blob: 1281d6f8fc59e74fef805f931680f162732b660b [file] [log] [blame]
<html>
<head>
<meta http-equiv="Content-Type" content="text/html; charset=US-ASCII">
<title>Tutorial</title>
<link rel="stylesheet" href="../../../doc/src/boostbook.css" type="text/css">
<meta name="generator" content="DocBook XSL Stylesheets V1.75.2">
<link rel="home" href="../index.html" title="The Boost C++ Libraries BoostBook Documentation Subset">
<link rel="up" href="../variant.html" title="Chapter&#160;28.&#160;Boost.Variant">
<link rel="prev" href="../variant.html" title="Chapter&#160;28.&#160;Boost.Variant">
<link rel="next" href="reference.html" title="Reference">
</head>
<body bgcolor="white" text="black" link="#0000FF" vlink="#840084" alink="#0000FF">
<table cellpadding="2" width="100%"><tr>
<td valign="top"><img alt="Boost C++ Libraries" width="277" height="86" src="../../../boost.png"></td>
<td align="center"><a href="../../../index.html">Home</a></td>
<td align="center"><a href="../../../libs/libraries.htm">Libraries</a></td>
<td align="center"><a href="http://www.boost.org/users/people.html">People</a></td>
<td align="center"><a href="http://www.boost.org/users/faq.html">FAQ</a></td>
<td align="center"><a href="../../../more/index.htm">More</a></td>
</tr></table>
<hr>
<div class="spirit-nav">
<a accesskey="p" href="../variant.html"><img src="../../../doc/src/images/prev.png" alt="Prev"></a><a accesskey="u" href="../variant.html"><img src="../../../doc/src/images/up.png" alt="Up"></a><a accesskey="h" href="../index.html"><img src="../../../doc/src/images/home.png" alt="Home"></a><a accesskey="n" href="reference.html"><img src="../../../doc/src/images/next.png" alt="Next"></a>
</div>
<div class="section">
<div class="titlepage"><div><div><h2 class="title" style="clear: both">
<a name="variant.tutorial"></a>Tutorial</h2></div></div></div>
<div class="toc"><dl>
<dt><span class="section"><a href="tutorial.html#variant.tutorial.basic">Basic Usage</a></span></dt>
<dt><span class="section"><a href="tutorial.html#variant.tutorial.advanced">Advanced Topics</a></span></dt>
</dl></div>
<div class="section">
<div class="titlepage"><div><div><h3 class="title">
<a name="variant.tutorial.basic"></a>Basic Usage</h3></div></div></div>
<p>A discriminated union container on some set of types is defined by
instantiating the <code class="computeroutput"><a class="link" href="../boost/variant.html" title="Class template variant">boost::variant</a></code> class
template with the desired types. These types are called
<span class="bold"><strong>bounded types</strong></span> and are subject to the
requirements of the
<a class="link" href="reference.html#variant.concepts.bounded-type" title="BoundedType"><span class="emphasis"><em>BoundedType</em></span></a>
concept. Any number of bounded types may be specified, up to some
implementation-defined limit (see
<code class="computeroutput"><a class="link" href="../BOOST_VARIANT_LIMIT_TYPES.html" title="Macro BOOST_VARIANT_LIMIT_TYPES">BOOST_VARIANT_LIMIT_TYPES</a></code>).</p>
<p>For example, the following declares a discriminated union container on
<code class="computeroutput">int</code> and <code class="computeroutput">std::string</code>:
</p>
<pre class="programlisting"><code class="computeroutput"><a class="link" href="../boost/variant.html" title="Class template variant">boost::variant</a></code>&lt; int, std::string &gt; v;</pre>
<p>
</p>
<p>By default, a <code class="computeroutput">variant</code> default-constructs its first
bounded type, so <code class="computeroutput">v</code> initially contains <code class="computeroutput">int(0)</code>. If
this is not desired, or if the first bounded type is not
default-constructible, a <code class="computeroutput">variant</code> can be constructed
directly from any value convertible to one of its bounded types. Similarly,
a <code class="computeroutput">variant</code> can be assigned any value convertible to one of its
bounded types, as demonstrated in the following:
</p>
