blob: 693728e14bdb0145d469bc771df7095f11bf5a6b [file] [log] [blame]
/*
comedi/drivers/dmm32at.c
Diamond Systems mm32at code for a Comedi driver
COMEDI - Linux Control and Measurement Device Interface
Copyright (C) 2000 David A. Schleef <ds@schleef.org>
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program; if not, write to the Free Software
Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
*/
/*
Driver: dmm32at
Description: Diamond Systems mm32at driver.
Devices:
Author: Perry J. Piplani <perry.j.piplani@nasa.gov>
Updated: Fri Jun 4 09:13:24 CDT 2004
Status: experimental
This driver is for the Diamond Systems MM-32-AT board
http://www.diamondsystems.com/products/diamondmm32at It is being used
on serveral projects inside NASA, without problems so far. For analog
input commands, TRIG_EXT is not yet supported at all..
Configuration Options:
comedi_config /dev/comedi0 dmm32at baseaddr,irq
*/
#include <linux/interrupt.h>
#include "../comedidev.h"
#include <linux/ioport.h>
/* Board register addresses */
#define DMM32AT_MEMSIZE 0x10
#define DMM32AT_CONV 0x00
#define DMM32AT_AILSB 0x00
#define DMM32AT_AUXDOUT 0x01
#define DMM32AT_AIMSB 0x01
#define DMM32AT_AILOW 0x02
#define DMM32AT_AIHIGH 0x03
#define DMM32AT_DACLSB 0x04
#define DMM32AT_DACSTAT 0x04
#define DMM32AT_DACMSB 0x05
#define DMM32AT_FIFOCNTRL 0x07
#define DMM32AT_FIFOSTAT 0x07
#define DMM32AT_CNTRL 0x08
#define DMM32AT_AISTAT 0x08
#define DMM32AT_INTCLOCK 0x09
#define DMM32AT_CNTRDIO 0x0a
#define DMM32AT_AICONF 0x0b
#define DMM32AT_AIRBACK 0x0b
#define DMM32AT_CLK1 0x0d
#define DMM32AT_CLK2 0x0e
#define DMM32AT_CLKCT 0x0f
#define DMM32AT_DIOA 0x0c
#define DMM32AT_DIOB 0x0d
#define DMM32AT_DIOC 0x0e
#define DMM32AT_DIOCONF 0x0f
#define dmm_inb(cdev, reg) inb((cdev->iobase)+reg)
#define dmm_outb(cdev, reg, valu) outb(valu, (cdev->iobase)+reg)
/* Board register values. */
/* DMM32AT_DACSTAT 0x04 */
#define DMM32AT_DACBUSY 0x80
/* DMM32AT_FIFOCNTRL 0x07 */
#define DMM32AT_FIFORESET 0x02
#define DMM32AT_SCANENABLE 0x04
/* DMM32AT_CNTRL 0x08 */
#define DMM32AT_RESET 0x20
#define DMM32AT_INTRESET 0x08
#define DMM32AT_CLKACC 0x00
#define DMM32AT_DIOACC 0x01
/* DMM32AT_AISTAT 0x08 */
#define DMM32AT_STATUS 0x80
/* DMM32AT_INTCLOCK 0x09 */
#define DMM32AT_ADINT 0x80
#define DMM32AT_CLKSEL 0x03
/* DMM32AT_CNTRDIO 0x0a */
#define DMM32AT_FREQ12 0x80
/* DMM32AT_AICONF 0x0b */
#define DMM32AT_RANGE_U10 0x0c
#define DMM32AT_RANGE_U5 0x0d
#define DMM32AT_RANGE_B10 0x08
#define DMM32AT_RANGE_B5 0x00
#define DMM32AT_SCINT_20 0x00
#define DMM32AT_SCINT_15 0x10
#define DMM32AT_SCINT_10 0x20
#define DMM32AT_SCINT_5 0x30
/* DMM32AT_CLKCT 0x0f */
#define DMM32AT_CLKCT1 0x56 /* mode3 counter 1 - write low byte only */
#define DMM32AT_CLKCT2 0xb6 /* mode3 counter 2 - write high and low byte */
/* DMM32AT_DIOCONF 0x0f */
#define DMM32AT_DIENABLE 0x80
#define DMM32AT_DIRA 0x10
#define DMM32AT_DIRB 0x02
#define DMM32AT_DIRCL 0x01
#define DMM32AT_DIRCH 0x08
/* board AI ranges in comedi structure */
static const struct comedi_lrange dmm32at_airanges = {
4,
{
UNI_RANGE(10),
UNI_RANGE(5),
BIP_RANGE(10),
BIP_RANGE(5),
}
};
/* register values for above ranges */
static const unsigned char dmm32at_rangebits[] = {
DMM32AT_RANGE_U10,
DMM32AT_RANGE_U5,
DMM32AT_RANGE_B10,
DMM32AT_RANGE_B5,
};
/* only one of these ranges is valid, as set by a jumper on the
* board. The application should only use the range set by the jumper
*/
static const struct comedi_lrange dmm32at_aoranges = {
4,
{
UNI_RANGE(10),
UNI_RANGE(5),
BIP_RANGE(10),
BIP_RANGE(5),
}
};
/*
* Board descriptions for two imaginary boards. Describing the
* boards in this way is optional, and completely driver-dependent.
