blob: cdad12eb869fb6ed268fe2e814fc8783a0ef3192 [file] [log] [blame]
/*
* BMC150 3-axis accelerometer driver
* Copyright (c) 2014, Intel Corporation.
*
* This program is free software; you can redistribute it and/or modify it
* under the terms and conditions of the GNU General Public License,
* version 2, as published by the Free Software Foundation.
*
* This program is distributed in the hope it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
* more details.
*/
#include <linux/module.h>
#include <linux/i2c.h>
#include <linux/interrupt.h>
#include <linux/delay.h>
#include <linux/slab.h>
#include <linux/acpi.h>
#include <linux/pm.h>
#include <linux/pm_runtime.h>
#include <linux/iio/iio.h>
#include <linux/iio/sysfs.h>
#include <linux/iio/buffer.h>
#include <linux/iio/events.h>
#include <linux/iio/trigger.h>
#include <linux/iio/trigger_consumer.h>
#include <linux/iio/triggered_buffer.h>
/* Linux v3.10 does not define the below functions */
#define devm_gpiod_get_index(dev, con_id, idx) ERR_PTR(-EINVAL)
#define gpiod_direction_input(desc) -EINVAL
#define gpiod_to_irq(desc) -EINVAL
#define desc_to_gpio(desc) -EINVAL
/*
* Linux v3.10 does not define this boilerplate iio function either.
*
* iio_push_to_buffers_with_timestamp() - push data and timestamp to buffers
* @indio_dev: iio_dev structure for device.
* @data: sample data
* @timestamp: timestamp for the sample data
*
* Pushes data to the IIO device's buffers. If timestamps are enabled for the
* device the function will store the supplied timestamp as the last element in
* the sample data buffer before pushing it to the device buffers. The sample
* data buffer needs to be large enough to hold the additional timestamp
* (usually the buffer should be indio->scan_bytes bytes large).
*
* Returns 0 on success, a negative error code otherwise.
*/
static inline int iio_push_to_buffers_with_timestamp(struct iio_dev *indio_dev,
void *data,
int64_t timestamp)
{
if (indio_dev->scan_timestamp) {
size_t ts_offset = indio_dev->scan_bytes / sizeof(int64_t) - 1;
((int64_t *)data)[ts_offset] = timestamp;
}
return iio_push_to_buffers(indio_dev, data);
}
#define BMC150_ACCEL_DRV_NAME "bmc150_accel"
#define BMC150_ACCEL_IRQ_NAME "bmc150_accel_event"
#define BMC150_ACCEL_GPIO_NAME "bmc150_accel_int"
#define BMC150_ACCEL_REG_CHIP_ID 0x00
#define BMC150_ACCEL_CHIP_ID_VAL 0xFA
#define BMC150_ACCEL_REG_INT_STATUS_2 0x0B
#define BMC150_ACCEL_ANY_MOTION_MASK 0x07
#define BMC150_ACCEL_ANY_MOTION_BIT_SIGN BIT(3)
#define BMC150_ACCEL_REG_PMU_LPW 0x11
#define BMC150_ACCEL_PMU_MODE_MASK 0xE0
#define BMC150_ACCEL_PMU_MODE_SHIFT 5
#define BMC150_ACCEL_PMU_BIT_SLEEP_DUR_MASK 0x17
#define BMC150_ACCEL_PMU_BIT_SLEEP_DUR_SHIFT 1
#define BMC150_ACCEL_REG_PMU_RANGE 0x0F
#define BMC150_ACCEL_DEF_RANGE_2G 0x03
#define BMC150_ACCEL_DEF_RANGE_4G 0x05
#define BMC150_ACCEL_DEF_RANGE_8G 0x08
#define BMC150_ACCEL_DEF_RANGE_16G 0x0C
/* Default BW: 125Hz */
#define BMC150_ACCEL_REG_PMU_BW 0x10
#define BMC150_ACCEL_DEF_BW 125
#define BMC150_ACCEL_REG_INT_MAP_0 0x19
#define BMC150_ACCEL_INT_MAP_0_BIT_SLOPE BIT(2)
#define BMC150_ACCEL_REG_INT_MAP_1 0x1A
#define BMC150_ACCEL_INT_MAP_1_BIT_DATA BIT(0)
#define BMC150_ACCEL_REG_INT_RST_LATCH 0x21
#define BMC150_ACCEL_INT_MODE_LATCH_RESET 0x80
#define BMC150_ACCEL_INT_MODE_LATCH_INT 0x0F
#define BMC150_ACCEL_INT_MODE_NON_LATCH_INT 0x00
#define BMC150_ACCEL_REG_INT_EN_0 0x16
#define BMC150_ACCEL_INT_EN_BIT_SLP_X BIT(0)
#define BMC150_ACCEL_INT_EN_BIT_SLP_Y BIT(1)
#define BMC150_ACCEL_INT_EN_BIT_SLP_Z BIT(2)
#define BMC150_ACCEL_REG_INT_EN_1 0x17
#define BMC150_ACCEL_INT_EN_BIT_DATA_EN BIT(4)
#define BMC150_ACCEL_REG_INT_OUT_CTRL 0x20
#define BMC150_ACCEL_INT_OUT_CTRL_INT1_LVL BIT(0)
#define BMC150_ACCEL_REG_INT_5 0x27
#define BMC150_ACCEL_SLOPE_DUR_MASK 0x03
#define BMC150_ACCEL_REG_INT_6 0x28
#define BMC150_ACCEL_SLOPE_THRES_MASK 0xFF
/* Slope duration in terms of number of samples */
#define BMC150_ACCEL_DEF_SLOPE_DURATION 2
/* in terms of multiples of g's/LSB, based on range */