<pre class="programlisting">v = "hello";</pre>
<p>
</p>
<p>Now <code class="computeroutput">v</code> contains a <code class="computeroutput">std::string</code> equal to
<code class="computeroutput">"hello"</code>. We can demonstrate this by
<span class="bold"><strong>streaming</strong></span>&#160;<code class="computeroutput">v</code> to standard
output:
</p>
<pre class="programlisting">std::cout &lt;&lt; v &lt;&lt; std::endl;</pre>
<p>
</p>
<p>Usually though, we would like to do more with the content of a
<code class="computeroutput">variant</code> than streaming. Thus, we need some way to access the
contained value. There are two ways to accomplish this:
<code class="computeroutput"><a class="link" href="../boost/apply_visitor.html" title="Function apply_visitor">apply_visitor</a></code>, which is safest
and very powerful, and
<code class="computeroutput"><a class="link" href="../boost/get_id1380826.html" title="Function get">get</a>&lt;T&gt;</code>, which is
sometimes more convenient to use.</p>
<p>For instance, suppose we wanted to concatenate to the string contained
in <code class="computeroutput">v</code>. With <span class="bold"><strong>value retrieval</strong></span>
by <code class="computeroutput"><a class="link" href="../boost/get_id1380826.html" title="Function get">get</a></code>, this may be accomplished
quite simply, as seen in the following:
</p>
<pre class="programlisting">std::string&amp; str = <code class="computeroutput"><a class="link" href="../boost/get_id1380826.html" title="Function get">boost::get</a></code>&lt;std::string&gt;(v);
str += " world! ";</pre>
<p>
</p>
<p>As desired, the <code class="computeroutput">std::string</code> contained by <code class="computeroutput">v</code> now
is equal to <code class="computeroutput">"hello world! "</code>. Again, we can demonstrate this by
streaming <code class="computeroutput">v</code> to standard output:
</p>
<pre class="programlisting">std::cout &lt;&lt; v &lt;&lt; std::endl;</pre>
<p>
</p>
<p>While use of <code class="computeroutput">get</code> is perfectly acceptable in this trivial
example, <code class="computeroutput">get</code> generally suffers from several significant
shortcomings. For instance, if we were to write a function accepting a
<code class="computeroutput">variant&lt;int, std::string&gt;</code>, we would not know whether
the passed <code class="computeroutput">variant</code> contained an <code class="computeroutput">int</code> or a
<code class="computeroutput">std::string</code>. If we insisted upon continued use of
<code class="computeroutput">get</code>, we would need to query the <code class="computeroutput">variant</code> for its
contained type. The following function, which "doubles" the
content of the given <code class="computeroutput">variant</code>, demonstrates this approach:
</p>
<pre class="programlisting">void times_two( boost::variant&lt; int, std::string &gt; &amp; operand )
{
if ( int* pi = <code class="computeroutput"><a class="link" href="../boost/get_id1380826.html" title="Function get">boost::get</a></code>&lt;int&gt;( &amp;operand ) )
*pi *= 2;
else if ( std::string* pstr = <code class="computeroutput"><a class="link" href="../boost/get_id1380826.html" title="Function get">boost::get</a></code>&lt;std::string&gt;( &amp;operand ) )
*pstr += *pstr;
}</pre>
<p>
</p>
<p>However, such code is quite brittle, and without careful attention will
likely lead to the introduction of subtle logical errors detectable only at
runtime. For instance, consider if we wished to extend
<code class="computeroutput">times_two</code> to operate on a <code class="computeroutput">variant</code> with additional
bounded types. Specifically, let's add
<code class="computeroutput">std::complex&lt;double&gt;</code> to the set. Clearly, we would need
to at least change the function declaration:
</p>
<pre class="programlisting">void times_two( boost::variant&lt; int, std::string, std::complex&lt;double&gt; &gt; &amp; operand )
{
// as above...?
