| /* mpih-mul.c - MPI helper functions |
| * Copyright (C) 1994, 1996, 1998, 1999, 2000, |
| * 2001, 2002 Free Software Foundation, Inc. |
| * |
| * This file is part of Libgcrypt. |
| * |
| * Libgcrypt is free software; you can redistribute it and/or modify |
| * it under the terms of the GNU Lesser General Public License as |
| * published by the Free Software Foundation; either version 2.1 of |
| * the License, or (at your option) any later version. |
| * |
| * Libgcrypt is distributed in the hope that it will be useful, |
| * but WITHOUT ANY WARRANTY; without even the implied warranty of |
| * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the |
| * GNU Lesser General Public License for more details. |
| * |
| * You should have received a copy of the GNU Lesser General Public |
| * License along with this program; if not, write to the Free Software |
| * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA |
| * |
| * Note: This code is heavily based on the GNU MP Library. |
| * Actually it's the same code with only minor changes in the |
| * way the data is stored; this is to support the abstraction |
| * of an optional secure memory allocation which may be used |
| * to avoid revealing of sensitive data due to paging etc. |
| */ |
| |
| #include <config.h> |
| #include <stdio.h> |
| #include <stdlib.h> |
| #include <string.h> |
| #include "mpi-internal.h" |
| #include "longlong.h" |
| #include "g10lib.h" |
| |
| #define MPN_MUL_N_RECURSE(prodp, up, vp, size, tspace) \ |
| do { \ |
| if( (size) < KARATSUBA_THRESHOLD ) \ |
| mul_n_basecase (prodp, up, vp, size); \ |
| else \ |
| mul_n (prodp, up, vp, size, tspace); \ |
| } while (0); |
| |
| #define MPN_SQR_N_RECURSE(prodp, up, size, tspace) \ |
| do { \ |
| if ((size) < KARATSUBA_THRESHOLD) \ |
| _gcry_mpih_sqr_n_basecase (prodp, up, size); \ |
| else \ |
| _gcry_mpih_sqr_n (prodp, up, size, tspace); \ |
| } while (0); |
| |
| |
| |
| |
| /* Multiply the natural numbers u (pointed to by UP) and v (pointed to by VP), |
| * both with SIZE limbs, and store the result at PRODP. 2 * SIZE limbs are |
| * always stored. Return the most significant limb. |
| * |
| * Argument constraints: |
| * 1. PRODP != UP and PRODP != VP, i.e. the destination |
| * must be distinct from the multiplier and the multiplicand. |
| * |
| * |
| * Handle simple cases with traditional multiplication. |
| * |
| * This is the most critical code of multiplication. All multiplies rely |
| * on this, both small and huge. Small ones arrive here immediately. Huge |
| * ones arrive here as this is the base case for Karatsuba's recursive |
| * algorithm below. |
| */ |
| |
| static mpi_limb_t |
| mul_n_basecase( mpi_ptr_t prodp, mpi_ptr_t up, |
| mpi_ptr_t vp, mpi_size_t size) |
| { |
| mpi_size_t i; |
| mpi_limb_t cy; |
| mpi_limb_t v_limb; |
| |
| /* Multiply by the first limb in V separately, as the result can be |
| * stored (not added) to PROD. We also avoid a loop for zeroing. */ |
| v_limb = vp[0]; |
| if( v_limb <= 1 ) { |
| if( v_limb == 1 ) |
| MPN_COPY( prodp, up, size ); |
| else |
| MPN_ZERO( prodp, size ); |
| cy = 0; |
| } |
| else |
| cy = _gcry_mpih_mul_1( prodp, up, size, v_limb ); |
| |
| prodp[size] = cy; |
| prodp++; |
| |
| /* For each iteration in the outer loop, multiply one limb from |