* Some drivers use arrays such as this, other do not.
*/
struct dmm32at_board {
const char *name;
int ai_chans;
int ai_bits;
const struct comedi_lrange *ai_ranges;
int ao_chans;
int ao_bits;
const struct comedi_lrange *ao_ranges;
int have_dio;
int dio_chans;
};
static const struct dmm32at_board dmm32at_boards[] = {
{
.name = "dmm32at",
.ai_chans = 32,
.ai_bits = 16,
.ai_ranges = &dmm32at_airanges,
.ao_chans = 4,
.ao_bits = 12,
.ao_ranges = &dmm32at_aoranges,
.have_dio = 1,
.dio_chans = 24,
},
};
/*
* Useful for shorthand access to the particular board structure
*/
#define thisboard ((const struct dmm32at_board *)dev->board_ptr)
/* this structure is for data unique to this hardware driver. If
* several hardware drivers keep similar information in this structure,
* feel free to suggest moving the variable to the struct comedi_device struct.
*/
struct dmm32at_private {
int data;
int ai_inuse;
unsigned int ai_scans_left;
/* Used for AO readback */
unsigned int ao_readback[4];
unsigned char dio_config;
};
/*
* most drivers define the following macro to make it easy to
* access the private structure.
*/
#define devpriv ((struct dmm32at_private *)dev->private)
/*
* The struct comedi_driver structure tells the Comedi core module
* which functions to call to configure/deconfigure (attach/detach)
* the board, and also about the kernel module that contains
* the device code.
*/
static int dmm32at_attach(struct comedi_device *dev,
struct comedi_devconfig *it);
static int dmm32at_detach(struct comedi_device *dev);
static struct comedi_driver driver_dmm32at = {
.driver_name = "dmm32at",
.module = THIS_MODULE,
.attach = dmm32at_attach,
.detach = dmm32at_detach,
/* It is not necessary to implement the following members if you are
* writing a driver for a ISA PnP or PCI card */
/* Most drivers will support multiple types of boards by
* having an array of board structures. These were defined
* in dmm32at_boards[] above. Note that the element 'name'
* was first in the structure -- Comedi uses this fact to
* extract the name of the board without knowing any details
* about the structure except for its length.
* When a device is attached (by comedi_config), the name
* of the device is given to Comedi, and Comedi tries to
* match it by going through the list of board names. If
* there is a match, the address of the pointer is put
* into dev->board_ptr and driver->attach() is called.
*
* Note that these are not necessary if you can determine
* the type of board in software. ISA PnP, PCI, and PCMCIA
* devices are such boards.
*/
.board_name = &dmm32at_boards[0].name,
.offset = sizeof(struct dmm32at_board),
.num_names = ARRAY_SIZE(dmm32at_boards),
};
/* prototypes for driver functions below */
static int dmm32at_ai_rinsn(struct comedi_device *dev,
struct comedi_subdevice *s,
struct comedi_insn *insn, unsigned int *data);
static int dmm32at_ao_winsn(struct comedi_device *dev,
struct comedi_subdevice *s,
struct comedi_insn *insn, unsigned int *data);
static int dmm32at_ao_rinsn(struct comedi_device *dev,
struct comedi_subdevice *s,
struct comedi_insn *insn, unsigned int *data);
static int dmm32at_dio_insn_bits(struct comedi_device *dev,
struct comedi_subdevice *s,
struct comedi_insn *insn, unsigned int *data);
static int dmm32at_dio_insn_config(struct comedi_device *dev,
struct comedi_subdevice *s,
struct comedi_insn *insn,
unsigned int *data);
static int dmm32at_ai_cmdtest(struct comedi_device *dev,
struct comedi_subdevice *s,
struct comedi_cmd *cmd);
static int dmm32at_ai_cmd(struct comedi_device *dev,
struct comedi_subdevice *s);
static int dmm32at_ai_cancel(struct comedi_device *dev,
struct comedi_subdevice *s);
static int dmm32at_ns_to_timer(unsigned int *ns, int round);
static irqreturn_t dmm32at_isr(int irq, void *d);
void dmm32at_setaitimer(struct comedi_device *dev, unsigned int nansec);
/*
* Attach is called by the Comedi core to configure the driver
* for a particular board. If you specified a board_name array
* in the driver structure, dev->board_ptr contains that
* address.