}</pre>
<p>
</p>
<p>Of course, additional changes are required, for currently if the passed
<code class="computeroutput">variant</code> in fact contained a <code class="computeroutput">std::complex</code> value,
<code class="computeroutput">times_two</code> would silently return -- without any of the desired
side-effects and without any error. In this case, the fix is obvious. But in
more complicated programs, it could take considerable time to identify and
locate the error in the first place.</p>
<p>Thus, real-world use of <code class="computeroutput">variant</code> typically demands an access
mechanism more robust than <code class="computeroutput">get</code>. For this reason,
<code class="computeroutput">variant</code> supports compile-time checked
<span class="bold"><strong>visitation</strong></span> via
<code class="computeroutput"><a class="link" href="../boost/apply_visitor.html" title="Function apply_visitor">apply_visitor</a></code>. Visitation requires
that the programmer explicitly handle (or ignore) each bounded type. Failure
to do so results in a compile-time error.</p>
<p>Visitation of a <code class="computeroutput">variant</code> requires a visitor object. The
following demonstrates one such implementation of a visitor implementating
behavior identical to <code class="computeroutput">times_two</code>:
</p>
<pre class="programlisting">class times_two_visitor
: public <code class="computeroutput"><a class="link" href="../boost/static_visitor.html" title="Class template static_visitor">boost::static_visitor</a></code>&lt;&gt;
{
public:
void operator()(int &amp; i) const
{
i *= 2;
}
void operator()(std::string &amp; str) const
{
str += str;
}
};</pre>
<p>
</p>
<p>With the implementation of the above visitor, we can then apply it to
<code class="computeroutput">v</code>, as seen in the following:
</p>
<pre class="programlisting"><code class="computeroutput"><a class="link" href="../boost/apply_visitor.html" title="Function apply_visitor">boost::apply_visitor</a></code>( times_two_visitor(), v );</pre>
<p>
</p>
<p>As expected, the content of <code class="computeroutput">v</code> is now a
<code class="computeroutput">std::string</code> equal to <code class="computeroutput">"hello world! hello world! "</code>.
(We'll skip the verification this time.)</p>
<p>In addition to enhanced robustness, visitation provides another
important advantage over <code class="computeroutput">get</code>: the ability to write generic
visitors. For instance, the following visitor will "double" the
content of <span class="emphasis"><em>any</em></span>&#160;<code class="computeroutput">variant</code> (provided its
bounded types each support operator+=):
</p>
<pre class="programlisting">class times_two_generic
: public <code class="computeroutput"><a class="link" href="../boost/static_visitor.html" title="Class template static_visitor">boost::static_visitor</a></code>&lt;&gt;
{
public:
template &lt;typename T&gt;
void operator()( T &amp; operand ) const
{
operand += operand;
}
};</pre>
<p>
</p>
<p>Again, <code class="computeroutput">apply_visitor</code> sets the wheels in motion:
</p>
<pre class="programlisting"><code class="computeroutput"><a class="link" href="../boost/apply_visitor.html" title="Function apply_visitor">boost::apply_visitor</a></code>( times_two_generic(), v );</pre>
<p>
</p>
<p>While the initial setup costs of visitation may exceed that required for
<code class="computeroutput">get</code>, the benefits quickly become significant. Before concluding
this section, we should explore one last benefit of visitation with
<code class="computeroutput">apply_visitor</code>:
<span class="bold"><strong>delayed visitation</strong></span>. Namely, a special form
of <code class="computeroutput">apply_visitor</code> is available that does not immediately apply
the given visitor to any <code class="computeroutput">variant</code> but rather returns a function
object that operates on any <code class="computeroutput">variant</code> given to it. This behavior
is particularly useful when operating on sequences of <code class="computeroutput">variant</code>
type, as the following demonstrates:
</p>
<pre class="programlisting">std::vector&lt; <code class="computeroutput"><a class="link" href="../boost/variant.html" title="Class template variant">boost::variant</a></code>&lt;int, std::string&gt; &gt; vec;
vec.push_back( 21 );
vec.push_back( "hello " );
times_two_generic visitor;
std::for_each(
vec.begin(), vec.end()
, <code class="computeroutput"><a class="link" href="../boost/apply_visitor.html" title="Function apply_visitor">boost::apply_visitor</a></code>(visitor)
);</pre>
<p>
</p>
</div>
<div class="section">
<div class="titlepage"><div><div><h3 class="title">
