (accepts, utf8_sb_map); | 
|  | if (!(dfa->syntax & RE_DOT_NEWLINE)) | 
|  | bitset_clear (accepts, '\n'); | 
|  | if (dfa->syntax & RE_DOT_NOT_NULL) | 
|  | bitset_clear (accepts, '\0'); | 
|  | } | 
|  | #endif | 
|  | else | 
|  | continue; | 
|  |  | 
|  | /* Check the `accepts' and sift the characters which are not | 
|  | match it the context.  */ | 
|  | if (constraint) | 
|  | { | 
|  | if (constraint & NEXT_NEWLINE_CONSTRAINT) | 
|  | { | 
|  | bool accepts_newline = bitset_contain (accepts, NEWLINE_CHAR); | 
|  | bitset_empty (accepts); | 
|  | if (accepts_newline) | 
|  | bitset_set (accepts, NEWLINE_CHAR); | 
|  | else | 
|  | continue; | 
|  | } | 
|  | if (constraint & NEXT_ENDBUF_CONSTRAINT) | 
|  | { | 
|  | bitset_empty (accepts); | 
|  | continue; | 
|  | } | 
|  |  | 
|  | if (constraint & NEXT_WORD_CONSTRAINT) | 
|  | { | 
|  | bitset_word_t any_set = 0; | 
|  | if (type == CHARACTER && !node->word_char) | 
|  | { | 
|  | bitset_empty (accepts); | 
|  | continue; | 
|  | } | 
|  | #ifdef RE_ENABLE_I18N | 
|  | if (dfa->mb_cur_max > 1) | 
|  | for (j = 0; j < BITSET_WORDS; ++j) | 
|  | any_set |= (accepts[j] &= (dfa->word_char[j] | ~dfa->sb_char[j])); | 
|  | else | 
|  | #endif | 
|  | for (j = 0; j < BITSET_WORDS; ++j) | 
|  | any_set |= (accepts[j] &= dfa->word_char[j]); | 
|  | if (!any_set) | 
|  | continue; | 
|  | } | 
|  | if (constraint & NEXT_NOTWORD_CONSTRAINT) | 
|  | { | 
|  | bitset_word_t any_set = 0; | 
|  | if (type == CHARACTER && node->word_char) | 
|  | { | 
|  | bitset_empty (accepts); | 
|  | continue; | 
|  | } | 
|  | #ifdef RE_ENABLE_I18N | 
|  | if (dfa->mb_cur_max > 1) | 
|  | for (j = 0; j < BITSET_WORDS; ++j) | 
|  | any_set |= (accepts[j] &= ~(dfa->word_char[j] & dfa->sb_char[j])); | 
|  | else | 
|  | #endif | 
|  | for (j = 0; j < BITSET_WORDS; ++j) | 
|  | any_set |= (accepts[j] &= ~dfa->word_char[j]); | 
|  | if (!any_set) | 
|  | continue; | 
|  | } | 
|  | } | 
|  |  | 
|  | /* Then divide `accepts' into DFA states, or create a new | 
|  | state.  Above, we make sure that accepts is not empty.  */ | 
|  | for (j = 0; j < ndests; ++j) | 
|  | { | 
|  | bitset_t intersec; /* Intersection sets, see below.  */ | 
|  | bitset_t remains; | 
|  | /* Flags, see below.  */ | 
|  | bitset_word_t has_intersec, not_subset, not_consumed; | 
|  |  | 
|  | /* Optimization, skip if this state doesn't accept the character.  */ | 
|  | if (type == CHARACTER && !bitset_contain (dests_ch[j], node->opr.c)) | 
|  | continue; | 
|  |  | 
|  | /* Enumerate the intersection set of this state and `accepts'.  */ | 
|  | has_intersec = 0; | 
|  | for (k = 0; k < BITSET_WORDS; ++k) | 
|  | has_intersec |= intersec[k] = accepts[k] & dests_ch[j][k]; | 
|  | /* And skip if the intersection set is empty.  */ | 
|  | if (!has_intersec) | 
|  | continue; | 
|  |  | 
|  | /* Then check if this state is a subset of `accepts'.  */ | 
|  | not_subset = not_consumed = 0; | 
|  | for (k = 0; k < BITSET_WORDS; ++k) | 
|  | { | 
|  | not_subset |= remains[k] = ~accepts[k] & dests_ch[j][k]; | 
|  | not_consumed |= accepts[k] = accepts[k] & ~dests_ch[j][k]; | 
|  | } | 
|  |  | 