*/
static int dmm32at_attach(struct comedi_device *dev,
struct comedi_devconfig *it)
{
int ret;
struct comedi_subdevice *s;
unsigned char aihi, ailo, fifostat, aistat, intstat, airback;
unsigned long iobase;
unsigned int irq;
iobase = it->options[0];
irq = it->options[1];
printk(KERN_INFO "comedi%d: dmm32at: attaching\n", dev->minor);
printk(KERN_DEBUG "dmm32at: probing at address 0x%04lx, irq %u\n",
iobase, irq);
/* register address space */
if (!request_region(iobase, DMM32AT_MEMSIZE, thisboard->name)) {
printk(KERN_ERR "comedi%d: dmm32at: I/O port conflict\n",
dev->minor);
return -EIO;
}
dev->iobase = iobase;
/* the following just makes sure the board is there and gets
it to a known state */
/* reset the board */
dmm_outb(dev, DMM32AT_CNTRL, DMM32AT_RESET);
/* allow a millisecond to reset */
udelay(1000);
/* zero scan and fifo control */
dmm_outb(dev, DMM32AT_FIFOCNTRL, 0x0);
/* zero interrupt and clock control */
dmm_outb(dev, DMM32AT_INTCLOCK, 0x0);
/* write a test channel range, the high 3 bits should drop */
dmm_outb(dev, DMM32AT_AILOW, 0x80);
dmm_outb(dev, DMM32AT_AIHIGH, 0xff);
/* set the range at 10v unipolar */
dmm_outb(dev, DMM32AT_AICONF, DMM32AT_RANGE_U10);
/* should take 10 us to settle, here's a hundred */
udelay(100);
/* read back the values */
ailo = dmm_inb(dev, DMM32AT_AILOW);
aihi = dmm_inb(dev, DMM32AT_AIHIGH);
fifostat = dmm_inb(dev, DMM32AT_FIFOSTAT);
aistat = dmm_inb(dev, DMM32AT_AISTAT);
intstat = dmm_inb(dev, DMM32AT_INTCLOCK);
airback = dmm_inb(dev, DMM32AT_AIRBACK);
printk(KERN_DEBUG "dmm32at: lo=0x%02x hi=0x%02x fifostat=0x%02x\n",
ailo, aihi, fifostat);
printk(KERN_DEBUG
"dmm32at: aistat=0x%02x intstat=0x%02x airback=0x%02x\n",
aistat, intstat, airback);
if ((ailo != 0x00) || (aihi != 0x1f) || (fifostat != 0x80) ||
(aistat != 0x60 || (intstat != 0x00) || airback != 0x0c)) {
printk(KERN_ERR "dmmat32: board detection failed\n");
return -EIO;
}
/* board is there, register interrupt */
if (irq) {
ret = request_irq(irq, dmm32at_isr, 0, thisboard->name, dev);
if (ret < 0) {
printk(KERN_ERR "dmm32at: irq conflict\n");
return ret;
}
dev->irq = irq;
}
/*
* If you can probe the device to determine what device in a series
* it is, this is the place to do it. Otherwise, dev->board_ptr
* should already be initialized.
*/
/* dev->board_ptr = dmm32at_probe(dev); */
/*
* Initialize dev->board_name. Note that we can use the "thisboard"
* macro now, since we just initialized it in the last line.
*/
dev->board_name = thisboard->name;
/*
* Allocate the private structure area. alloc_private() is a
* convenient macro defined in comedidev.h.
*/
if (alloc_private(dev, sizeof(struct dmm32at_private)) < 0)
return -ENOMEM;
/*
* Allocate the subdevice structures. alloc_subdevice() is a
* convenient macro defined in comedidev.h.