| * U with one limb from V, and add it to PROD. */ |
| for( i = 1; i < size; i++ ) { |
| v_limb = vp[i]; |
| if( v_limb <= 1 ) { |
| cy = 0; |
| if( v_limb == 1 ) |
| cy = _gcry_mpih_add_n(prodp, prodp, up, size); |
| } |
| else |
| cy = _gcry_mpih_addmul_1(prodp, up, size, v_limb); |
| |
| prodp[size] = cy; |
| prodp++; |
| } |
| |
| return cy; |
| } |
| |
| |
| static void |
| mul_n( mpi_ptr_t prodp, mpi_ptr_t up, mpi_ptr_t vp, |
| mpi_size_t size, mpi_ptr_t tspace ) |
| { |
| if( size & 1 ) { |
| /* The size is odd, and the code below doesn't handle that. |
| * Multiply the least significant (size - 1) limbs with a recursive |
| * call, and handle the most significant limb of S1 and S2 |
| * separately. |
| * A slightly faster way to do this would be to make the Karatsuba |
| * code below behave as if the size were even, and let it check for |
| * odd size in the end. I.e., in essence move this code to the end. |
| * Doing so would save us a recursive call, and potentially make the |
| * stack grow a lot less. |
| */ |
| mpi_size_t esize = size - 1; /* even size */ |
| mpi_limb_t cy_limb; |
| |
| MPN_MUL_N_RECURSE( prodp, up, vp, esize, tspace ); |
| cy_limb = _gcry_mpih_addmul_1( prodp + esize, up, esize, vp[esize] ); |
| prodp[esize + esize] = cy_limb; |
| cy_limb = _gcry_mpih_addmul_1( prodp + esize, vp, size, up[esize] ); |
| prodp[esize + size] = cy_limb; |
| } |
| else { |
| /* Anatolij Alekseevich Karatsuba's divide-and-conquer algorithm. |
| * |
| * Split U in two pieces, U1 and U0, such that |
| * U = U0 + U1*(B**n), |
| * and V in V1 and V0, such that |
| * V = V0 + V1*(B**n). |
| * |
| * UV is then computed recursively using the identity |
| * |
| * 2n n n n |
| * UV = (B + B )U V + B (U -U )(V -V ) + (B + 1)U V |
| * 1 1 1 0 0 1 0 0 |
| * |
| * Where B = 2**BITS_PER_MP_LIMB. |
| */ |
| mpi_size_t hsize = size >> 1; |
| mpi_limb_t cy; |
| int negflg; |
| |
| /* Product H. ________________ ________________ |
| * |_____U1 x V1____||____U0 x V0_____| |
| * Put result in upper part of PROD and pass low part of TSPACE |
| * as new TSPACE. |
| */ |
| MPN_MUL_N_RECURSE(prodp + size, up + hsize, vp + hsize, hsize, tspace); |
| |
| /* Product M. ________________ |
| * |_(U1-U0)(V0-V1)_| |
| */ |
| if( _gcry_mpih_cmp(up + hsize, up, hsize) >= 0 ) { |
| _gcry_mpih_sub_n(prodp, up + hsize, up, hsize); |
| negflg = 0; |
| } |
| else { |
| _gcry_mpih_sub_n(prodp, up, up + hsize, hsize); |
| negflg = 1; |
| } |
| if( _gcry_mpih_cmp(vp + hsize, vp, hsize) >= 0 ) { |
| _gcry_mpih_sub_n(prodp + hsize, vp + hsize, vp, hsize); |
| negflg ^= 1; |
| } |
| else { |
| _gcry_mpih_sub_n(prodp + hsize, vp, vp + hsize, hsize); |
| /* No change of NEGFLG. */ |
| } |
| /* Read temporary operands from low part of PROD. |
| * Put result in low part of TSPACE using upper part of TSPACE |
| * as new TSPACE. |
| */ |
| MPN_MUL_N_RECURSE(tspace, prodp, prodp + hsize, hsize, tspace + size); |
| |
| /* Add/copy product H. */ |
| MPN_COPY (prodp + hsize, prodp + size, hsize); |
| cy = _gcry_mpih_add_n( prodp + size, prodp + size, |
| prodp + size + hsize, hsize); |
| |
| /* Add product M (if NEGFLG M is a negative number) */ |
| if(negflg) |
| cy -= _gcry_mpih_sub_n(prodp + hsize, prodp + hsize, tspace, size); |