|  | /* If this state isn't a subset of `accepts', create a | 
|  | new group state, which has the `remains'. */ | 
|  | if (not_subset) | 
|  | { | 
|  | bitset_copy (dests_ch[ndests], remains); | 
|  | bitset_copy (dests_ch[j], intersec); | 
|  | err = re_node_set_init_copy (dests_node + ndests, &dests_node[j]); | 
|  | if (BE (err != REG_NOERROR, 0)) | 
|  | goto error_return; | 
|  | ++ndests; | 
|  | } | 
|  |  | 
|  | /* Put the position in the current group. */ | 
|  | ok = re_node_set_insert (&dests_node[j], cur_nodes->elems[i]); | 
|  | if (BE (! ok, 0)) | 
|  | goto error_return; | 
|  |  | 
|  | /* If all characters are consumed, go to next node. */ | 
|  | if (!not_consumed) | 
|  | break; | 
|  | } | 
|  | /* Some characters remain, create a new group. */ | 
|  | if (j == ndests) | 
|  | { | 
|  | bitset_copy (dests_ch[ndests], accepts); | 
|  | err = re_node_set_init_1 (dests_node + ndests, cur_nodes->elems[i]); | 
|  | if (BE (err != REG_NOERROR, 0)) | 
|  | goto error_return; | 
|  | ++ndests; | 
|  | bitset_empty (accepts); | 
|  | } | 
|  | } | 
|  | return ndests; | 
|  | error_return: | 
|  | for (j = 0; j < ndests; ++j) | 
|  | re_node_set_free (dests_node + j); | 
|  | return REG_MISSING; | 
|  | } | 
|  |  | 
|  | #ifdef RE_ENABLE_I18N | 
|  | /* Check how many bytes the node `dfa->nodes[node_idx]' accepts. | 
|  | Return the number of the bytes the node accepts. | 
|  | STR_IDX is the current index of the input string. | 
|  |  | 
|  | This function handles the nodes which can accept one character, or | 
|  | one collating element like '.', '[a-z]', opposite to the other nodes | 
|  | can only accept one byte.  */ | 
|  |  | 
|  | static int | 
|  | internal_function | 
|  | check_node_accept_bytes (const re_dfa_t *dfa, Idx node_idx, | 
|  | const re_string_t *input, Idx str_idx) | 
|  | { | 
|  | const re_token_t *node = dfa->nodes + node_idx; | 
|  | int char_len, elem_len; | 
|  | Idx i; | 
|  |  | 
|  | if (BE (node->type == OP_UTF8_PERIOD, 0)) | 
|  | { | 
|  | unsigned char c = re_string_byte_at (input, str_idx), d; | 
|  | if (BE (c < 0xc2, 1)) | 
|  | return 0; | 
|  |  | 
|  | if (str_idx + 2 > input->len) | 
|  | return 0; | 
|  |  | 
|  | d = re_string_byte_at (input, str_idx + 1); | 
|  | if (c < 0xe0) | 
|  | return (d < 0x80 || d > 0xbf) ? 0 : 2; | 
|  | else if (c < 0xf0) | 
|  | { | 
|  | char_len = 3; | 
|  | if (c == 0xe0 && d < 0xa0) | 
|  | return 0; | 
|  | } | 
|  | else if (c < 0xf8) | 
|  | { | 
|  | char_len = 4; | 
|  | if (c == 0xf0 && d < 0x90) | 
|  | return 0; | 
|  | } | 
|  | else if (c < 0xfc) | 
|  | { | 
|  | char_len = 5; | 
|  | if (c == 0xf8 && d < 0x88) | 
|  | return 0; | 
|  | } | 
|  | else if (c < 0xfe) | 
|  | { | 
|  | char_len = 6; | 
|  | if (c == 0xfc && d < 0x84) | 
|  | return 0; | 
|  | } | 
|  | else | 
|  | return 0; | 
|  |  | 
|  | if (str_idx + char_len > input->len) | 
|  | return 0; | 
|  |  | 
|  | for (i = 1; i < char_len; ++i) | 
|  | { | 
|  | d = re_string_byte_at (input, str_idx + i); | 
|  | if (d < 0x80 || d > 0xbf) | 
|  | return 0; | 
|  | } | 
|  | return char_len; | 
|  | } | 
|  |  | 