*/
if (alloc_subdevices(dev, 3) < 0)
return -ENOMEM;
s = dev->subdevices + 0;
dev->read_subdev = s;
/* analog input subdevice */
s->type = COMEDI_SUBD_AI;
/* we support single-ended (ground) and differential */
s->subdev_flags = SDF_READABLE | SDF_GROUND | SDF_DIFF | SDF_CMD_READ;
s->n_chan = thisboard->ai_chans;
s->maxdata = (1 << thisboard->ai_bits) - 1;
s->range_table = thisboard->ai_ranges;
s->len_chanlist = 32; /* This is the maximum chanlist length that
the board can handle */
s->insn_read = dmm32at_ai_rinsn;
s->do_cmd = dmm32at_ai_cmd;
s->do_cmdtest = dmm32at_ai_cmdtest;
s->cancel = dmm32at_ai_cancel;
s = dev->subdevices + 1;
/* analog output subdevice */
s->type = COMEDI_SUBD_AO;
s->subdev_flags = SDF_WRITABLE;
s->n_chan = thisboard->ao_chans;
s->maxdata = (1 << thisboard->ao_bits) - 1;
s->range_table = thisboard->ao_ranges;
s->insn_write = dmm32at_ao_winsn;
s->insn_read = dmm32at_ao_rinsn;
s = dev->subdevices + 2;
/* digital i/o subdevice */
if (thisboard->have_dio) {
/* get access to the DIO regs */
dmm_outb(dev, DMM32AT_CNTRL, DMM32AT_DIOACC);
/* set the DIO's to the defualt input setting */
devpriv->dio_config = DMM32AT_DIRA | DMM32AT_DIRB |
DMM32AT_DIRCL | DMM32AT_DIRCH | DMM32AT_DIENABLE;
dmm_outb(dev, DMM32AT_DIOCONF, devpriv->dio_config);
/* set up the subdevice */
s->type = COMEDI_SUBD_DIO;
s->subdev_flags = SDF_READABLE | SDF_WRITABLE;
s->n_chan = thisboard->dio_chans;
s->maxdata = 1;
s->state = 0;
s->range_table = &range_digital;
s->insn_bits = dmm32at_dio_insn_bits;
s->insn_config = dmm32at_dio_insn_config;
} else {
s->type = COMEDI_SUBD_UNUSED;
}
/* success */
printk(KERN_INFO "comedi%d: dmm32at: attached\n", dev->minor);
return 1;
}
/*
* _detach is called to deconfigure a device. It should deallocate
* resources.
* This function is also called when _attach() fails, so it should be
* careful not to release resources that were not necessarily
* allocated by _attach(). dev->private and dev->subdevices are
* deallocated automatically by the core.
*/
static int dmm32at_detach(struct comedi_device *dev)
{
printk(KERN_INFO "comedi%d: dmm32at: remove\n", dev->minor);
if (dev->irq)
free_irq(dev->irq, dev);
if (dev->iobase)
release_region(dev->iobase, DMM32AT_MEMSIZE);
return 0;
}
/*
* "instructions" read/write data in "one-shot" or "software-triggered"
* mode.
*/
static int dmm32at_ai_rinsn(struct comedi_device *dev,
struct comedi_subdevice *s,
struct comedi_insn *insn, unsigned int *data)
{
int n, i;
unsigned int d;
unsigned char status;
unsigned short msb, lsb;
unsigned char chan;
int range;
/* get the channel and range number */
chan = CR_CHAN(insn->chanspec) & (s->n_chan - 1);
range = CR_RANGE(insn->chanspec);
/* printk("channel=0x%02x, range=%d\n",chan,range); */
/* zero scan and fifo control and reset fifo */
dmm_outb(dev, DMM32AT_FIFOCNTRL, DMM32AT_FIFORESET);
/* write the ai channel range regs */
dmm_outb(dev, DMM32AT_AILOW, chan);
dmm_outb(dev, DMM32AT_AIHIGH, chan);
/* set the range bits */
dmm_outb(dev, DMM32AT_AICONF, dmm32at_rangebits[range]);
/* wait for circuit to settle */
for (i = 0; i < 40000; i++) {
status = dmm_inb(dev, DMM32AT_AIRBACK);
if ((status & DMM32AT_STATUS) == 0)
break;
}
if (i == 40000) {
printk(KERN_WARNING "dmm32at: timeout\n");
return -ETIMEDOUT;
}
/* convert n samples */
for (n = 0; n < insn->n; n++) {
/* trigger conversion */
dmm_outb(dev, DMM32AT_CONV, 0xff);
/* wait for conversion to end */
for (i = 0; i < 40000; i++) {
status = dmm_inb(dev, DMM32AT_AISTAT);
if ((status & DMM32AT_STATUS) == 0)
break;
}
if (i == 40000) {
printk(KERN_WARNING "dmm32at: timeout\n");
return -ETIMEDOUT;
}
/* read data */
lsb = dmm_inb(dev, DMM32AT_AILSB);
msb = dmm_inb(dev, DMM32AT_AIMSB);
/* invert sign bit to make range unsigned, this is an
idiosyncracy of the diamond board, it return
conversions as a signed value, i.e. -32768 to
32767, flipping the bit and interpreting it as
signed gives you a range of 0 to 65535 which is
used by comedi */
d = ((msb ^ 0x0080) << 8) + lsb;
data[n] = d;
}
/* return the number of samples read/written */
return n;
}
static int dmm32at_ai_cmdtest(struct comedi_device *dev,
struct comedi_subdevice *s,
struct comedi_cmd *cmd)
{
int err = 0;
int tmp;
int start_chan, gain, i;
/* printk("dmmat32 in command test\n"); */
/* cmdtest tests a particular command to see if it is valid.