#define BMC150_ACCEL_DEF_SLOPE_THRESHOLD 5
#define BMC150_ACCEL_REG_XOUT_L 0x02
#define BMC150_ACCEL_MAX_STARTUP_TIME_MS 100
/* Sleep Duration values */
#define BMC150_ACCEL_SLEEP_500_MICRO 0x05
#define BMC150_ACCEL_SLEEP_1_MS 0x06
#define BMC150_ACCEL_SLEEP_2_MS 0x07
#define BMC150_ACCEL_SLEEP_4_MS 0x08
#define BMC150_ACCEL_SLEEP_6_MS 0x09
#define BMC150_ACCEL_SLEEP_10_MS 0x0A
#define BMC150_ACCEL_SLEEP_25_MS 0x0B
#define BMC150_ACCEL_SLEEP_50_MS 0x0C
#define BMC150_ACCEL_SLEEP_100_MS 0x0D
#define BMC150_ACCEL_SLEEP_500_MS 0x0E
#define BMC150_ACCEL_SLEEP_1_SEC 0x0F
#define BMC150_ACCEL_REG_TEMP 0x08
#define BMC150_ACCEL_TEMP_CENTER_VAL 24
#define BMC150_ACCEL_AXIS_TO_REG(axis) (BMC150_ACCEL_REG_XOUT_L + (axis * 2))
#define BMC150_AUTO_SUSPEND_DELAY_MS 2000
enum bmc150_accel_axis {
AXIS_X,
AXIS_Y,
AXIS_Z,
};
enum bmc150_power_modes {
BMC150_ACCEL_SLEEP_MODE_NORMAL,
BMC150_ACCEL_SLEEP_MODE_DEEP_SUSPEND,
BMC150_ACCEL_SLEEP_MODE_LPM,
BMC150_ACCEL_SLEEP_MODE_SUSPEND = 0x04,
};
struct bmc150_accel_data {
struct i2c_client *client;
struct iio_trigger *dready_trig;
struct iio_trigger *motion_trig;
struct mutex mutex;
s16 buffer[8];
u8 bw_bits;
u32 slope_dur;
u32 slope_thres;
u32 range;
int ev_enable_state;
bool dready_trigger_on;
bool motion_trigger_on;
int64_t timestamp;
};
static const struct {
int val;
int val2;
u8 bw_bits;
} bmc150_accel_samp_freq_table[] = { {7, 810000, 0x08},
{15, 630000, 0x09},
{31, 250000, 0x0A},
{62, 500000, 0x0B},
{125, 0, 0x0C},
{250, 0, 0x0D},
{500, 0, 0x0E},
{1000, 0, 0x0F} };
static const struct {
int bw_bits;
int msec;
} bmc150_accel_sample_upd_time[] = { {0x08, 64},
{0x09, 32},
{0x0A, 16},
{0x0B, 8},
{0x0C, 4},
{0x0D, 2},
{0x0E, 1},
{0x0F, 1} };
static const struct {
int scale;
int range;
} bmc150_accel_scale_table[] = { {9610, BMC150_ACCEL_DEF_RANGE_2G},
{19122, BMC150_ACCEL_DEF_RANGE_4G},
{38344, BMC150_ACCEL_DEF_RANGE_8G},
{77057, BMC150_ACCEL_DEF_RANGE_16G} };
static const struct {
int sleep_dur;
int reg_value;
} bmc150_accel_sleep_value_table[] = { {0, 0},
{500, BMC150_ACCEL_SLEEP_500_MICRO},
{1000, BMC150_ACCEL_SLEEP_1_MS},
{2000, BMC150_ACCEL_SLEEP_2_MS},
{4000, BMC150_ACCEL_SLEEP_4_MS},
{6000, BMC150_ACCEL_SLEEP_6_MS},
{10000, BMC150_ACCEL_SLEEP_10_MS},
{25000, BMC150_ACCEL_SLEEP_25_MS},
{50000, BMC150_ACCEL_SLEEP_50_MS},
{100000, BMC150_ACCEL_SLEEP_100_MS},
{500000, BMC150_ACCEL_SLEEP_500_MS},
{1000000, BMC150_ACCEL_SLEEP_1_SEC} };
static int bmc150_accel_set_mode(struct bmc150_accel_data *data,
enum bmc150_power_modes mode,
int dur_us)
{
int i;
int ret;
u8 lpw_bits;
int dur_val = -1;
if (dur_us > 0) {
for (i = 0; i < ARRAY_SIZE(bmc150_accel_sleep_value_table);
++i) {
if (bmc150_accel_sleep_value_table[i].sleep_dur ==
dur_us)
dur_val =
bmc150_accel_sleep_value_table[i].reg_value;
}
} else
dur_val = 0;
if (dur_val < 0)
return -EINVAL;
lpw_bits = mode << BMC150_ACCEL_PMU_MODE_SHIFT;
lpw_bits |= (dur_val << BMC150_ACCEL_PMU_BIT_SLEEP_DUR_SHIFT);
dev_dbg(&data->client->dev, "Set Mode bits %x\n", lpw_bits);
ret = i2c_smbus_write_byte_data(data->client,
BMC150_ACCEL_REG_PMU_LPW, lpw_bits);
if (ret < 0) {
dev_err(&data->client->dev, "Error writing reg_pmu_lpw\n");
return ret;
}
return 0;
}
static int bmc150_accel_set_bw(struct bmc150_accel_data *data, int val,
int val2)
{
int i;
int ret;
for (i = 0; i < ARRAY_SIZE(bmc150_accel_samp_freq_table); ++i) {
if (bmc150_accel_samp_freq_table[i].val == val &&
bmc150_accel_samp_freq_table[i].val2 == val2) {
ret = i2c_smbus_write_byte_data(
data->client,
BMC150_ACCEL_REG_PMU_BW,
bmc150_accel_samp_freq_table[i].bw_bits);
if (ret < 0)
return ret;
data->bw_bits =
bmc150_accel_samp_freq_table[i].bw_bits;
return 0;
}
}
return -EINVAL;
}
static int bmc150_accel_chip_init(struct bmc150_accel_data *data)
{
int ret;
ret = i2c_smbus_read_byte_data(data->client, BMC150_ACCEL_REG_CHIP_ID);
if (ret < 0) {
dev_err(&data->client->dev,
"Error: Reading chip id\n");
return ret;
}
dev_dbg(&data->client->dev, "Chip Id %x\n", ret);
if (ret != BMC150_ACCEL_CHIP_ID_VAL) {
dev_err(&data->client->dev, "Invalid chip %x\n", ret);