|  | char_len = re_string_char_size_at (input, str_idx); | 
|  | if (node->type == OP_PERIOD) | 
|  | { | 
|  | if (char_len <= 1) | 
|  | return 0; | 
|  | /* FIXME: I don't think this if is needed, as both '\n' | 
|  | and '\0' are char_len == 1.  */ | 
|  | /* '.' accepts any one character except the following two cases.  */ | 
|  | if ((!(dfa->syntax & RE_DOT_NEWLINE) && | 
|  | re_string_byte_at (input, str_idx) == '\n') || | 
|  | ((dfa->syntax & RE_DOT_NOT_NULL) && | 
|  | re_string_byte_at (input, str_idx) == '\0')) | 
|  | return 0; | 
|  | return char_len; | 
|  | } | 
|  |  | 
|  | elem_len = re_string_elem_size_at (input, str_idx); | 
|  | if ((elem_len <= 1 && char_len <= 1) || char_len == 0) | 
|  | return 0; | 
|  |  | 
|  | if (node->type == COMPLEX_BRACKET) | 
|  | { | 
|  | const re_charset_t *cset = node->opr.mbcset; | 
|  | # ifdef _LIBC | 
|  | const unsigned char *pin | 
|  | = ((const unsigned char *) re_string_get_buffer (input) + str_idx); | 
|  | Idx j; | 
|  | uint32_t nrules; | 
|  | # endif /* _LIBC */ | 
|  | int match_len = 0; | 
|  | wchar_t wc = ((cset->nranges || cset->nchar_classes || cset->nmbchars) | 
|  | ? re_string_wchar_at (input, str_idx) : 0); | 
|  |  | 
|  | /* match with multibyte character?  */ | 
|  | for (i = 0; i < cset->nmbchars; ++i) | 
|  | if (wc == cset->mbchars[i]) | 
|  | { | 
|  | match_len = char_len; | 
|  | goto check_node_accept_bytes_match; | 
|  | } | 
|  | /* match with character_class?  */ | 
|  | for (i = 0; i < cset->nchar_classes; ++i) | 
|  | { | 
|  | wctype_t wt = cset->char_classes[i]; | 
|  | if (__iswctype (wc, wt)) | 
|  | { | 
|  | match_len = char_len; | 
|  | goto check_node_accept_bytes_match; | 
|  | } | 
|  | } | 
|  |  | 
|  | # ifdef _LIBC | 
|  | nrules = _NL_CURRENT_WORD (LC_COLLATE, _NL_COLLATE_NRULES); | 
|  | if (nrules != 0) | 
|  | { | 
|  | unsigned int in_collseq = 0; | 
|  | const int32_t *table, *indirect; | 
|  | const unsigned char *weights, *extra; | 
|  | const char *collseqwc; | 
|  | int32_t idx; | 
|  | /* This #include defines a local function!  */ | 
|  | #  include <locale/weight.h> | 
|  |  | 
|  | /* match with collating_symbol?  */ | 
|  | if (cset->ncoll_syms) | 
|  | extra = (const unsigned char *) | 
|  | _NL_CURRENT (LC_COLLATE, _NL_COLLATE_SYMB_EXTRAMB); | 
|  | for (i = 0; i < cset->ncoll_syms; ++i) | 
|  | { | 
|  | const unsigned char *coll_sym = extra + cset->coll_syms[i]; | 
|  | /* Compare the length of input collating element and | 
|  | the length of current collating element.  */ | 
|  | if (*coll_sym != elem_len) | 
|  | continue; | 
|  | /* Compare each bytes.  */ | 
|  | for (j = 0; j < *coll_sym; j++) | 
|  | if (pin[j] != coll_sym[1 + j]) | 
|  | break; | 
|  | if (j == *coll_sym) | 
|  | { | 
|  | /* Match if every bytes is equal.  */ | 
|  | match_len = j; | 
|  | goto check_node_accept_bytes_match; | 
|  | } | 
|  | } | 
|  |  | 
|  | if (cset->nranges) | 
|  | { | 
|  | if (elem_len <= char_len) | 
|  | { | 
|  | collseqwc = _NL_CURRENT (LC_COLLATE, _NL_COLLATE_COLLSEQWC); | 
|  | in_collseq = __collseq_table_lookup (collseqwc, wc); | 
|  | } | 
|  | else | 