* Using the cmdtest ioctl, a user can create a valid cmd
* and then have it executes by the cmd ioctl.
*
* cmdtest returns 1,2,3,4 or 0, depending on which tests
* the command passes. */
/* step 1: make sure trigger sources are trivially valid */
tmp = cmd->start_src;
cmd->start_src &= TRIG_NOW;
if (!cmd->start_src || tmp != cmd->start_src)
err++;
tmp = cmd->scan_begin_src;
cmd->scan_begin_src &= TRIG_TIMER /*| TRIG_EXT */ ;
if (!cmd->scan_begin_src || tmp != cmd->scan_begin_src)
err++;
tmp = cmd->convert_src;
cmd->convert_src &= TRIG_TIMER /*| TRIG_EXT */ ;
if (!cmd->convert_src || tmp != cmd->convert_src)
err++;
tmp = cmd->scan_end_src;
cmd->scan_end_src &= TRIG_COUNT;
if (!cmd->scan_end_src || tmp != cmd->scan_end_src)
err++;
tmp = cmd->stop_src;
cmd->stop_src &= TRIG_COUNT | TRIG_NONE;
if (!cmd->stop_src || tmp != cmd->stop_src)
err++;
if (err)
return 1;
/* step 2: make sure trigger sources are unique and mutually
* compatible */
/* note that mutual compatibility is not an issue here */
if (cmd->scan_begin_src != TRIG_TIMER &&
cmd->scan_begin_src != TRIG_EXT)
err++;
if (cmd->convert_src != TRIG_TIMER && cmd->convert_src != TRIG_EXT)
err++;
if (cmd->stop_src != TRIG_COUNT && cmd->stop_src != TRIG_NONE)
err++;
if (err)
return 2;
/* step 3: make sure arguments are trivially compatible */
if (cmd->start_arg != 0) {
cmd->start_arg = 0;
err++;
}
#define MAX_SCAN_SPEED 1000000 /* in nanoseconds */
#define MIN_SCAN_SPEED 1000000000 /* in nanoseconds */
if (cmd->scan_begin_src == TRIG_TIMER) {
if (cmd->scan_begin_arg < MAX_SCAN_SPEED) {
cmd->scan_begin_arg = MAX_SCAN_SPEED;
err++;
}
if (cmd->scan_begin_arg > MIN_SCAN_SPEED) {
cmd->scan_begin_arg = MIN_SCAN_SPEED;
err++;
}
} else {
/* external trigger */
/* should be level/edge, hi/lo specification here */
/* should specify multiple external triggers */
if (cmd->scan_begin_arg > 9) {
cmd->scan_begin_arg = 9;
err++;
}
}
if (cmd->convert_src == TRIG_TIMER) {
if (cmd->convert_arg >= 17500)
cmd->convert_arg = 20000;
else if (cmd->convert_arg >= 12500)
cmd->convert_arg = 15000;
else if (cmd->convert_arg >= 7500)
cmd->convert_arg = 10000;
else
cmd->convert_arg = 5000;
} else {
/* external trigger */
/* see above */
if (cmd->convert_arg > 9) {
cmd->convert_arg = 9;
err++;
}
}
if (cmd->scan_end_arg != cmd->chanlist_len) {
cmd->scan_end_arg = cmd->chanlist_len;
err++;
}
if (cmd->stop_src == TRIG_COUNT) {
if (cmd->stop_arg > 0xfffffff0) {
cmd->stop_arg = 0xfffffff0;
err++;
}
if (cmd->stop_arg == 0) {
cmd->stop_arg = 1;
err++;
}
} else {
/* TRIG_NONE */
if (cmd->stop_arg != 0) {
cmd->stop_arg = 0;
err++;
}
}
if (err)
return 3;
/* step 4: fix up any arguments */
if (cmd->scan_begin_src == TRIG_TIMER) {
tmp = cmd->scan_begin_arg;
dmm32at_ns_to_timer(&cmd->scan_begin_arg,
cmd->flags & TRIG_ROUND_MASK);
if (tmp != cmd->scan_begin_arg)
err++;
}
if (cmd->convert_src == TRIG_TIMER) {
tmp = cmd->convert_arg;
dmm32at_ns_to_timer(&cmd->convert_arg,
cmd->flags & TRIG_ROUND_MASK);
if (tmp != cmd->convert_arg)
err++;