<a name="variant.tutorial.advanced"></a>Advanced Topics</h3></div></div></div>
<div class="toc"><dl>
<dt><span class="section"><a href="tutorial.html#variant.tutorial.preprocessor">Preprocessor macros</a></span></dt>
<dt><span class="section"><a href="tutorial.html#variant.tutorial.over-sequence">Using a type sequence to specify bounded types</a></span></dt>
<dt><span class="section"><a href="tutorial.html#variant.tutorial.recursive">Recursive <code class="computeroutput">variant</code> types</a></span></dt>
<dt><span class="section"><a href="tutorial.html#variant.tutorial.binary-visitation">Binary visitation</a></span></dt>
</dl></div>
<p>This section discusses several features of the library often required
for advanced uses of <code class="computeroutput">variant</code>. Unlike in the above section, each
feature presented below is largely independent of the others. Accordingly,
this section is not necessarily intended to be read linearly or in its
entirety.</p>
<div class="section">
<div class="titlepage"><div><div><h4 class="title">
<a name="variant.tutorial.preprocessor"></a>Preprocessor macros</h4></div></div></div>
<p>While the <code class="computeroutput">variant</code> class template's variadic parameter
list greatly simplifies use for specific instantiations of the template,
it significantly complicates use for generic instantiations. For instance,
while it is immediately clear how one might write a function accepting a
specific <code class="computeroutput">variant</code> instantiation, say
<code class="computeroutput">variant&lt;int, std::string&gt;</code>, it is less clear how one
might write a function accepting any given <code class="computeroutput">variant</code>.</p>
<p>Due to the lack of support for true variadic template parameter lists
in the C++98 standard, the preprocessor is needed. While the
<a href="../../../libs/preprocessor/index.html" target="_top">Preprocessor</a> library provides a general and
powerful solution, the need to repeat
<code class="computeroutput"><a class="link" href="../BOOST_VARIANT_LIMIT_TYPES.html" title="Macro BOOST_VARIANT_LIMIT_TYPES">BOOST_VARIANT_LIMIT_TYPES</a></code>
unnecessarily clutters otherwise simple code. Therefore, for common
use-cases, this library provides its own macro
<code class="computeroutput"><span class="bold"><strong><a class="link" href="../BOOST_VARIANT_ENUM_PARAMS.html" title="Macro BOOST_VARIANT_ENUM_PARAMS">BOOST_VARIANT_ENUM_PARAMS</a></strong></span></code>.</p>
<p>This macro simplifies for the user the process of declaring
<code class="computeroutput">variant</code> types in function templates or explicit partial
specializations of class templates, as shown in the following:
</p>
<pre class="programlisting">// general cases
template &lt;typename T&gt; void some_func(const T &amp;);
template &lt;typename T&gt; class some_class;
// function template overload
template &lt;<code class="computeroutput"><a class="link" href="../BOOST_VARIANT_ENUM_PARAMS.html" title="Macro BOOST_VARIANT_ENUM_PARAMS">BOOST_VARIANT_ENUM_PARAMS</a></code>(typename T)&gt;
void some_func(const <code class="computeroutput"><a class="link" href="../boost/variant.html" title="Class template variant">boost::variant</a></code>&lt;<code class="computeroutput"><a class="link" href="../BOOST_VARIANT_ENUM_PARAMS.html" title="Macro BOOST_VARIANT_ENUM_PARAMS">BOOST_VARIANT_ENUM_PARAMS</a></code>(T)&gt; &amp;);
// explicit partial specialization
template &lt;<code class="computeroutput"><a class="link" href="../BOOST_VARIANT_ENUM_PARAMS.html" title="Macro BOOST_VARIANT_ENUM_PARAMS">BOOST_VARIANT_ENUM_PARAMS</a></code>(typename T)&gt;
class some_class&lt; <code class="computeroutput"><a class="link" href="../boost/variant.html" title="Class template variant">boost::variant</a></code>&lt;<code class="computeroutput"><a class="link" href="../BOOST_VARIANT_ENUM_PARAMS.html" title="Macro BOOST_VARIANT_ENUM_PARAMS">BOOST_VARIANT_ENUM_PARAMS</a></code>(T)&gt; &gt;;</pre>
<p>
</p>
</div>
<div class="section">
<div class="titlepage"><div><div><h4 class="title">
<a name="variant.tutorial.over-sequence"></a>Using a type sequence to specify bounded types</h4></div></div></div>
<p>While convenient for typical uses, the <code class="computeroutput">variant</code> class
template's variadic template parameter list is limiting in two significant
dimensions. First, due to the lack of support for true variadic template
parameter lists in C++, the number of parameters must be limited to some
implementation-defined maximum (namely,
<code class="computeroutput"><a class="link" href="../BOOST_VARIANT_LIMIT_TYPES.html" title="Macro BOOST_VARIANT_LIMIT_TYPES">BOOST_VARIANT_LIMIT_TYPES</a></code>).