|  | in_collseq = find_collation_sequence_value (pin, elem_len); | 
|  | } | 
|  | /* match with range expression?  */ | 
|  | for (i = 0; i < cset->nranges; ++i) | 
|  | if (cset->range_starts[i] <= in_collseq | 
|  | && in_collseq <= cset->range_ends[i]) | 
|  | { | 
|  | match_len = elem_len; | 
|  | goto check_node_accept_bytes_match; | 
|  | } | 
|  |  | 
|  | /* match with equivalence_class?  */ | 
|  | if (cset->nequiv_classes) | 
|  | { | 
|  | const unsigned char *cp = pin; | 
|  | table = (const int32_t *) | 
|  | _NL_CURRENT (LC_COLLATE, _NL_COLLATE_TABLEMB); | 
|  | weights = (const unsigned char *) | 
|  | _NL_CURRENT (LC_COLLATE, _NL_COLLATE_WEIGHTMB); | 
|  | extra = (const unsigned char *) | 
|  | _NL_CURRENT (LC_COLLATE, _NL_COLLATE_EXTRAMB); | 
|  | indirect = (const int32_t *) | 
|  | _NL_CURRENT (LC_COLLATE, _NL_COLLATE_INDIRECTMB); | 
|  | idx = findidx (&cp); | 
|  | if (idx > 0) | 
|  | for (i = 0; i < cset->nequiv_classes; ++i) | 
|  | { | 
|  | int32_t equiv_class_idx = cset->equiv_classes[i]; | 
|  | size_t weight_len = weights[idx]; | 
|  | if (weight_len == weights[equiv_class_idx]) | 
|  | { | 
|  | Idx cnt = 0; | 
|  | while (cnt <= weight_len | 
|  | && (weights[equiv_class_idx + 1 + cnt] | 
|  | == weights[idx + 1 + cnt])) | 
|  | ++cnt; | 
|  | if (cnt > weight_len) | 
|  | { | 
|  | match_len = elem_len; | 
|  | goto check_node_accept_bytes_match; | 
|  | } | 
|  | } | 
|  | } | 
|  | } | 
|  | } | 
|  | else | 
|  | # endif /* _LIBC */ | 
|  | { | 
|  | /* match with range expression?  */ | 
|  | #if __GNUC__ >= 2 && ! (__STDC_VERSION__ < 199901L && __STRICT_ANSI__) | 
|  | wchar_t cmp_buf[] = {L'\0', L'\0', wc, L'\0', L'\0', L'\0'}; | 
|  | #else | 
|  | wchar_t cmp_buf[] = {L'\0', L'\0', L'\0', L'\0', L'\0', L'\0'}; | 
|  | cmp_buf[2] = wc; | 
|  | #endif | 
|  | for (i = 0; i < cset->nranges; ++i) | 
|  | { | 
|  | cmp_buf[0] = cset->range_starts[i]; | 
|  | cmp_buf[4] = cset->range_ends[i]; | 
|  | if (wcscoll (cmp_buf, cmp_buf + 2) <= 0 | 
|  | && wcscoll (cmp_buf + 2, cmp_buf + 4) <= 0) | 
|  | { | 
|  | match_len = char_len; | 
|  | goto check_node_accept_bytes_match; | 
|  | } | 
|  | } | 
|  | } | 
|  | check_node_accept_bytes_match: | 
|  | if (!cset->non_match) | 
|  | return match_len; | 
|  | else | 
|  | { | 
|  | if (match_len > 0) | 
|  | return 0; | 
|  | else | 
|  | return (elem_len > char_len) ? elem_len : char_len; | 
|  | } | 
|  | } | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | # ifdef _LIBC | 
|  | static unsigned int | 
|  | internal_function | 
|  | find_collation_sequence_value (const unsigned char *mbs, size_t mbs_len) | 
|  | { | 
|  | uint32_t nrules = _NL_CURRENT_WORD (LC_COLLATE, _NL_COLLATE_NRULES); | 
|  | if (nrules == 0) | 
|  | { | 
|  | if (mbs_len == 1) | 
|  | { | 
|  | /* No valid character.  Match it as a single byte character.  */ | 
|  | const unsigned char *collseq = (const unsigned char *) | 
|  | _NL_CURRENT (LC_COLLATE, _NL_COLLATE_COLLSEQMB); | 
|  | return collseq[mbs[0]]; | 
|  | } | 
|  | return UINT_MAX; | 
|  | } | 
|  | else | 
|  | { | 
|  | int32_t idx; | 
|  | const unsigned char *extra = (const unsigned char *) | 