if (cmd->scan_begin_src == TRIG_TIMER &&
cmd->scan_begin_arg <
cmd->convert_arg * cmd->scan_end_arg) {
cmd->scan_begin_arg =
cmd->convert_arg * cmd->scan_end_arg;
err++;
}
}
if (err)
return 4;
/* step 5 check the channel list, the channel list for this
board must be consecutive and gains must be the same */
if (cmd->chanlist) {
gain = CR_RANGE(cmd->chanlist[0]);
start_chan = CR_CHAN(cmd->chanlist[0]);
for (i = 1; i < cmd->chanlist_len; i++) {
if (CR_CHAN(cmd->chanlist[i]) !=
(start_chan + i) % s->n_chan) {
comedi_error(dev,
"entries in chanlist must be consecutive channels, counting upwards\n");
err++;
}
if (CR_RANGE(cmd->chanlist[i]) != gain) {
comedi_error(dev,
"entries in chanlist must all have the same gain\n");
err++;
}
}
}
if (err)
return 5;
return 0;
}
static int dmm32at_ai_cmd(struct comedi_device *dev, struct comedi_subdevice *s)
{
struct comedi_cmd *cmd = &s->async->cmd;
int i, range;
unsigned char chanlo, chanhi, status;
if (!cmd->chanlist)
return -EINVAL;
/* get the channel list and range */
chanlo = CR_CHAN(cmd->chanlist[0]) & (s->n_chan - 1);
chanhi = chanlo + cmd->chanlist_len - 1;
if (chanhi >= s->n_chan)
return -EINVAL;
range = CR_RANGE(cmd->chanlist[0]);
/* reset fifo */
dmm_outb(dev, DMM32AT_FIFOCNTRL, DMM32AT_FIFORESET);
/* set scan enable */
dmm_outb(dev, DMM32AT_FIFOCNTRL, DMM32AT_SCANENABLE);
/* write the ai channel range regs */
dmm_outb(dev, DMM32AT_AILOW, chanlo);
dmm_outb(dev, DMM32AT_AIHIGH, chanhi);
/* set the range bits */
dmm_outb(dev, DMM32AT_AICONF, dmm32at_rangebits[range]);
/* reset the interrupt just in case */
dmm_outb(dev, DMM32AT_CNTRL, DMM32AT_INTRESET);
if (cmd->stop_src == TRIG_COUNT)
devpriv->ai_scans_left = cmd->stop_arg;
else { /* TRIG_NONE */
devpriv->ai_scans_left = 0xffffffff; /* indicates TRIG_NONE to
* isr */
}
/* wait for circuit to settle */
for (i = 0; i < 40000; i++) {
status = dmm_inb(dev, DMM32AT_AIRBACK);
if ((status & DMM32AT_STATUS) == 0)
break;
}
if (i == 40000) {
printk(KERN_WARNING "dmm32at: timeout\n");
return -ETIMEDOUT;
}
if (devpriv->ai_scans_left > 1) {
/* start the clock and enable the interrupts */
dmm32at_setaitimer(dev, cmd->scan_begin_arg);
} else {
/* start the interrups and initiate a single scan */
dmm_outb(dev, DMM32AT_INTCLOCK, DMM32AT_ADINT);
dmm_outb(dev, DMM32AT_CONV, 0xff);
}
/* printk("dmmat32 in command\n"); */
/* for(i=0;i<cmd->chanlist_len;i++) */
/* comedi_buf_put(s->async,i*100); */
/* s->async->events |= COMEDI_CB_EOA; */
/* comedi_event(dev, s); */
return 0;
}
static int dmm32at_ai_cancel(struct comedi_device *dev,
struct comedi_subdevice *s)
{
devpriv->ai_scans_left = 1;
return 0;
}
static irqreturn_t dmm32at_isr(int irq, void *d)
{
unsigned char intstat;
unsigned int samp;
unsigned short msb, lsb;
int i;
struct comedi_device *dev = d;
if (!dev->attached) {
comedi_error(dev, "spurious interrupt");
return IRQ_HANDLED;
}
intstat = dmm_inb(dev, DMM32AT_INTCLOCK);
if (intstat & DMM32AT_ADINT) {
struct comedi_subdevice *s = dev->read_subdev;