Second, the nature of parameter lists in general makes compile-time
manipulation of the lists excessively difficult.</p>
<p>To solve these problems,
<code class="computeroutput">make_variant_over&lt; <span class="emphasis"><em>Sequence</em></span> &gt;</code>
exposes a <code class="computeroutput">variant</code> whose bounded types are the elements of
<code class="computeroutput">Sequence</code> (where <code class="computeroutput">Sequence</code> is any type fulfilling
the requirements of <a href="../../../libs/mpl/index.html" target="_top">MPL</a>'s
<span class="emphasis"><em>Sequence</em></span> concept). For instance,
</p>
<pre class="programlisting">typedef <code class="computeroutput">mpl::vector</code>&lt; std::string &gt; types_initial;
typedef <code class="computeroutput">mpl::push_front</code>&lt; types_initial, int &gt;::type types;
<code class="computeroutput"><a class="link" href="../boost/make_variant_over.html" title="Class template make_variant_over">boost::make_variant_over</a></code>&lt; types &gt;::type v1;</pre>
<p>
behaves equivalently to
</p>
<pre class="programlisting"><code class="computeroutput"><a class="link" href="../boost/variant.html" title="Class template variant">boost::variant</a></code>&lt; int, std::string &gt; v2;</pre>
<p>
</p>
<p><span class="bold"><strong>Portability</strong></span>: Unfortunately, due to
standard conformance issues in several compilers,
<code class="computeroutput">make_variant_over</code> is not universally available. On these
compilers the library indicates its lack of support for the syntax via the
definition of the preprocessor symbol
<code class="computeroutput"><a class="link" href="../BOOST_VARIANT_NO_TYPE_SEQUENCE_SUPPORT.html" title="Macro BOOST_VARIANT_NO_TYPE_SEQUENCE_SUPPORT">BOOST_VARIANT_NO_TYPE_SEQUENCE_SUPPORT</a></code>.</p>
</div>
<div class="section">
<div class="titlepage"><div><div><h4 class="title">
<a name="variant.tutorial.recursive"></a>Recursive <code class="computeroutput">variant</code> types</h4></div></div></div>
<div class="toc"><dl>
<dt><span class="section"><a href="tutorial.html#variant.tutorial.recursive.recursive-wrapper">Recursive types with <code class="computeroutput">recursive_wrapper</code></a></span></dt>
<dt><span class="section"><a href="tutorial.html#variant.tutorial.recursive.recursive-variant">Recursive types with <code class="computeroutput">make_recursive_variant</code></a></span></dt>
</dl></div>
<p>Recursive types facilitate the construction of complex semantics from
simple syntax. For instance, nearly every programmer is familiar with the
canonical definition of a linked list implementation, whose simple
definition allows sequences of unlimited length:
</p>
<pre class="programlisting">template &lt;typename T&gt;
struct list_node
{
T data;
list_node * next;
};</pre>
<p>
</p>
<p>The nature of <code class="computeroutput">variant</code> as a generic class template
unfortunately precludes the straightforward construction of recursive
<code class="computeroutput">variant</code> types. Consider the following attempt to construct
a structure for simple mathematical expressions:
</p>
<pre class="programlisting">struct add;
struct sub;
template &lt;typename OpTag&gt; struct binary_op;
typedef <code class="computeroutput"><a class="link" href="../boost/variant.html" title="Class template variant">boost::variant</a></code>&lt;
int
, binary_op&lt;add&gt;
, binary_op&lt;sub&gt;
&gt; expression;
template &lt;typename OpTag&gt;
struct binary_op
{
expression left; // <span class="emphasis"><em>variant instantiated here...</em></span>
expression right;
binary_op( const expression &amp; lhs, const expression &amp; rhs )
: left(lhs), right(rhs)
{
}
}; // <span class="emphasis"><em>...but binary_op not complete until here!</em></span></pre>