return -ENODEV;
}
ret = bmc150_accel_set_mode(data, BMC150_ACCEL_SLEEP_MODE_NORMAL, 0);
if (ret < 0)
return ret;
/* Set Bandwidth */
ret = bmc150_accel_set_bw(data, BMC150_ACCEL_DEF_BW, 0);
if (ret < 0)
return ret;
/* Set Default Range */
ret = i2c_smbus_write_byte_data(data->client,
BMC150_ACCEL_REG_PMU_RANGE,
BMC150_ACCEL_DEF_RANGE_4G);
if (ret < 0) {
dev_err(&data->client->dev,
"Error writing reg_pmu_range\n");
return ret;
}
data->range = BMC150_ACCEL_DEF_RANGE_4G;
/* Set default slope duration */
ret = i2c_smbus_read_byte_data(data->client, BMC150_ACCEL_REG_INT_5);
if (ret < 0) {
dev_err(&data->client->dev, "Error reading reg_int_5\n");
return ret;
}
data->slope_dur |= BMC150_ACCEL_DEF_SLOPE_DURATION;
ret = i2c_smbus_write_byte_data(data->client,
BMC150_ACCEL_REG_INT_5,
data->slope_dur);
if (ret < 0) {
dev_err(&data->client->dev, "Error writing reg_int_5\n");
return ret;
}
dev_dbg(&data->client->dev, "slope_dur %x\n", data->slope_dur);
/* Set default slope thresholds */
ret = i2c_smbus_write_byte_data(data->client,
BMC150_ACCEL_REG_INT_6,
BMC150_ACCEL_DEF_SLOPE_THRESHOLD);
if (ret < 0) {
dev_err(&data->client->dev, "Error writing reg_int_6\n");
return ret;
}
data->slope_thres = BMC150_ACCEL_DEF_SLOPE_THRESHOLD;
dev_dbg(&data->client->dev, "slope_thres %x\n", data->slope_thres);
/* Set default as latched interrupts */
ret = i2c_smbus_write_byte_data(data->client,
BMC150_ACCEL_REG_INT_RST_LATCH,
BMC150_ACCEL_INT_MODE_LATCH_INT |
BMC150_ACCEL_INT_MODE_LATCH_RESET);
if (ret < 0) {
dev_err(&data->client->dev,
"Error writing reg_int_rst_latch\n");
return ret;
}
return 0;
}
static int bmc150_accel_setup_any_motion_interrupt(
struct bmc150_accel_data *data,
bool status)
{
int ret;
/* Enable/Disable INT1 mapping */
ret = i2c_smbus_read_byte_data(data->client,
BMC150_ACCEL_REG_INT_MAP_0);
if (ret < 0) {
dev_err(&data->client->dev, "Error reading reg_int_map_0\n");
return ret;
}
if (status)
ret |= BMC150_ACCEL_INT_MAP_0_BIT_SLOPE;
else
ret &= ~BMC150_ACCEL_INT_MAP_0_BIT_SLOPE;
ret = i2c_smbus_write_byte_data(data->client,
BMC150_ACCEL_REG_INT_MAP_0,
ret);
if (ret < 0) {
dev_err(&data->client->dev, "Error writing reg_int_map_0\n");
return ret;
}
if (status) {
/* Set slope duration (no of samples) */
ret = i2c_smbus_write_byte_data(data->client,
BMC150_ACCEL_REG_INT_5,
data->slope_dur);
if (ret < 0) {
dev_err(&data->client->dev, "Error write reg_int_5\n");
return ret;
}
/* Set slope thresholds */
ret = i2c_smbus_write_byte_data(data->client,
BMC150_ACCEL_REG_INT_6,
data->slope_thres);
if (ret < 0) {
dev_err(&data->client->dev, "Error write reg_int_6\n");
return ret;
}
/*
* New data interrupt is always non-latched,
* which will have higher priority, so no need
* to set latched mode, we will be flooded anyway with INTR
*/
if (!data->dready_trigger_on) {
ret = i2c_smbus_write_byte_data(data->client,
BMC150_ACCEL_REG_INT_RST_LATCH,
BMC150_ACCEL_INT_MODE_LATCH_INT |
BMC150_ACCEL_INT_MODE_LATCH_RESET);
if (ret < 0) {
dev_err(&data->client->dev,
"Error writing reg_int_rst_latch\n");
return ret;
}
}
ret = i2c_smbus_write_byte_data(data->client,
BMC150_ACCEL_REG_INT_EN_0,
BMC150_ACCEL_INT_EN_BIT_SLP_X |
BMC150_ACCEL_INT_EN_BIT_SLP_Y |
BMC150_ACCEL_INT_EN_BIT_SLP_Z);
} else
ret = i2c_smbus_write_byte_data(data->client,
BMC150_ACCEL_REG_INT_EN_0,
0);
if (ret < 0) {
dev_err(&data->client->dev, "Error writing reg_int_en_0\n");
return ret;
}
return 0;
}
static int bmc150_accel_setup_new_data_interrupt(struct bmc150_accel_data *data,
bool status)
{
int ret;
/* Enable/Disable INT1 mapping */
ret = i2c_smbus_read_byte_data(data->client,
BMC150_ACCEL_REG_INT_MAP_1);
if (ret < 0) {
dev_err(&data->client->dev, "Error reading reg_int_map_1\n");
return ret;
}
if (status)
ret |= BMC150_ACCEL_INT_MAP_1_BIT_DATA;
else
ret &= ~BMC150_ACCEL_INT_MAP_1_BIT_DATA;
ret = i2c_smbus_write_byte_data(data->client,
BMC150_ACCEL_REG_INT_MAP_1,
ret);
if (ret < 0) {
dev_err(&data->client->dev, "Error writing reg_int_map_1\n");
return ret;
}
if (status) {
/*