struct comedi_cmd *cmd = &s->async->cmd;
for (i = 0; i < cmd->chanlist_len; i++) {
/* read data */
lsb = dmm_inb(dev, DMM32AT_AILSB);
msb = dmm_inb(dev, DMM32AT_AIMSB);
/* invert sign bit to make range unsigned */
samp = ((msb ^ 0x0080) << 8) + lsb;
comedi_buf_put(s->async, samp);
}
if (devpriv->ai_scans_left != 0xffffffff) { /* TRIG_COUNT */
devpriv->ai_scans_left--;
if (devpriv->ai_scans_left == 0) {
/* disable further interrupts and clocks */
dmm_outb(dev, DMM32AT_INTCLOCK, 0x0);
/* set the buffer to be flushed with an EOF */
s->async->events |= COMEDI_CB_EOA;
}
}
/* flush the buffer */
comedi_event(dev, s);
}
/* reset the interrupt */
dmm_outb(dev, DMM32AT_CNTRL, DMM32AT_INTRESET);
return IRQ_HANDLED;
}
/* This function doesn't require a particular form, this is just
* what happens to be used in some of the drivers. It should
* convert ns nanoseconds to a counter value suitable for programming
* the device. Also, it should adjust ns so that it cooresponds to
* the actual time that the device will use. */
static int dmm32at_ns_to_timer(unsigned int *ns, int round)
{
/* trivial timer */
/* if your timing is done through two cascaded timers, the
* i8253_cascade_ns_to_timer() function in 8253.h can be
* very helpful. There are also i8254_load() and i8254_mm_load()
* which can be used to load values into the ubiquitous 8254 counters
*/
return *ns;
}
static int dmm32at_ao_winsn(struct comedi_device *dev,
struct comedi_subdevice *s,
struct comedi_insn *insn, unsigned int *data)
{
int i;
int chan = CR_CHAN(insn->chanspec);
unsigned char hi, lo, status;
/* Writing a list of values to an AO channel is probably not
* very useful, but that's how the interface is defined. */
for (i = 0; i < insn->n; i++) {
devpriv->ao_readback[chan] = data[i];
/* get the low byte */
lo = data[i] & 0x00ff;
/* high byte also contains channel number */
hi = (data[i] >> 8) + chan * (1 << 6);
/* printk("writing 0x%02x 0x%02x\n",hi,lo); */
/* write the low and high values to the board */
dmm_outb(dev, DMM32AT_DACLSB, lo);
dmm_outb(dev, DMM32AT_DACMSB, hi);
/* wait for circuit to settle */
for (i = 0; i < 40000; i++) {
status = dmm_inb(dev, DMM32AT_DACSTAT);
if ((status & DMM32AT_DACBUSY) == 0)
break;
}
if (i == 40000) {
printk(KERN_WARNING "dmm32at: timeout\n");
return -ETIMEDOUT;
}
/* dummy read to update trigger the output */
status = dmm_inb(dev, DMM32AT_DACMSB);
}
/* return the number of samples read/written */
return i;
}
/* AO subdevices should have a read insn as well as a write insn.
* Usually this means copying a value stored in devpriv. */
static int dmm32at_ao_rinsn(struct comedi_device *dev,
struct comedi_subdevice *s,
struct comedi_insn *insn, unsigned int *data)
{
int i;
int chan = CR_CHAN(insn->chanspec);
for (i = 0; i < insn->n; i++)
data[i] = devpriv->ao_readback[chan];
return i;
}
/* DIO devices are slightly special. Although it is possible to
* implement the insn_read/insn_write interface, it is much more
* useful to applications if you implement the insn_bits interface.