<p>
</p>
<p>While well-intentioned, the above approach will not compile because
<code class="computeroutput">binary_op</code> is still incomplete when the <code class="computeroutput">variant</code>
type <code class="computeroutput">expression</code> is instantiated. Further, the approach suffers
from a more significant logical flaw: even if C++ syntax were different
such that the above example could be made to "work,"
<code class="computeroutput">expression</code> would need to be of infinite size, which is
clearly impossible.</p>
<p>To overcome these difficulties, <code class="computeroutput">variant</code> includes special
support for the
<code class="computeroutput"><a class="link" href="../boost/recursive_wrapper.html" title="Class template recursive_wrapper">boost::recursive_wrapper</a></code> class
template, which breaks the circular dependency at the heart of these
problems. Further,
<code class="computeroutput"><a class="link" href="../boost/make_recursive_variant.html" title="Class template make_recursive_variant">boost::make_recursive_variant</a></code> provides
a more convenient syntax for declaring recursive <code class="computeroutput">variant</code>
types. Tutorials for use of these facilities is described in
<a class="xref" href="tutorial.html#variant.tutorial.recursive.recursive-wrapper" title="Recursive types with recursive_wrapper">the section called &#8220;Recursive types with <code class="computeroutput">recursive_wrapper</code>&#8221;</a> and
<a class="xref" href="tutorial.html#variant.tutorial.recursive.recursive-variant" title="Recursive types with make_recursive_variant">the section called &#8220;Recursive types with <code class="computeroutput">make_recursive_variant</code>&#8221;</a>.</p>
<div class="section">
<div class="titlepage"><div><div><h5 class="title">
<a name="variant.tutorial.recursive.recursive-wrapper"></a>Recursive types with <code class="computeroutput">recursive_wrapper</code>
</h5></div></div></div>
<p>The following example demonstrates how <code class="computeroutput">recursive_wrapper</code>
could be used to solve the problem presented in
<a class="xref" href="tutorial.html#variant.tutorial.recursive" title="Recursive variant types">the section called &#8220;Recursive <code class="computeroutput">variant</code> types&#8221;</a>:
</p>
<pre class="programlisting">typedef <code class="computeroutput"><a class="link" href="../boost/variant.html" title="Class template variant">boost::variant</a></code>&lt;
int
, <code class="computeroutput"><a class="link" href="../boost/recursive_wrapper.html" title="Class template recursive_wrapper">boost::recursive_wrapper</a></code>&lt; binary_op&lt;add&gt; &gt;
, <code class="computeroutput"><a class="link" href="../boost/recursive_wrapper.html" title="Class template recursive_wrapper">boost::recursive_wrapper</a></code>&lt; binary_op&lt;sub&gt; &gt;
&gt; expression;</pre>
<p>
</p>
<p>Because <code class="computeroutput">variant</code> provides special support for
<code class="computeroutput">recursive_wrapper</code>, clients may treat the resultant
<code class="computeroutput">variant</code> as though the wrapper were not present. This is seen
in the implementation of the following visitor, which calculates the value
of an <code class="computeroutput">expression</code> without any reference to
<code class="computeroutput">recursive_wrapper</code>:
</p>
<pre class="programlisting">class calculator : public <code class="computeroutput"><a class="link" href="../boost/static_visitor.html" title="Class template static_visitor">boost::static_visitor&lt;int&gt;</a></code>
{
public:
int operator()(int value) const
{
return value;
}
int operator()(const binary_op&lt;add&gt; &amp; binary) const
{