* Set non latched mode interrupt and clear any latched
* interrupt
*/
ret = i2c_smbus_write_byte_data(data->client,
BMC150_ACCEL_REG_INT_RST_LATCH,
BMC150_ACCEL_INT_MODE_NON_LATCH_INT |
BMC150_ACCEL_INT_MODE_LATCH_RESET);
if (ret < 0) {
dev_err(&data->client->dev,
"Error writing reg_int_rst_latch\n");
return ret;
}
ret = i2c_smbus_write_byte_data(data->client,
BMC150_ACCEL_REG_INT_EN_1,
BMC150_ACCEL_INT_EN_BIT_DATA_EN);
} else {
/* Restore default interrupt mode */
ret = i2c_smbus_write_byte_data(data->client,
BMC150_ACCEL_REG_INT_RST_LATCH,
BMC150_ACCEL_INT_MODE_LATCH_INT |
BMC150_ACCEL_INT_MODE_LATCH_RESET);
if (ret < 0) {
dev_err(&data->client->dev,
"Error writing reg_int_rst_latch\n");
return ret;
}
ret = i2c_smbus_write_byte_data(data->client,
BMC150_ACCEL_REG_INT_EN_1,
0);
}
if (ret < 0) {
dev_err(&data->client->dev, "Error writing reg_int_en_1\n");
return ret;
}
return 0;
}
static int bmc150_accel_get_bw(struct bmc150_accel_data *data, int *val,
int *val2)
{
int i;
for (i = 0; i < ARRAY_SIZE(bmc150_accel_samp_freq_table); ++i) {
if (bmc150_accel_samp_freq_table[i].bw_bits == data->bw_bits) {
*val = bmc150_accel_samp_freq_table[i].val;
*val2 = bmc150_accel_samp_freq_table[i].val2;
return IIO_VAL_INT_PLUS_MICRO;
}
}
return -EINVAL;
}
static int bmc150_accel_get_startup_times(struct bmc150_accel_data *data)
{
int i;
for (i = 0; i < ARRAY_SIZE(bmc150_accel_sample_upd_time); ++i) {
if (bmc150_accel_sample_upd_time[i].bw_bits == data->bw_bits)
return bmc150_accel_sample_upd_time[i].msec;
}
return BMC150_ACCEL_MAX_STARTUP_TIME_MS;
}
static int bmc150_accel_set_power_state(struct bmc150_accel_data *data, bool on)
{
int ret;
if (on)
ret = pm_runtime_get_sync(&data->client->dev);
else {
pm_runtime_mark_last_busy(&data->client->dev);
ret = pm_runtime_put_autosuspend(&data->client->dev);
}
if (ret < 0) {
dev_err(&data->client->dev,
"Failed: bmc150_accel_set_power_state for %d\n", on);
return ret;
}
return 0;
}
static int bmc150_accel_set_scale(struct bmc150_accel_data *data, int val)
{
int ret, i;
for (i = 0; i < ARRAY_SIZE(bmc150_accel_scale_table); ++i) {
if (bmc150_accel_scale_table[i].scale == val) {
ret = i2c_smbus_write_byte_data(
data->client,
BMC150_ACCEL_REG_PMU_RANGE,
bmc150_accel_scale_table[i].range);
if (ret < 0) {
dev_err(&data->client->dev,
"Error writing pmu_range\n");
return ret;
}
data->range = bmc150_accel_scale_table[i].range;
return 0;
}
}
return -EINVAL;
}
static int bmc150_accel_get_temp(struct bmc150_accel_data *data, int *val)
{
int ret;
mutex_lock(&data->mutex);
ret = i2c_smbus_read_byte_data(data->client, BMC150_ACCEL_REG_TEMP);
if (ret < 0) {
dev_err(&data->client->dev, "Error reading reg_temp\n");
mutex_unlock(&data->mutex);
return ret;
}
*val = sign_extend32(ret, 7);
mutex_unlock(&data->mutex);
return IIO_VAL_INT;
}
static int bmc150_accel_get_axis(struct bmc150_accel_data *data, int axis,
int *val)
{
int ret;
mutex_lock(&data->mutex);
ret = bmc150_accel_set_power_state(data, true);
if (ret < 0) {
mutex_unlock(&data->mutex);
return ret;
}
ret = i2c_smbus_read_word_data(data->client,
BMC150_ACCEL_AXIS_TO_REG(axis));
if (ret < 0) {
dev_err(&data->client->dev, "Error reading axis %d\n", axis);
bmc150_accel_set_power_state(data, false);
mutex_unlock(&data->mutex);
return ret;
}
*val = sign_extend32(ret >> 4, 11);
ret = bmc150_accel_set_power_state(data, false);
mutex_unlock(&data->mutex);
if (ret < 0)
return ret;
return IIO_VAL_INT;
}
static int bmc150_accel_read_raw(struct iio_dev *indio_dev,
struct iio_chan_spec const *chan,
int *val, int *val2, long mask)
{
struct bmc150_accel_data *data = iio_priv(indio_dev);
int ret;
switch (mask) {
case IIO_CHAN_INFO_RAW:
switch (chan->type) {
case IIO_TEMP:
return bmc150_accel_get_temp(data, val);
case IIO_ACCEL:
if (iio_buffer_enabled(indio_dev))
return -EBUSY;
else
return bmc150_accel_get_axis(data,
chan->scan_index,
val);
default:
return -EINVAL;
}
case IIO_CHAN_INFO_OFFSET:
if (chan->type == IIO_TEMP) {
*val = BMC150_ACCEL_TEMP_CENTER_VAL;
return IIO_VAL_INT;
} else
return -EINVAL;