* This allows packed reading/writing of the DIO channels. The
* comedi core can convert between insn_bits and insn_read/write */
static int dmm32at_dio_insn_bits(struct comedi_device *dev,
struct comedi_subdevice *s,
struct comedi_insn *insn, unsigned int *data)
{
unsigned char diobits;
if (insn->n != 2)
return -EINVAL;
/* The insn data is a mask in data[0] and the new data
* in data[1], each channel cooresponding to a bit. */
if (data[0]) {
s->state &= ~data[0];
s->state |= data[0] & data[1];
/* Write out the new digital output lines */
/* outw(s->state,dev->iobase + DMM32AT_DIO); */
}
/* get access to the DIO regs */
dmm_outb(dev, DMM32AT_CNTRL, DMM32AT_DIOACC);
/* if either part of dio is set for output */
if (((devpriv->dio_config & DMM32AT_DIRCL) == 0) ||
((devpriv->dio_config & DMM32AT_DIRCH) == 0)) {
diobits = (s->state & 0x00ff0000) >> 16;
dmm_outb(dev, DMM32AT_DIOC, diobits);
}
if ((devpriv->dio_config & DMM32AT_DIRB) == 0) {
diobits = (s->state & 0x0000ff00) >> 8;
dmm_outb(dev, DMM32AT_DIOB, diobits);
}
if ((devpriv->dio_config & DMM32AT_DIRA) == 0) {
diobits = (s->state & 0x000000ff);
dmm_outb(dev, DMM32AT_DIOA, diobits);
}
/* now read the state back in */
s->state = dmm_inb(dev, DMM32AT_DIOC);
s->state <<= 8;
s->state |= dmm_inb(dev, DMM32AT_DIOB);
s->state <<= 8;
s->state |= dmm_inb(dev, DMM32AT_DIOA);
data[1] = s->state;
/* on return, data[1] contains the value of the digital
* input and output lines. */
/* data[1]=inw(dev->iobase + DMM32AT_DIO); */
/* or we could just return the software copy of the output values if
* it was a purely digital output subdevice */
/* data[1]=s->state; */
return 2;
}
static int dmm32at_dio_insn_config(struct comedi_device *dev,
struct comedi_subdevice *s,
struct comedi_insn *insn, unsigned int *data)
{
unsigned char chanbit;
int chan = CR_CHAN(insn->chanspec);
if (insn->n != 1)
return -EINVAL;
if (chan < 8)
chanbit = DMM32AT_DIRA;
else if (chan < 16)
chanbit = DMM32AT_DIRB;
else if (chan < 20)
chanbit = DMM32AT_DIRCL;
else
chanbit = DMM32AT_DIRCH;
/* The input or output configuration of each digital line is
* configured by a special insn_config instruction. chanspec
* contains the channel to be changed, and data[0] contains the
* value COMEDI_INPUT or COMEDI_OUTPUT. */
/* if output clear the bit, otherwise set it */
if (data[0] == COMEDI_OUTPUT)
devpriv->dio_config &= ~chanbit;
else
devpriv->dio_config |= chanbit;
/* get access to the DIO regs */
dmm_outb(dev, DMM32AT_CNTRL, DMM32AT_DIOACC);
/* set the DIO's to the new configuration setting */
dmm_outb(dev, DMM32AT_DIOCONF, devpriv->dio_config);
return 1;
}
void dmm32at_setaitimer(struct comedi_device *dev, unsigned int nansec)
{
unsigned char lo1, lo2, hi2;
unsigned short both2;
/* based on 10mhz clock */
lo1 = 200;
both2 = nansec / 20000;
hi2 = (both2 & 0xff00) >> 8;
lo2 = both2 & 0x00ff;
/* set the counter frequency to 10mhz */
dmm_outb(dev, DMM32AT_CNTRDIO, 0);
/* get access to the clock regs */
dmm_outb(dev, DMM32AT_CNTRL, DMM32AT_CLKACC);
/* write the counter 1 control word and low byte to counter */
dmm_outb(dev, DMM32AT_CLKCT, DMM32AT_CLKCT1);
dmm_outb(dev, DMM32AT_CLK1, lo1);
/* write the counter 2 control word and low byte then to counter */
dmm_outb(dev, DMM32AT_CLKCT, DMM32AT_CLKCT2);
dmm_outb(dev, DMM32AT_CLK2, lo2);
dmm_outb(dev, DMM32AT_CLK2, hi2);
/* enable the ai conversion interrupt and the clock to start scans */
dmm_outb(dev, DMM32AT_INTCLOCK, DMM32AT_ADINT | DMM32AT_CLKSEL);
}
/*
* A convenient macro that defines init_module() and cleanup_module(),
* as necessary.
*/
static int __init driver_dmm32at_init_module(void)
{
return comedi_driver_register(&driver_dmm32at);
}
static void __exit driver_dmm32at_cleanup_module(void)
{
comedi_driver_unregister(&driver_dmm32at);
}
module_init(driver_dmm32at_init_module);
module_exit(driver_dmm32at_cleanup_module);
MODULE_AUTHOR("Comedi http://www.comedi.org");
MODULE_DESCRIPTION("Comedi low-level driver");
MODULE_LICENSE("GPL");