return <code class="computeroutput"><a class="link" href="../boost/apply_visitor.html" title="Function apply_visitor">boost::apply_visitor</a></code>( calculator(), binary.left )
+ <code class="computeroutput"><a class="link" href="../boost/apply_visitor.html" title="Function apply_visitor">boost::apply_visitor</a></code>( calculator(), binary.right );
}
int operator()(const binary_op&lt;sub&gt; &amp; binary) const
{
return <code class="computeroutput"><a class="link" href="../boost/apply_visitor.html" title="Function apply_visitor">boost::apply_visitor</a></code>( calculator(), binary.left )
- <code class="computeroutput"><a class="link" href="../boost/apply_visitor.html" title="Function apply_visitor">boost::apply_visitor</a></code>( calculator(), binary.right );
}
};</pre>
<p>
</p>
<p>Finally, we can demonstrate <code class="computeroutput">expression</code> in action:
</p>
<pre class="programlisting">void f()
{
// result = ((7-3)+8) = 12
expression result(
binary_op&lt;add&gt;(
binary_op&lt;sub&gt;(7,3)
, 8
)
);
assert( <code class="computeroutput"><a class="link" href="../boost/apply_visitor.html" title="Function apply_visitor">boost::apply_visitor</a></code>(calculator(),result) == 12 );
}</pre>
<p>
</p>
</div>
<div class="section">
<div class="titlepage"><div><div><h5 class="title">
<a name="variant.tutorial.recursive.recursive-variant"></a>Recursive types with <code class="computeroutput">make_recursive_variant</code>
</h5></div></div></div>
<p>For some applications of recursive <code class="computeroutput">variant</code> types, a user
may be able to sacrifice the full flexibility of using
<code class="computeroutput">recursive_wrapper</code> with <code class="computeroutput">variant</code> for the following
convenient syntax:
</p>
<pre class="programlisting">typedef <code class="computeroutput"><a class="link" href="../boost/make_recursive_variant.html" title="Class template make_recursive_variant">boost::make_recursive_variant</a></code>&lt;
int
, std::vector&lt; boost::recursive_variant_ &gt;
&gt;::type int_tree_t;</pre>
<p>
</p>
<p>Use of the resultant <code class="computeroutput">variant</code> type is as expected:
</p>
<pre class="programlisting">std::vector&lt; int_tree_t &gt; subresult;
subresult.push_back(3);
subresult.push_back(5);
std::vector&lt; int_tree_t &gt; result;
result.push_back(1);
result.push_back(subresult);
result.push_back(7);
int_tree_t var(result);</pre>
<p>
</p>
<p>To be clear, one might represent the resultant content of
<code class="computeroutput">var</code> as <code class="computeroutput">( 1 ( 3 5 ) 7 )</code>.</p>
<p>Finally, note that a type sequence can be used to specify the bounded
types of a recursive <code class="computeroutput">variant</code> via the use of
<code class="computeroutput"><a class="link" href="../boost/make_recursive_variant__id465509.html" title="Class template make_recursive_variant_over">boost::make_recursive_variant_over</a></code>,
whose semantics are the same as <code class="computeroutput">make_variant_over</code> (which is
described in <a class="xref" href="tutorial.html#variant.tutorial.over-sequence" title="Using a type sequence to specify bounded types">the section called &#8220;Using a type sequence to specify bounded types&#8221;</a>).</p>
<p><span class="bold"><strong>Portability</strong></span>: Unfortunately, due to
standard conformance issues in several compilers,
<code class="computeroutput">make_recursive_variant</code> is not universally supported. On these
compilers the library indicates its lack of support via the definition
of the preprocessor symbol
<code class="computeroutput"><a class="link" href="../BOOST_VARIANT_NO_FULL_RECURSIVE_VARIANT_SUPPORT.html" title="Macro BOOST_VARIANT_NO_FULL_RECURSIVE_VARIANT_SUPPORT">BOOST_VARIANT_NO_FULL_RECURSIVE_VARIANT_SUPPORT</a></code>.