| else |
| cy += _gcry_mpih_add_n(prodp + hsize, prodp + hsize, tspace, size); |
| |
| /* Product L. ________________ ________________ |
| * |________________||____U0 x V0_____| |
| * Read temporary operands from low part of PROD. |
| * Put result in low part of TSPACE using upper part of TSPACE |
| * as new TSPACE. |
| */ |
| MPN_MUL_N_RECURSE(tspace, up, vp, hsize, tspace + size); |
| |
| /* Add/copy Product L (twice) */ |
| |
| cy += _gcry_mpih_add_n(prodp + hsize, prodp + hsize, tspace, size); |
| if( cy ) |
| _gcry_mpih_add_1(prodp + hsize + size, prodp + hsize + size, hsize, cy); |
| |
| MPN_COPY(prodp, tspace, hsize); |
| cy = _gcry_mpih_add_n(prodp + hsize, prodp + hsize, tspace + hsize, hsize); |
| if( cy ) |
| _gcry_mpih_add_1(prodp + size, prodp + size, size, 1); |
| } |
| } |
| |
| |
| void |
| _gcry_mpih_sqr_n_basecase( mpi_ptr_t prodp, mpi_ptr_t up, mpi_size_t size ) |
| { |
| mpi_size_t i; |
| mpi_limb_t cy_limb; |
| mpi_limb_t v_limb; |
| |
| /* Multiply by the first limb in V separately, as the result can be |
| * stored (not added) to PROD. We also avoid a loop for zeroing. */ |
| v_limb = up[0]; |
| if( v_limb <= 1 ) { |
| if( v_limb == 1 ) |
| MPN_COPY( prodp, up, size ); |
| else |
| MPN_ZERO(prodp, size); |
| cy_limb = 0; |
| } |
| else |
| cy_limb = _gcry_mpih_mul_1( prodp, up, size, v_limb ); |
| |
| prodp[size] = cy_limb; |
| prodp++; |
| |
| /* For each iteration in the outer loop, multiply one limb from |
| * U with one limb from V, and add it to PROD. */ |
| for( i=1; i < size; i++) { |
| v_limb = up[i]; |
| if( v_limb <= 1 ) { |
| cy_limb = 0; |
| if( v_limb == 1 ) |
| cy_limb = _gcry_mpih_add_n(prodp, prodp, up, size); |
| } |
| else |
| cy_limb = _gcry_mpih_addmul_1(prodp, up, size, v_limb); |
| |
| prodp[size] = cy_limb; |
| prodp++; |
| } |
| } |
| |
| |
| void |
| _gcry_mpih_sqr_n( mpi_ptr_t prodp, |
| mpi_ptr_t up, mpi_size_t size, mpi_ptr_t tspace) |
| { |
| if( size & 1 ) { |
| /* The size is odd, and the code below doesn't handle that. |
| * Multiply the least significant (size - 1) limbs with a recursive |
| * call, and handle the most significant limb of S1 and S2 |
| * separately. |
| * A slightly faster way to do this would be to make the Karatsuba |
| * code below behave as if the size were even, and let it check for |
| * odd size in the end. I.e., in essence move this code to the end. |
| * Doing so would save us a recursive call, and potentially make the |
| * stack grow a lot less. |
| */ |
| mpi_size_t esize = size - 1; /* even size */ |
| mpi_limb_t cy_limb; |
| |
| MPN_SQR_N_RECURSE( prodp, up, esize, tspace ); |
| cy_limb = _gcry_mpih_addmul_1( prodp + esize, up, esize, up[esize] ); |
| prodp[esize + esize] = cy_limb; |
| cy_limb = _gcry_mpih_addmul_1( prodp + esize, up, size, up[esize] ); |
| |
| prodp[esize + size] = cy_limb; |
| } |
| else { |
| mpi_size_t hsize = size >> 1; |
| mpi_limb_t cy; |
| |
| /* Product H. ________________ ________________ |
| * |_____U1 x U1____||____U0 x U0_____| |
| * Put result in upper part of PROD and pass low part of TSPACE |
| * as new TSPACE. |
| */ |
| MPN_SQR_N_RECURSE(prodp + size, up + hsize, hsize, tspace); |
| |
| /* Product M. ________________ |
| * |_(U1-U0)(U0-U1)_| |
| */ |
| if( _gcry_mpih_cmp( up + hsize, up, hsize) >= 0 ) |