|  | _NL_CURRENT (LC_COLLATE, _NL_COLLATE_SYMB_EXTRAMB); | 
|  | int32_t extrasize = (const unsigned char *) | 
|  | _NL_CURRENT (LC_COLLATE, _NL_COLLATE_SYMB_EXTRAMB + 1) - extra; | 
|  |  | 
|  | for (idx = 0; idx < extrasize;) | 
|  | { | 
|  | int mbs_cnt; | 
|  | bool found = false; | 
|  | int32_t elem_mbs_len; | 
|  | /* Skip the name of collating element name.  */ | 
|  | idx = idx + extra[idx] + 1; | 
|  | elem_mbs_len = extra[idx++]; | 
|  | if (mbs_len == elem_mbs_len) | 
|  | { | 
|  | for (mbs_cnt = 0; mbs_cnt < elem_mbs_len; ++mbs_cnt) | 
|  | if (extra[idx + mbs_cnt] != mbs[mbs_cnt]) | 
|  | break; | 
|  | if (mbs_cnt == elem_mbs_len) | 
|  | /* Found the entry.  */ | 
|  | found = true; | 
|  | } | 
|  | /* Skip the byte sequence of the collating element.  */ | 
|  | idx += elem_mbs_len; | 
|  | /* Adjust for the alignment.  */ | 
|  | idx = (idx + 3) & ~3; | 
|  | /* Skip the collation sequence value.  */ | 
|  | idx += sizeof (uint32_t); | 
|  | /* Skip the wide char sequence of the collating element.  */ | 
|  | idx = idx + sizeof (uint32_t) * (extra[idx] + 1); | 
|  | /* If we found the entry, return the sequence value.  */ | 
|  | if (found) | 
|  | return *(uint32_t *) (extra + idx); | 
|  | /* Skip the collation sequence value.  */ | 
|  | idx += sizeof (uint32_t); | 
|  | } | 
|  | return UINT_MAX; | 
|  | } | 
|  | } | 
|  | # endif /* _LIBC */ | 
|  | #endif /* RE_ENABLE_I18N */ | 
|  |  | 
|  | /* Check whether the node accepts the byte which is IDX-th | 
|  | byte of the INPUT.  */ | 
|  |  | 
|  | static bool | 
|  | internal_function | 
|  | check_node_accept (const re_match_context_t *mctx, const re_token_t *node, | 
|  | Idx idx) | 
|  | { | 
|  | unsigned char ch; | 
|  | ch = re_string_byte_at (&mctx->input, idx); | 
|  | switch (node->type) | 
|  | { | 
|  | case CHARACTER: | 
|  | if (node->opr.c != ch) | 
|  | return false; | 
|  | break; | 
|  |  | 
|  | case SIMPLE_BRACKET: | 
|  | if (!bitset_contain (node->opr.sbcset, ch)) | 
|  | return false; | 
|  | break; | 
|  |  | 
|  | #ifdef RE_ENABLE_I18N | 
|  | case OP_UTF8_PERIOD: | 
|  | if (ch >= ASCII_CHARS) | 
|  | return false; | 
|  | /* FALLTHROUGH */ | 
|  | #endif | 
|  | case OP_PERIOD: | 
|  | if ((ch == '\n' && !(mctx->dfa->syntax & RE_DOT_NEWLINE)) | 
|  | || (ch == '\0' && (mctx->dfa->syntax & RE_DOT_NOT_NULL))) | 
|  | return false; | 
|  | break; | 
|  |  | 
|  | default: | 
|  | return false; | 
|  | } | 
|  |  | 
|  | if (node->constraint) | 
|  | { | 
|  | /* The node has constraints.  Check whether the current context | 
|  | satisfies the constraints.  */ | 
|  | unsigned int context = re_string_context_at (&mctx->input, idx, | 
|  | mctx->eflags); | 
|  | if (NOT_SATISFY_NEXT_CONSTRAINT (node->constraint, context)) | 
|  | return false; | 
|  | } | 
|  |  | 
|  | return true; | 
|  | } | 
|  |  | 
|  | /* Extend the buffers, if the buffers have run out.  */ | 
|  |  | 
|  | static reg_errcode_t | 
|  | internal_function | 
|  | extend_buffers (re_match_context_t *mctx) | 
|  | { | 
|  | reg_errcode_t ret; | 
|  | re_string_t *pstr = &mctx->input; | 
|  |  | 