case IIO_CHAN_INFO_SCALE:
*val = 0;
switch (chan->type) {
case IIO_TEMP:
*val2 = 500000;
return IIO_VAL_INT_PLUS_MICRO;
case IIO_ACCEL:
{
int i;
for (i = 0; i < ARRAY_SIZE(bmc150_accel_scale_table);
++i) {
if (bmc150_accel_scale_table[i].range ==
data->range) {
*val2 =
bmc150_accel_scale_table[i].scale;
return IIO_VAL_INT_PLUS_MICRO;
}
}
return -EINVAL;
}
default:
return -EINVAL;
}
case IIO_CHAN_INFO_SAMP_FREQ:
mutex_lock(&data->mutex);
ret = bmc150_accel_get_bw(data, val, val2);
mutex_unlock(&data->mutex);
return ret;
default:
return -EINVAL;
}
}
static int bmc150_accel_write_raw(struct iio_dev *indio_dev,
struct iio_chan_spec const *chan,
int val, int val2, long mask)
{
struct bmc150_accel_data *data = iio_priv(indio_dev);
int ret;
switch (mask) {
case IIO_CHAN_INFO_SAMP_FREQ:
mutex_lock(&data->mutex);
ret = bmc150_accel_set_bw(data, val, val2);
mutex_unlock(&data->mutex);
break;
case IIO_CHAN_INFO_SCALE:
if (val)
return -EINVAL;
mutex_lock(&data->mutex);
ret = bmc150_accel_set_scale(data, val2);
mutex_unlock(&data->mutex);
return ret;
default:
ret = -EINVAL;
}
return ret;
}
static int bmc150_accel_read_event(struct iio_dev *indio_dev,
const struct iio_chan_spec *chan,
enum iio_event_type type,
enum iio_event_direction dir,
enum iio_event_info info,
int *val, int *val2)
{
struct bmc150_accel_data *data = iio_priv(indio_dev);
*val2 = 0;
switch (info) {
case IIO_EV_INFO_VALUE:
*val = data->slope_thres;
break;
case IIO_EV_INFO_PERIOD:
*val = data->slope_dur & BMC150_ACCEL_SLOPE_DUR_MASK;
break;
default:
return -EINVAL;
}
return IIO_VAL_INT;
}
static int bmc150_accel_write_event(struct iio_dev *indio_dev,
const struct iio_chan_spec *chan,
enum iio_event_type type,
enum iio_event_direction dir,
enum iio_event_info info,
int val, int val2)
{
struct bmc150_accel_data *data = iio_priv(indio_dev);
if (data->ev_enable_state)
return -EBUSY;
switch (info) {
case IIO_EV_INFO_VALUE:
data->slope_thres = val;
break;
case IIO_EV_INFO_PERIOD:
data->slope_dur &= ~BMC150_ACCEL_SLOPE_DUR_MASK;
data->slope_dur |= val & BMC150_ACCEL_SLOPE_DUR_MASK;
break;
default:
return -EINVAL;
}
return 0;
}
static int bmc150_accel_read_event_config(struct iio_dev *indio_dev,
const struct iio_chan_spec *chan,
enum iio_event_type type,
enum iio_event_direction dir)
{
struct bmc150_accel_data *data = iio_priv(indio_dev);
return data->ev_enable_state;
}
static int bmc150_accel_write_event_config(struct iio_dev *indio_dev,
const struct iio_chan_spec *chan,
enum iio_event_type type,
enum iio_event_direction dir,
int state)
{
struct bmc150_accel_data *data = iio_priv(indio_dev);
int ret;
if (state && data->ev_enable_state)
return 0;
mutex_lock(&data->mutex);
if (!state && data->motion_trigger_on) {
data->ev_enable_state = 0;
mutex_unlock(&data->mutex);
return 0;
}
/*
* We will expect the enable and disable to do operation in
* in reverse order. This will happen here anyway as our
* resume operation uses sync mode runtime pm calls, the
* suspend operation will be delayed by autosuspend delay
* So the disable operation will still happen in reverse of
* enable operation. When runtime pm is disabled the mode
* is always on so sequence doesn't matter
*/
ret = bmc150_accel_set_power_state(data, state);
if (ret < 0) {
mutex_unlock(&data->mutex);
return ret;
}
ret = bmc150_accel_setup_any_motion_interrupt(data, state);
if (ret < 0) {
mutex_unlock(&data->mutex);
return ret;
}
data->ev_enable_state = state;
mutex_unlock(&data->mutex);
return 0;
}
static int bmc150_accel_validate_trigger(struct iio_dev *indio_dev,
struct iio_trigger *trig)
{
struct bmc150_accel_data *data = iio_priv(indio_dev);
if (data->dready_trig != trig && data->motion_trig != trig)
return -EINVAL;
return 0;
}
static IIO_CONST_ATTR_SAMP_FREQ_AVAIL(
"7.810000 15.630000 31.250000 62.500000 125 250 500 1000");
static struct attribute *bmc150_accel_attributes[] = {
&iio_const_attr_sampling_frequency_available.dev_attr.attr,
NULL,
};
static const struct attribute_group bmc150_accel_attrs_group = {
.attrs = bmc150_accel_attributes,
};