| _gcry_mpih_sub_n( prodp, up + hsize, up, hsize); |
| else |
| _gcry_mpih_sub_n (prodp, up, up + hsize, hsize); |
| |
| /* Read temporary operands from low part of PROD. |
| * Put result in low part of TSPACE using upper part of TSPACE |
| * as new TSPACE. */ |
| MPN_SQR_N_RECURSE(tspace, prodp, hsize, tspace + size); |
| |
| /* Add/copy product H */ |
| MPN_COPY(prodp + hsize, prodp + size, hsize); |
| cy = _gcry_mpih_add_n(prodp + size, prodp + size, |
| prodp + size + hsize, hsize); |
| |
| /* Add product M (if NEGFLG M is a negative number). */ |
| cy -= _gcry_mpih_sub_n (prodp + hsize, prodp + hsize, tspace, size); |
| |
| /* Product L. ________________ ________________ |
| * |________________||____U0 x U0_____| |
| * Read temporary operands from low part of PROD. |
| * Put result in low part of TSPACE using upper part of TSPACE |
| * as new TSPACE. */ |
| MPN_SQR_N_RECURSE (tspace, up, hsize, tspace + size); |
| |
| /* Add/copy Product L (twice). */ |
| cy += _gcry_mpih_add_n (prodp + hsize, prodp + hsize, tspace, size); |
| if( cy ) |
| _gcry_mpih_add_1(prodp + hsize + size, prodp + hsize + size, |
| hsize, cy); |
| |
| MPN_COPY(prodp, tspace, hsize); |
| cy = _gcry_mpih_add_n (prodp + hsize, prodp + hsize, tspace + hsize, hsize); |
| if( cy ) |
| _gcry_mpih_add_1 (prodp + size, prodp + size, size, 1); |
| } |
| } |
| |
| |
| /* This should be made into an inline function in gmp.h. */ |
| void |
| _gcry_mpih_mul_n( mpi_ptr_t prodp, |
| mpi_ptr_t up, mpi_ptr_t vp, mpi_size_t size) |
| { |
| int secure; |
| |
| if( up == vp ) { |
| if( size < KARATSUBA_THRESHOLD ) |
| _gcry_mpih_sqr_n_basecase( prodp, up, size ); |
| else { |
| mpi_ptr_t tspace; |
| secure = gcry_is_secure( up ); |
| tspace = mpi_alloc_limb_space( 2 * size, secure ); |
| _gcry_mpih_sqr_n( prodp, up, size, tspace ); |
| _gcry_mpi_free_limb_space (tspace, 2 * size ); |
| } |
| } |
| else { |
| if( size < KARATSUBA_THRESHOLD ) |
| mul_n_basecase( prodp, up, vp, size ); |
| else { |
| mpi_ptr_t tspace; |
| secure = gcry_is_secure( up ) || gcry_is_secure( vp ); |
| tspace = mpi_alloc_limb_space( 2 * size, secure ); |
| mul_n (prodp, up, vp, size, tspace); |
| _gcry_mpi_free_limb_space (tspace, 2 * size ); |
| } |
| } |
| } |
| |
| |
| |
| void |
| _gcry_mpih_mul_karatsuba_case( mpi_ptr_t prodp, |
| mpi_ptr_t up, mpi_size_t usize, |
| mpi_ptr_t vp, mpi_size_t vsize, |
| struct karatsuba_ctx *ctx ) |
| { |
| mpi_limb_t cy; |
| |
| if( !ctx->tspace || ctx->tspace_size < vsize ) { |
| if( ctx->tspace ) |
| _gcry_mpi_free_limb_space( ctx->tspace, ctx->tspace_nlimbs ); |
| ctx->tspace_nlimbs = 2 * vsize; |
| ctx->tspace = mpi_alloc_limb_space( 2 * vsize, |
| (gcry_is_secure( up ) |
| || gcry_is_secure( vp )) ); |
| ctx->tspace_size = vsize; |
| } |
| |
| MPN_MUL_N_RECURSE( prodp, up, vp, vsize, ctx->tspace ); |
| |
| prodp += vsize; |
| up += vsize; |
| usize -= vsize; |
| if( usize >= vsize ) { |
| if( !ctx->tp || ctx->tp_size < vsize ) { |
| if( ctx->tp ) |
| _gcry_mpi_free_limb_space( ctx->tp, ctx->tp_nlimbs ); |
| ctx->tp_nlimbs = 2 * vsize; |
| ctx->tp = mpi_alloc_limb_space( 2 * vsize, gcry_is_secure( up ) |
| || gcry_is_secure( vp ) ); |
| ctx->tp_size = vsize; |
| } |
| |
| do { |
| MPN_MUL_N_RECURSE( ctx->tp, up, vp, vsize, ctx->tspace ); |