|  | /* Avoid overflow.  */ | 
|  | if (BE (SIZE_MAX / 2 / sizeof (re_dfastate_t *) <= pstr->bufs_len, 0)) | 
|  | return REG_ESPACE; | 
|  |  | 
|  | /* Double the lengthes of the buffers.  */ | 
|  | ret = re_string_realloc_buffers (pstr, pstr->bufs_len * 2); | 
|  | if (BE (ret != REG_NOERROR, 0)) | 
|  | return ret; | 
|  |  | 
|  | if (mctx->state_log != NULL) | 
|  | { | 
|  | /* And double the length of state_log.  */ | 
|  | /* XXX We have no indication of the size of this buffer.  If this | 
|  | allocation fail we have no indication that the state_log array | 
|  | does not have the right size.  */ | 
|  | re_dfastate_t **new_array = re_realloc (mctx->state_log, re_dfastate_t *, | 
|  | pstr->bufs_len + 1); | 
|  | if (BE (new_array == NULL, 0)) | 
|  | return REG_ESPACE; | 
|  | mctx->state_log = new_array; | 
|  | } | 
|  |  | 
|  | /* Then reconstruct the buffers.  */ | 
|  | if (pstr->icase) | 
|  | { | 
|  | #ifdef RE_ENABLE_I18N | 
|  | if (pstr->mb_cur_max > 1) | 
|  | { | 
|  | ret = build_wcs_upper_buffer (pstr); | 
|  | if (BE (ret != REG_NOERROR, 0)) | 
|  | return ret; | 
|  | } | 
|  | else | 
|  | #endif /* RE_ENABLE_I18N  */ | 
|  | build_upper_buffer (pstr); | 
|  | } | 
|  | else | 
|  | { | 
|  | #ifdef RE_ENABLE_I18N | 
|  | if (pstr->mb_cur_max > 1) | 
|  | build_wcs_buffer (pstr); | 
|  | else | 
|  | #endif /* RE_ENABLE_I18N  */ | 
|  | { | 
|  | if (pstr->trans != NULL) | 
|  | re_string_translate_buffer (pstr); | 
|  | } | 
|  | } | 
|  | return REG_NOERROR; | 
|  | } | 
|  |  | 
|  |  | 
|  | /* Functions for matching context.  */ | 
|  |  | 
|  | /* Initialize MCTX.  */ | 
|  |  | 
|  | static reg_errcode_t | 
|  | internal_function | 
|  | match_ctx_init (re_match_context_t *mctx, int eflags, Idx n) | 
|  | { | 
|  | mctx->eflags = eflags; | 
|  | mctx->match_last = REG_MISSING; | 
|  | if (n > 0) | 
|  | { | 
|  | /* Avoid overflow.  */ | 
|  | size_t max_object_size = | 
|  | MAX (sizeof (struct re_backref_cache_entry), | 
|  | sizeof (re_sub_match_top_t *)); | 
|  | if (BE (SIZE_MAX / max_object_size < n, 0)) | 
|  | return REG_ESPACE; | 
|  |  | 
|  | mctx->bkref_ents = re_malloc (struct re_backref_cache_entry, n); | 
|  | mctx->sub_tops = re_malloc (re_sub_match_top_t *, n); | 
|  | if (BE (mctx->bkref_ents == NULL || mctx->sub_tops == NULL, 0)) | 
|  | return REG_ESPACE; | 
|  | } | 
|  | /* Already zero-ed by the caller. | 
|  | else | 
|  | mctx->bkref_ents = NULL; | 
|  | mctx->nbkref_ents = 0; | 
|  | mctx->nsub_tops = 0;  */ | 
|  | mctx->abkref_ents = n; | 
|  | mctx->max_mb_elem_len = 1; | 
|  | mctx->asub_tops = n; | 
|  | return REG_NOERROR; | 
|  | } | 
|  |  | 
|  | /* Clean the entries which depend on the current input in MCTX. | 
|  | This function must be invoked when the matcher changes the start index | 
|  | of the input, or changes the input string.  */ | 
|  |  | 
|  | static void | 
|  | internal_function | 
|  | match_ctx_clean (re_match_context_t *mctx) | 
|  | { | 
|  | Idx st_idx; | 
|  | for (st_idx = 0; st_idx < mctx->nsub_tops; ++st_idx) | 
|  | { | 
|  | Idx sl_idx; | 
|  | re_sub_match_top_t *top = mctx->sub_tops[st_idx]; | 