Thus, unless working with highly-conformant compilers, maximum portability
will be achieved by instead using <code class="computeroutput">recursive_wrapper</code>, as
described in
<a class="xref" href="tutorial.html#variant.tutorial.recursive.recursive-wrapper" title="Recursive types with recursive_wrapper">the section called &#8220;Recursive types with <code class="computeroutput">recursive_wrapper</code>&#8221;</a>.</p>
</div>
</div>
<div class="section">
<div class="titlepage"><div><div><h4 class="title">
<a name="variant.tutorial.binary-visitation"></a>Binary visitation</h4></div></div></div>
<p>As the tutorial above demonstrates, visitation is a powerful mechanism
for manipulating <code class="computeroutput">variant</code> content. Binary visitation further
extends the power and flexibility of visitation by allowing simultaneous
visitation of the content of two different <code class="computeroutput">variant</code>
objects.</p>
<p>Notably this feature requires that binary visitors are incompatible
with the visitor objects discussed in the tutorial above, as they must
operate on two arguments. The following demonstrates the implementation of
a binary visitor:
</p>
<pre class="programlisting">class are_strict_equals
: public <code class="computeroutput"><a class="link" href="../boost/static_visitor.html" title="Class template static_visitor">boost::static_visitor</a></code>&lt;bool&gt;
{
public:
template &lt;typename T, typename U&gt;
bool operator()( const T &amp;, const U &amp; ) const
{
return false; // cannot compare different types
}
template &lt;typename T&gt;
bool operator()( const T &amp; lhs, const T &amp; rhs ) const
{
return lhs == rhs;
}
};</pre>
<p>
</p>
<p>As expected, the visitor is applied to two <code class="computeroutput">variant</code>
arguments by means of <code class="computeroutput">apply_visitor</code>:
</p>
<pre class="programlisting"><code class="computeroutput"><a class="link" href="../boost/variant.html" title="Class template variant">boost::variant</a></code>&lt; int, std::string &gt; v1( "hello" );
<code class="computeroutput"><a class="link" href="../boost/variant.html" title="Class template variant">boost::variant</a></code>&lt; double, std::string &gt; v2( "hello" );
assert( <code class="computeroutput"><a class="link" href="../boost/apply_visitor.html" title="Function apply_visitor">boost::apply_visitor</a></code>(are_strict_equals(), v1, v2) );
<code class="computeroutput"><a class="link" href="../boost/variant.html" title="Class template variant">boost::variant</a></code>&lt; int, const char * &gt; v3( "hello" );
assert( !<code class="computeroutput"><a class="link" href="../boost/apply_visitor.html" title="Function apply_visitor">boost::apply_visitor</a></code>(are_strict_equals(), v1, v3) );</pre>
<p>
</p>
<p>Finally, we must note that the function object returned from the
"delayed" form of
<code class="computeroutput"><a class="link" href="../boost/apply_visitor.html" title="Function apply_visitor">apply_visitor</a></code> also supports
binary visitation, as the following demonstrates:
</p>
<pre class="programlisting">typedef <code class="computeroutput"><a class="link" href="../boost/variant.html" title="Class template variant">boost::variant</a></code>&lt;double, std::string&gt; my_variant;
std::vector&lt; my_variant &gt; seq1;
seq1.push_back("pi is close to ");
seq1.push_back(3.14);
std::list&lt; my_variant &gt; seq2;
seq2.push_back("pi is close to ");
seq2.push_back(3.14);
are_strict_equals visitor;
assert( std::equal(
seq1.begin(), seq1.end(), seq2.begin()
, <code class="computeroutput"><a class="link" href="../boost/apply_visitor.html" title="Function apply_visitor">boost::apply_visitor</a></code>( visitor )
) );</pre>
<p>
</p>
</div>
</div>
</div>
<table xmlns:rev="http://www.cs.rpi.edu/~gregod/boost/tools/doc/revision" width="100%"><tr>
<td align="left"></td>
<td align="right"><div class="copyright-footer">Copyright &#169; 2002, 2003 Eric Friedman, Itay Maman<p>Distributed under the Boost Software License, Version 1.0.
(See accompanying file <code class="filename">LICENSE_1_0.txt</code> or copy at
<a href="http://www.boost.org/LICENSE_1_0.txt" target="_top">http://www.boost.org/LICENSE_1_0.txt</a>)
</p>
</div></td>
</tr></table>
<hr>
<div class="spirit-nav">
<a accesskey="p" href="../variant.html"><img src="../../../doc/src/images/prev.png" alt="Prev"></a><a accesskey="u" href="../variant.html"><img src="../../../doc/src/images/up.png" alt="Up"></a><a accesskey="h" href="../index.html"><img src="../../../doc/src/images/home.png" alt="Home"></a><a accesskey="n" href="reference.html"><img src="../../../doc/src/images/next.png" alt="Next"></a>
</div>
</body>
</html>