| cy = _gcry_mpih_add_n( prodp, prodp, ctx->tp, vsize ); |
| _gcry_mpih_add_1( prodp + vsize, ctx->tp + vsize, vsize, cy ); |
| prodp += vsize; |
| up += vsize; |
| usize -= vsize; |
| } while( usize >= vsize ); |
| } |
| |
| if( usize ) { |
| if( usize < KARATSUBA_THRESHOLD ) { |
| _gcry_mpih_mul( ctx->tspace, vp, vsize, up, usize ); |
| } |
| else { |
| if( !ctx->next ) { |
| ctx->next = gcry_xcalloc( 1, sizeof *ctx ); |
| } |
| _gcry_mpih_mul_karatsuba_case( ctx->tspace, |
| vp, vsize, |
| up, usize, |
| ctx->next ); |
| } |
| |
| cy = _gcry_mpih_add_n( prodp, prodp, ctx->tspace, vsize); |
| _gcry_mpih_add_1( prodp + vsize, ctx->tspace + vsize, usize, cy ); |
| } |
| } |
| |
| |
| void |
| _gcry_mpih_release_karatsuba_ctx( struct karatsuba_ctx *ctx ) |
| { |
| struct karatsuba_ctx *ctx2; |
| |
| if( ctx->tp ) |
| _gcry_mpi_free_limb_space( ctx->tp, ctx->tp_nlimbs ); |
| if( ctx->tspace ) |
| _gcry_mpi_free_limb_space( ctx->tspace, ctx->tspace_nlimbs ); |
| for( ctx=ctx->next; ctx; ctx = ctx2 ) { |
| ctx2 = ctx->next; |
| if( ctx->tp ) |
| _gcry_mpi_free_limb_space( ctx->tp, ctx->tp_nlimbs ); |
| if( ctx->tspace ) |
| _gcry_mpi_free_limb_space( ctx->tspace, ctx->tspace_nlimbs ); |
| gcry_free( ctx ); |
| } |
| } |
| |
| /* Multiply the natural numbers u (pointed to by UP, with USIZE limbs) |
| * and v (pointed to by VP, with VSIZE limbs), and store the result at |
| * PRODP. USIZE + VSIZE limbs are always stored, but if the input |
| * operands are normalized. Return the most significant limb of the |
| * result. |
| * |
| * NOTE: The space pointed to by PRODP is overwritten before finished |
| * with U and V, so overlap is an error. |
| * |
| * Argument constraints: |
| * 1. USIZE >= VSIZE. |
| * 2. PRODP != UP and PRODP != VP, i.e. the destination |
| * must be distinct from the multiplier and the multiplicand. |
| */ |
| |
| mpi_limb_t |
| _gcry_mpih_mul( mpi_ptr_t prodp, mpi_ptr_t up, mpi_size_t usize, |
| mpi_ptr_t vp, mpi_size_t vsize) |
| { |
| mpi_ptr_t prod_endp = prodp + usize + vsize - 1; |
| mpi_limb_t cy; |
| struct karatsuba_ctx ctx; |
| |
| if( vsize < KARATSUBA_THRESHOLD ) { |
| mpi_size_t i; |
| mpi_limb_t v_limb; |
| |
| if( !vsize ) |
| return 0; |
| |
| /* Multiply by the first limb in V separately, as the result can be |
| * stored (not added) to PROD. We also avoid a loop for zeroing. */ |
| v_limb = vp[0]; |
| if( v_limb <= 1 ) { |
| if( v_limb == 1 ) |
| MPN_COPY( prodp, up, usize ); |
| else |
| MPN_ZERO( prodp, usize ); |
| cy = 0; |
| } |
| else |
| cy = _gcry_mpih_mul_1( prodp, up, usize, v_limb ); |
| |
| prodp[usize] = cy; |
| prodp++; |
| |
| /* For each iteration in the outer loop, multiply one limb from |
| * U with one limb from V, and add it to PROD. */ |
| for( i = 1; i < vsize; i++ ) { |
| v_limb = vp[i]; |
| if( v_limb <= 1 ) { |
| cy = 0; |
| if( v_limb == 1 ) |
| cy = _gcry_mpih_add_n(prodp, prodp, up, usize); |
| } |
| else |
| cy = _gcry_mpih_addmul_1(prodp, up, usize, v_limb); |
| |
| prodp[usize] = cy; |
| prodp++; |
| } |
| |
| return cy; |
| } |
| |
| memset( &ctx, 0, sizeof ctx ); |
| _gcry_mpih_mul_karatsuba_case( prodp, up, usize, vp, vsize, &ctx ); |
| _gcry_mpih_release_karatsuba_ctx( &ctx ); |
| return *prod_endp; |
| } |
| |
| |