static const struct iio_event_spec bmc150_accel_event = {
.type = IIO_EV_TYPE_ROC,
.dir = IIO_EV_DIR_EITHER,
.mask_separate = BIT(IIO_EV_INFO_VALUE) |
BIT(IIO_EV_INFO_ENABLE) |
BIT(IIO_EV_INFO_PERIOD)
};
#define BMC150_ACCEL_CHANNEL(_axis) { \
.type = IIO_ACCEL, \
.modified = 1, \
.channel2 = IIO_MOD_##_axis, \
.info_mask_separate = BIT(IIO_CHAN_INFO_RAW), \
.info_mask_shared_by_type = BIT(IIO_CHAN_INFO_SCALE) | \
BIT(IIO_CHAN_INFO_SAMP_FREQ), \
.scan_index = AXIS_##_axis, \
.scan_type = { \
.sign = 's', \
.realbits = 12, \
.storagebits = 16, \
.shift = 4, \
}, \
.event_spec = &bmc150_accel_event, \
.num_event_specs = 1 \
}
static const struct iio_chan_spec bmc150_accel_channels[] = {
{
.type = IIO_TEMP,
.info_mask_separate = BIT(IIO_CHAN_INFO_RAW) |
BIT(IIO_CHAN_INFO_SCALE) |
BIT(IIO_CHAN_INFO_OFFSET),
.scan_index = -1,
},
BMC150_ACCEL_CHANNEL(X),
BMC150_ACCEL_CHANNEL(Y),
BMC150_ACCEL_CHANNEL(Z),
IIO_CHAN_SOFT_TIMESTAMP(3),
};
static const struct iio_info bmc150_accel_info = {
.attrs = &bmc150_accel_attrs_group,
.read_raw = bmc150_accel_read_raw,
.write_raw = bmc150_accel_write_raw,
.read_event_value_new = bmc150_accel_read_event,
.write_event_value_new = bmc150_accel_write_event,
.write_event_config_new = bmc150_accel_write_event_config,
.read_event_config_new = bmc150_accel_read_event_config,
.validate_trigger = bmc150_accel_validate_trigger,
.driver_module = THIS_MODULE,
};
static irqreturn_t bmc150_accel_trigger_handler(int irq, void *p)
{
struct iio_poll_func *pf = p;
struct iio_dev *indio_dev = pf->indio_dev;
struct bmc150_accel_data *data = iio_priv(indio_dev);
int bit, ret, i = 0;
mutex_lock(&data->mutex);
for_each_set_bit(bit, indio_dev->buffer->scan_mask,
indio_dev->masklength) {
ret = i2c_smbus_read_word_data(data->client,
BMC150_ACCEL_AXIS_TO_REG(bit));
if (ret < 0) {
mutex_unlock(&data->mutex);
goto err_read;
}
data->buffer[i++] = ret;
}
mutex_unlock(&data->mutex);
iio_push_to_buffers_with_timestamp(indio_dev, data->buffer,
data->timestamp);
err_read:
iio_trigger_notify_done(indio_dev->trig);
return IRQ_HANDLED;
}
static int bmc150_accel_trig_try_reen(struct iio_trigger *trig)
{
struct iio_dev *indio_dev = iio_trigger_get_drvdata(trig);
struct bmc150_accel_data *data = iio_priv(indio_dev);
int ret;
/* new data interrupts don't need ack */
if (data->dready_trigger_on)
return 0;
mutex_lock(&data->mutex);
/* clear any latched interrupt */
ret = i2c_smbus_write_byte_data(data->client,
BMC150_ACCEL_REG_INT_RST_LATCH,
BMC150_ACCEL_INT_MODE_LATCH_INT |
BMC150_ACCEL_INT_MODE_LATCH_RESET);
mutex_unlock(&data->mutex);
if (ret < 0) {
dev_err(&data->client->dev,
"Error writing reg_int_rst_latch\n");
return ret;
}
return 0;
}
static int bmc150_accel_data_rdy_trigger_set_state(struct iio_trigger *trig,
bool state)
{
struct iio_dev *indio_dev = iio_trigger_get_drvdata(trig);
struct bmc150_accel_data *data = iio_priv(indio_dev);
int ret;
mutex_lock(&data->mutex);
if (!state && data->ev_enable_state && data->motion_trigger_on) {
data->motion_trigger_on = false;
mutex_unlock(&data->mutex);
return 0;
}
/*
* Refer to comment in bmc150_accel_write_event_config for
* enable/disable operation order
*/
ret = bmc150_accel_set_power_state(data, state);
if (ret < 0) {
mutex_unlock(&data->mutex);
return ret;
}
if (data->motion_trig == trig)
ret = bmc150_accel_setup_any_motion_interrupt(data, state);
else
ret = bmc150_accel_setup_new_data_interrupt(data, state);
if (ret < 0) {
mutex_unlock(&data->mutex);
return ret;
}
if (data->motion_trig == trig)
data->motion_trigger_on = state;
else
data->dready_trigger_on = state;
mutex_unlock(&data->mutex);
return ret;
}
static const struct iio_trigger_ops bmc150_accel_trigger_ops = {
.set_trigger_state = bmc150_accel_data_rdy_trigger_set_state,
.try_reenable = bmc150_accel_trig_try_reen,
.owner = THIS_MODULE,
};
static irqreturn_t bmc150_accel_event_handler(int irq, void *private)
{
struct iio_dev *indio_dev = private;
struct bmc150_accel_data *data = iio_priv(indio_dev);
int ret;
int dir;
ret = i2c_smbus_read_byte_data(data->client,