|  | for (sl_idx = 0; sl_idx < top->nlasts; ++sl_idx) | 
|  | { | 
|  | re_sub_match_last_t *last = top->lasts[sl_idx]; | 
|  | re_free (last->path.array); | 
|  | re_free (last); | 
|  | } | 
|  | re_free (top->lasts); | 
|  | if (top->path) | 
|  | { | 
|  | re_free (top->path->array); | 
|  | re_free (top->path); | 
|  | } | 
|  | free (top); | 
|  | } | 
|  |  | 
|  | mctx->nsub_tops = 0; | 
|  | mctx->nbkref_ents = 0; | 
|  | } | 
|  |  | 
|  | /* Free all the memory associated with MCTX.  */ | 
|  |  | 
|  | static void | 
|  | internal_function | 
|  | match_ctx_free (re_match_context_t *mctx) | 
|  | { | 
|  | /* First, free all the memory associated with MCTX->SUB_TOPS.  */ | 
|  | match_ctx_clean (mctx); | 
|  | re_free (mctx->sub_tops); | 
|  | re_free (mctx->bkref_ents); | 
|  | } | 
|  |  | 
|  | /* Add a new backreference entry to MCTX. | 
|  | Note that we assume that caller never call this function with duplicate | 
|  | entry, and call with STR_IDX which isn't smaller than any existing entry. | 
|  | */ | 
|  |  | 
|  | static reg_errcode_t | 
|  | internal_function | 
|  | match_ctx_add_entry (re_match_context_t *mctx, Idx node, Idx str_idx, Idx from, | 
|  | Idx to) | 
|  | { | 
|  | if (mctx->nbkref_ents >= mctx->abkref_ents) | 
|  | { | 
|  | struct re_backref_cache_entry* new_entry; | 
|  | new_entry = re_realloc (mctx->bkref_ents, struct re_backref_cache_entry, | 
|  | mctx->abkref_ents * 2); | 
|  | if (BE (new_entry == NULL, 0)) | 
|  | { | 
|  | re_free (mctx->bkref_ents); | 
|  | return REG_ESPACE; | 
|  | } | 
|  | mctx->bkref_ents = new_entry; | 
|  | memset (mctx->bkref_ents + mctx->nbkref_ents, '\0', | 
|  | sizeof (struct re_backref_cache_entry) * mctx->abkref_ents); | 
|  | mctx->abkref_ents *= 2; | 
|  | } | 
|  | if (mctx->nbkref_ents > 0 | 
|  | && mctx->bkref_ents[mctx->nbkref_ents - 1].str_idx == str_idx) | 
|  | mctx->bkref_ents[mctx->nbkref_ents - 1].more = 1; | 
|  |  | 
|  | mctx->bkref_ents[mctx->nbkref_ents].node = node; | 
|  | mctx->bkref_ents[mctx->nbkref_ents].str_idx = str_idx; | 
|  | mctx->bkref_ents[mctx->nbkref_ents].subexp_from = from; | 
|  | mctx->bkref_ents[mctx->nbkref_ents].subexp_to = to; | 
|  |  | 
|  | /* This is a cache that saves negative results of check_dst_limits_calc_pos. | 
|  | If bit N is clear, means that this entry won't epsilon-transition to | 
|  | an OP_OPEN_SUBEXP or OP_CLOSE_SUBEXP for the N+1-th subexpression.  If | 
|  | it is set, check_dst_limits_calc_pos_1 will recurse and try to find one | 
|  | such node. | 
|  |  | 
|  | A backreference does not epsilon-transition unless it is empty, so set | 
|  | to all zeros if FROM != TO.  */ | 
|  | mctx->bkref_ents[mctx->nbkref_ents].eps_reachable_subexps_map | 
|  | = (from == to ? -1 : 0); | 
|  |  | 
|  | mctx->bkref_ents[mctx->nbkref_ents++].more = 0; | 
|  | if (mctx->max_mb_elem_len < to - from) | 
|  | mctx->max_mb_elem_len = to - from; | 
|  | return REG_NOERROR; | 
|  | } | 
|  |  | 
|  | /* Return the first entry with the same str_idx, or REG_MISSING if none is | 
|  | found.  Note that MCTX->BKREF_ENTS is already sorted by MCTX->STR_IDX.  */ | 
