| /* mpih-w-sdiv -- implement udiv_qrnnd on machines with only signed |
| * division. |
| * Copyright (C) 1992, 1994, 1996, 1998, 2002 Free Software Foundation, Inc. |
| * Contributed by Peter L. Montgomery. |
| * |
| * This file is part of Libgcrypt. |
| * |
| * Libgcrypt is free software; you can redistribute it and/or modify |
| * it under the terms of the GNU Lesser General Public License as |
| * published by the Free Software Foundation; either version 2.1 of |
| * the License, or (at your option) any later version. |
| * |
| * Libgcrypt is distributed in the hope that it will be useful, |
| * but WITHOUT ANY WARRANTY; without even the implied warranty of |
| * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the |
| * GNU Lesser General Public License for more details. |
| * |
| * You should have received a copy of the GNU Lesser General Public |
| * License along with this program; if not, write to the Free Software |
| * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA |
| */ |
| |
| #include <config.h> |
| #include <stdio.h> |
| #include <stdlib.h> |
| #include "mpi-internal.h" |
| #include "longlong.h" |
| |
| |
| #if 0 /* not yet ported to MPI */ |
| |
| mpi_limb_t |
| mpihelp_udiv_w_sdiv( mpi_limp_t *rp, |
| mpi_limp_t *a1, |
| mpi_limp_t *a0, |
| mpi_limp_t *d ) |
| { |
| mp_limb_t q, r; |
| mp_limb_t c0, c1, b1; |
| |
| if ((mpi_limb_signed_t) d >= 0) |
| { |
| if (a1 < d - a1 - (a0 >> (BITS_PER_MP_LIMB - 1))) |
| { |
| /* dividend, divisor, and quotient are nonnegative */ |
| sdiv_qrnnd (q, r, a1, a0, d); |
| } |
| else |
| { |
| /* Compute c1*2^32 + c0 = a1*2^32 + a0 - 2^31*d */ |
| sub_ddmmss (c1, c0, a1, a0, d >> 1, d << (BITS_PER_MP_LIMB - 1)); |
| /* Divide (c1*2^32 + c0) by d */ |
| sdiv_qrnnd (q, r, c1, c0, d); |
| /* Add 2^31 to quotient */ |
| q += (mp_limb_t) 1 << (BITS_PER_MP_LIMB - 1); |
| } |
| } |
| else |
| { |
| b1 = d >> 1; /* d/2, between 2^30 and 2^31 - 1 */ |
| c1 = a1 >> 1; /* A/2 */ |
| c0 = (a1 << (BITS_PER_MP_LIMB - 1)) + (a0 >> 1); |
| |
| if (a1 < b1) /* A < 2^32*b1, so A/2 < 2^31*b1 */ |
| { |
| sdiv_qrnnd (q, r, c1, c0, b1); /* (A/2) / (d/2) */ |
| |
| r = 2*r + (a0 & 1); /* Remainder from A/(2*b1) */ |
| if ((d & 1) != 0) |
| { |
| if (r >= q) |
| r = r - q; |
| else if (q - r <= d) |
| { |
| r = r - q + d; |
| q--; |
| } |
| else |
| { |
| r = r - q + 2*d; |
| q -= 2; |
| } |
| } |
| } |
| else if (c1 < b1) /* So 2^31 <= (A/2)/b1 < 2^32 */ |
| { |
| c1 = (b1 - 1) - c1; |
| c0 = ~c0; /* logical NOT */ |
| |
| sdiv_qrnnd (q, r, c1, c0, b1); /* (A/2) / (d/2) */ |
| |
| q = ~q; /* (A/2)/b1 */ |
| r = (b1 - 1) - r; |
| |
| r = 2*r + (a0 & 1); /* A/(2*b1) */ |
| |
| if ((d & 1) != 0) |
| { |
| if (r >= q) |
| r = r - q; |
| else if (q - r <= d) |
| { |
| r = r - q + d; |
| q--; |
| } |
| else |
| { |
| r = r - q + 2*d; |
| q -= 2; |
| } |
| } |
| } |
| else /* Implies c1 = b1 */ |
| { /* Hence a1 = d - 1 = 2*b1 - 1 */ |
| if (a0 >= -d) |
| { |
| q = -1; |
| r = a0 + d; |
| } |
| else |
| { |
| q = -2; |
| r = a0 + 2*d; |
| } |
| } |
| } |
| |
| *rp = r; |
| return q; |
| } |
| |
| #endif |
| |