BMC150_ACCEL_REG_INT_STATUS_2);
if (ret < 0) {
dev_err(&data->client->dev, "Error reading reg_int_status_2\n");
goto ack_intr_status;
}
if (ret & BMC150_ACCEL_ANY_MOTION_BIT_SIGN)
dir = IIO_EV_DIR_FALLING;
else
dir = IIO_EV_DIR_RISING;
if (ret & BMC150_ACCEL_ANY_MOTION_MASK)
iio_push_event(indio_dev, IIO_MOD_EVENT_CODE(IIO_ACCEL,
0,
IIO_MOD_X_OR_Y_OR_Z,
IIO_EV_TYPE_ROC,
IIO_EV_DIR_EITHER),
data->timestamp);
ack_intr_status:
if (!data->dready_trigger_on)
ret = i2c_smbus_write_byte_data(data->client,
BMC150_ACCEL_REG_INT_RST_LATCH,
BMC150_ACCEL_INT_MODE_LATCH_INT |
BMC150_ACCEL_INT_MODE_LATCH_RESET);
return IRQ_HANDLED;
}
static irqreturn_t bmc150_accel_data_rdy_trig_poll(int irq, void *private)
{
struct iio_dev *indio_dev = private;
struct bmc150_accel_data *data = iio_priv(indio_dev);
data->timestamp = iio_get_time_ns();
if (data->dready_trigger_on)
iio_trigger_poll(data->dready_trig, 0);
else if (data->motion_trigger_on)
iio_trigger_poll(data->motion_trig, 0);
if (data->ev_enable_state)
return IRQ_WAKE_THREAD;
else
return IRQ_HANDLED;
}
static int bmc150_accel_acpi_gpio_probe(struct i2c_client *client,
struct bmc150_accel_data *data)
{
const struct acpi_device_id *id;
struct device *dev;
struct gpio_desc *gpio;
int ret;
if (!client)
return -EINVAL;
dev = &client->dev;
if (!ACPI_HANDLE(dev))
return -ENODEV;
id = acpi_match_device(dev->driver->acpi_match_table, dev);
if (!id)
return -ENODEV;
/* data ready gpio interrupt pin */
gpio = devm_gpiod_get_index(dev, BMC150_ACCEL_GPIO_NAME, 0);
if (IS_ERR(gpio)) {
dev_err(dev, "Failed: acpi gpio get index\n");
return PTR_ERR(gpio);
}
ret = gpiod_direction_input(gpio);
if (ret)
return ret;
ret = gpiod_to_irq(gpio);
dev_dbg(dev, "GPIO resource, no:%d irq:%d\n", desc_to_gpio(gpio), ret);
return ret;
}
static int bmc150_accel_probe(struct i2c_client *client,
const struct i2c_device_id *id)
{
struct bmc150_accel_data *data;
struct iio_dev *indio_dev;
int ret;
indio_dev = devm_iio_device_alloc(&client->dev, sizeof(*data));
if (!indio_dev)
return -ENOMEM;
data = iio_priv(indio_dev);
i2c_set_clientdata(client, indio_dev);
data->client = client;
ret = bmc150_accel_chip_init(data);
if (ret < 0)
return ret;
mutex_init(&data->mutex);
indio_dev->dev.parent = &client->dev;
indio_dev->channels = bmc150_accel_channels;
indio_dev->num_channels = ARRAY_SIZE(bmc150_accel_channels);
indio_dev->name = BMC150_ACCEL_DRV_NAME;
indio_dev->modes = INDIO_DIRECT_MODE;
indio_dev->info = &bmc150_accel_info;
if (client->irq < 0)
client->irq = bmc150_accel_acpi_gpio_probe(client, data);
if (client->irq >= 0) {
ret = devm_request_threaded_irq(
&client->dev, client->irq,
bmc150_accel_data_rdy_trig_poll,
bmc150_accel_event_handler,
IRQF_TRIGGER_RISING,
BMC150_ACCEL_IRQ_NAME,
indio_dev);
if (ret)
return ret;
data->dready_trig = iio_trigger_alloc("%s-dev",
indio_dev->name);
if (!data->dready_trig)
return -ENOMEM;
data->motion_trig = iio_trigger_alloc("%s-any-motion-dev",
indio_dev->name);
if (!data->motion_trig) {
ret = -ENOMEM;
goto err_dready_trig_free;
}
data->dready_trig->dev.parent = &client->dev;
data->dready_trig->ops = &bmc150_accel_trigger_ops;
iio_trigger_set_drvdata(data->dready_trig, indio_dev);
ret = iio_trigger_register(data->dready_trig);
if (ret)
goto err_motion_trig_free;
data->motion_trig->dev.parent = &client->dev;
data->motion_trig->ops = &bmc150_accel_trigger_ops;
iio_trigger_set_drvdata(data->motion_trig, indio_dev);
ret = iio_trigger_register(data->motion_trig);
if (ret)
goto err_dready_trigger_unregister;
ret = iio_triggered_buffer_setup(indio_dev,
&iio_pollfunc_store_time,
bmc150_accel_trigger_handler,
NULL);
if (ret < 0) {
dev_err(&client->dev,
"Failed: iio triggered buffer setup\n");
goto err_motion_trigger_unregister;
}
}
ret = iio_device_register(indio_dev);
if (ret < 0) {
dev_err(&client->dev, "Unable to register iio device\n");
goto err_buffer_cleanup;
}
ret = pm_runtime_set_active(&client->dev);
if (ret)
goto err_iio_unregister;
pm_runtime_enable(&client->dev);
pm_runtime_set_autosuspend_delay(&client->dev,