|  |  | 
|  | static Idx | 
|  | internal_function | 
|  | search_cur_bkref_entry (const re_match_context_t *mctx, Idx str_idx) | 
|  | { | 
|  | Idx left, right, mid, last; | 
|  | last = right = mctx->nbkref_ents; | 
|  | for (left = 0; left < right;) | 
|  | { | 
|  | mid = (left + right) / 2; | 
|  | if (mctx->bkref_ents[mid].str_idx < str_idx) | 
|  | left = mid + 1; | 
|  | else | 
|  | right = mid; | 
|  | } | 
|  | if (left < last && mctx->bkref_ents[left].str_idx == str_idx) | 
|  | return left; | 
|  | else | 
|  | return REG_MISSING; | 
|  | } | 
|  |  | 
|  | /* Register the node NODE, whose type is OP_OPEN_SUBEXP, and which matches | 
|  | at STR_IDX.  */ | 
|  |  | 
|  | static reg_errcode_t | 
|  | internal_function | 
|  | match_ctx_add_subtop (re_match_context_t *mctx, Idx node, Idx str_idx) | 
|  | { | 
|  | #ifdef DEBUG | 
|  | assert (mctx->sub_tops != NULL); | 
|  | assert (mctx->asub_tops > 0); | 
|  | #endif | 
|  | if (BE (mctx->nsub_tops == mctx->asub_tops, 0)) | 
|  | { | 
|  | Idx new_asub_tops = mctx->asub_tops * 2; | 
|  | re_sub_match_top_t **new_array = re_realloc (mctx->sub_tops, | 
|  | re_sub_match_top_t *, | 
|  | new_asub_tops); | 
|  | if (BE (new_array == NULL, 0)) | 
|  | return REG_ESPACE; | 
|  | mctx->sub_tops = new_array; | 
|  | mctx->asub_tops = new_asub_tops; | 
|  | } | 
|  | mctx->sub_tops[mctx->nsub_tops] = calloc (1, sizeof (re_sub_match_top_t)); | 
|  | if (BE (mctx->sub_tops[mctx->nsub_tops] == NULL, 0)) | 
|  | return REG_ESPACE; | 
|  | mctx->sub_tops[mctx->nsub_tops]->node = node; | 
|  | mctx->sub_tops[mctx->nsub_tops++]->str_idx = str_idx; | 
|  | return REG_NOERROR; | 
|  | } | 
|  |  | 
|  | /* Register the node NODE, whose type is OP_CLOSE_SUBEXP, and which matches | 
|  | at STR_IDX, whose corresponding OP_OPEN_SUBEXP is SUB_TOP.  */ | 
|  |  | 
|  | static re_sub_match_last_t * | 
|  | internal_function | 
|  | match_ctx_add_sublast (re_sub_match_top_t *subtop, Idx node, Idx str_idx) | 
|  | { | 
|  | re_sub_match_last_t *new_entry; | 
|  | if (BE (subtop->nlasts == subtop->alasts, 0)) | 
|  | { | 
|  | Idx new_alasts = 2 * subtop->alasts + 1; | 
|  | re_sub_match_last_t **new_array = re_realloc (subtop->lasts, | 
|  | re_sub_match_last_t *, | 
|  | new_alasts); | 
|  | if (BE (new_array == NULL, 0)) | 
|  | return NULL; | 
|  | subtop->lasts = new_array; | 
|  | subtop->alasts = new_alasts; | 
|  | } | 
|  | new_entry = calloc (1, sizeof (re_sub_match_last_t)); | 
|  | if (BE (new_entry != NULL, 1)) | 
|  | { | 
|  | subtop->lasts[subtop->nlasts] = new_entry; | 
|  | new_entry->node = node; | 
|  | new_entry->str_idx = str_idx; | 
|  | ++subtop->nlasts; | 
|  | } | 
|  | return new_entry; | 
|  | } | 
|  |  | 
|  | static void | 
|  | internal_function | 
|  | sift_ctx_init (re_sift_context_t *sctx, re_dfastate_t **sifted_sts, | 
|  | re_dfastate_t **limited_sts, Idx last_node, Idx last_str_idx) | 
|  | { | 
|  | sctx->sifted_states = sifted_sts; | 
|  | sctx->limited_states = limited_sts; | 
|  | sctx->last_node = last_node; | 
|  | sctx->last_str_idx = last_str_idx; | 
|  | re_node_set_init_empty (&sctx->limits); | 
|  | } |