BMC150_AUTO_SUSPEND_DELAY_MS);
pm_runtime_use_autosuspend(&client->dev);
return 0;
err_iio_unregister:
iio_device_unregister(indio_dev);
err_buffer_cleanup:
iio_triggered_buffer_cleanup(indio_dev);
err_motion_trigger_unregister:
iio_trigger_unregister(data->motion_trig);
err_dready_trigger_unregister:
iio_trigger_unregister(data->dready_trig);
err_motion_trig_free:
iio_trigger_free(data->motion_trig);
err_dready_trig_free:
iio_trigger_free(data->dready_trig);
return ret;
}
static int bmc150_accel_remove(struct i2c_client *client)
{
struct iio_dev *indio_dev = i2c_get_clientdata(client);
struct bmc150_accel_data *data = iio_priv(indio_dev);
pm_runtime_disable(&client->dev);
pm_runtime_set_suspended(&client->dev);
pm_runtime_put_noidle(&client->dev);
iio_device_unregister(indio_dev);
if (data->dready_trig) {
iio_triggered_buffer_cleanup(indio_dev);
iio_trigger_unregister(data->dready_trig);
iio_trigger_unregister(data->motion_trig);
}
/* Free the triggers */
if (data->dready_trig) {
iio_trigger_free(data->dready_trig);
data->dready_trig = NULL;
}
if (data->motion_trig) {
iio_trigger_free(data->motion_trig);
data->motion_trig = NULL;
}
mutex_lock(&data->mutex);
bmc150_accel_set_mode(data, BMC150_ACCEL_SLEEP_MODE_DEEP_SUSPEND, 0);
mutex_unlock(&data->mutex);
return 0;
}
#ifdef CONFIG_PM_SLEEP
static int bmc150_accel_suspend(struct device *dev)
{
struct iio_dev *indio_dev = i2c_get_clientdata(to_i2c_client(dev));
struct bmc150_accel_data *data = iio_priv(indio_dev);
mutex_lock(&data->mutex);
bmc150_accel_set_mode(data, BMC150_ACCEL_SLEEP_MODE_SUSPEND, 0);
mutex_unlock(&data->mutex);
return 0;
}
static int bmc150_accel_resume(struct device *dev)
{
struct iio_dev *indio_dev = i2c_get_clientdata(to_i2c_client(dev));
struct bmc150_accel_data *data = iio_priv(indio_dev);
mutex_lock(&data->mutex);
if (data->dready_trigger_on || data->motion_trigger_on ||
data->ev_enable_state)
bmc150_accel_set_mode(data, BMC150_ACCEL_SLEEP_MODE_NORMAL, 0);
mutex_unlock(&data->mutex);
return 0;
}
#endif
#ifdef CONFIG_PM_RUNTIME
static int bmc150_accel_runtime_suspend(struct device *dev)
{
struct iio_dev *indio_dev = i2c_get_clientdata(to_i2c_client(dev));
struct bmc150_accel_data *data = iio_priv(indio_dev);
dev_dbg(&data->client->dev, __func__);
return bmc150_accel_set_mode(data, BMC150_ACCEL_SLEEP_MODE_SUSPEND, 0);
}
static int bmc150_accel_runtime_resume(struct device *dev)
{
struct iio_dev *indio_dev = i2c_get_clientdata(to_i2c_client(dev));
struct bmc150_accel_data *data = iio_priv(indio_dev);
int ret;
int sleep_val;
dev_dbg(&data->client->dev, __func__);
ret = bmc150_accel_set_mode(data, BMC150_ACCEL_SLEEP_MODE_NORMAL, 0);
if (ret < 0)
return ret;
sleep_val = bmc150_accel_get_startup_times(data);
if (sleep_val < 20)
usleep_range(sleep_val * 1000, 20000);
else
msleep_interruptible(sleep_val);
return 0;
}
#endif
static const struct dev_pm_ops bmc150_accel_pm_ops = {
SET_SYSTEM_SLEEP_PM_OPS(bmc150_accel_suspend, bmc150_accel_resume)
SET_RUNTIME_PM_OPS(bmc150_accel_runtime_suspend,
bmc150_accel_runtime_resume, NULL)
};
static const struct of_device_id bmc150_accel_of_match[] = {
{ .compatible = "bosch,bmc150" },
{ }
};
MODULE_DEVICE_TABLE(of, bmc150_accel_of_match);
static const struct acpi_device_id bmc150_accel_acpi_match[] = {
{"BSBA0150", 0},
{"BMC150A", 0},
{ },
};
MODULE_DEVICE_TABLE(acpi, bmc150_accel_acpi_match);
static const struct i2c_device_id bmc150_accel_id[] = {
{"bmc150_accel", 0},
{}
};
MODULE_DEVICE_TABLE(i2c, bmc150_accel_id);
static struct i2c_driver bmc150_accel_driver = {
.driver = {
.name = BMC150_ACCEL_DRV_NAME,
.of_match_table = of_match_ptr(bmc150_accel_of_match),
.acpi_match_table = ACPI_PTR(bmc150_accel_acpi_match),
.pm = &bmc150_accel_pm_ops,
},
.probe = bmc150_accel_probe,
.remove = bmc150_accel_remove,
.id_table = bmc150_accel_id,
};
module_i2c_driver(bmc150_accel_driver);
MODULE_AUTHOR("Srinivas Pandruvada <srinivas.pandruvada@linux.intel.com>");
MODULE_LICENSE("GPL v2");
MODULE_DESCRIPTION("BMC150 accelerometer driver");