| /* -*- Mode: C++; tab-width: 4; indent-tabs-mode: nil; c-basic-offset: 2 -*- */ |
| /* ***** BEGIN LICENSE BLOCK ***** |
| * Version: MPL 1.1/GPL 2.0/LGPL 2.1 |
| * |
| * The contents of this file are subject to the Mozilla Public License Version |
| * 1.1 (the "License"); you may not use this file except in compliance with |
| * the License. You may obtain a copy of the License at |
| * http://www.mozilla.org/MPL/ |
| * |
| * Software distributed under the License is distributed on an "AS IS" basis, |
| * WITHOUT WARRANTY OF ANY KIND, either express or implied. See the License |
| * for the specific language governing rights and limitations under the |
| * License. |
| * |
| * The Original Code is the Netscape Portable Runtime (NSPR). |
| * |
| * The Initial Developer of the Original Code is |
| * Netscape Communications Corporation. |
| * Portions created by the Initial Developer are Copyright (C) 1998-2000 |
| * the Initial Developer. All Rights Reserved. |
| * |
| * Contributor(s): |
| * |
| * Alternatively, the contents of this file may be used under the terms of |
| * either the GNU General Public License Version 2 or later (the "GPL"), or |
| * the GNU Lesser General Public License Version 2.1 or later (the "LGPL"), |
| * in which case the provisions of the GPL or the LGPL are applicable instead |
| * of those above. If you wish to allow use of your version of this file only |
| * under the terms of either the GPL or the LGPL, and not to allow others to |
| * use your version of this file under the terms of the MPL, indicate your |
| * decision by deleting the provisions above and replace them with the notice |
| * and other provisions required by the GPL or the LGPL. If you do not delete |
| * the provisions above, a recipient may use your version of this file under |
| * the terms of any one of the MPL, the GPL or the LGPL. |
| * |
| * ***** END LICENSE BLOCK ***** */ |
| |
| /* |
| * prtime.c -- |
| * |
| * NSPR date and time functions |
| * |
| */ |
| |
| #include "prinit.h" |
| #include "prtime.h" |
| #include "prlock.h" |
| #include "prprf.h" |
| #include "prlog.h" |
| |
| #include <string.h> |
| #include <ctype.h> |
| #include <errno.h> /* for EINVAL */ |
| #include <time.h> |
| |
| /* |
| * The COUNT_LEAPS macro counts the number of leap years passed by |
| * till the start of the given year Y. At the start of the year 4 |
| * A.D. the number of leap years passed by is 0, while at the start of |
| * the year 5 A.D. this count is 1. The number of years divisible by |
| * 100 but not divisible by 400 (the non-leap years) is deducted from |
| * the count to get the correct number of leap years. |
| * |
| * The COUNT_DAYS macro counts the number of days since 01/01/01 till the |
| * start of the given year Y. The number of days at the start of the year |
| * 1 is 0 while the number of days at the start of the year 2 is 365 |
| * (which is ((2)-1) * 365) and so on. The reference point is 01/01/01 |
| * midnight 00:00:00. |
| */ |
| |
| #define COUNT_LEAPS(Y) ( ((Y)-1)/4 - ((Y)-1)/100 + ((Y)-1)/400 ) |
| #define COUNT_DAYS(Y) ( ((Y)-1)*365 + COUNT_LEAPS(Y) ) |
| #define DAYS_BETWEEN_YEARS(A, B) (COUNT_DAYS(B) - COUNT_DAYS(A)) |
| |
| /* |
| * Static variables used by functions in this file |
| */ |
| |
| /* |
| * The following array contains the day of year for the last day of |
| * each month, where index 1 is January, and day 0 is January 1. |
| */ |
| |
| static const int lastDayOfMonth[2][13] = { |
| {-1, 30, 58, 89, 119, 150, 180, 211, 242, 272, 303, 333, 364}, |
| {-1, 30, 59, 90, 120, 151, 181, 212, 243, 273, 304, 334, 365} |
| }; |
| |
| /* |
| * The number of days in a month |
| */ |
| |
| static const PRInt8 nDays[2][12] = { |
| {31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31}, |
| {31, 29, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31} |
| }; |
| |
| /* |
| * Declarations for internal functions defined later in this file. |
| */ |
| |
| static void ComputeGMT(PRTime time, PRExplodedTime *gmt); |
| static int IsLeapYear(PRInt16 year); |
| static void ApplySecOffset(PRExplodedTime *time, PRInt32 secOffset); |
| static void AdjustDSTGMTOffsets(PRTime time, PRExplodedTime *exploded); |
| |
| /* |
| *------------------------------------------------------------------------ |
| * |
| * ComputeGMT -- |
| * |
| * Caveats: |
| * - we ignore leap seconds |
| * |
| *------------------------------------------------------------------------ |
| */ |
| |
| static void |
| ComputeGMT(PRTime time, PRExplodedTime *gmt) |
| { |
| PRInt32 tmp, rem; |
| PRInt32 numDays; |
| PRInt64 numDays64, rem64; |
| int isLeap; |
| PRInt64 sec; |
| PRInt64 usec; |
| PRInt64 usecPerSec; |
| PRInt64 secPerDay; |
| |
| /* |
| * We first do the usec, sec, min, hour thing so that we do not |
| * have to do LL arithmetic. |
| */ |
| |
| LL_I2L(usecPerSec, 1000000L); |
| LL_DIV(sec, time, usecPerSec); |
| LL_MOD(usec, time, usecPerSec); |
| LL_L2I(gmt->tm_usec, usec); |
| /* Correct for weird mod semantics so the remainder is always positive */ |
| if (gmt->tm_usec < 0) { |
| PRInt64 one; |
| |
| LL_I2L(one, 1L); |
| LL_SUB(sec, sec, one); |
| gmt->tm_usec += 1000000L; |
| } |
| |
| LL_I2L(secPerDay, 86400L); |
| LL_DIV(numDays64, sec, secPerDay); |
| LL_MOD(rem64, sec, secPerDay); |
| /* We are sure both of these numbers can fit into PRInt32 */ |
| LL_L2I(numDays, numDays64); |
| LL_L2I(rem, rem64); |
| if (rem < 0) { |
| numDays--; |
| rem += 86400L; |
| } |
| |
| /* Compute day of week. Epoch started on a Thursday. */ |
| |
| gmt->tm_wday = (numDays + 4) % 7; |
| if (gmt->tm_wday < 0) { |
| gmt->tm_wday += 7; |
| } |
| |
| /* Compute the time of day. */ |
| |
| gmt->tm_hour = rem / 3600; |
| rem %= 3600; |
| gmt->tm_min = rem / 60; |
| gmt->tm_sec = rem % 60; |
| |
| /* |
| * Compute the year by finding the 400 year period, then working |
| * down from there. |
| * |
| * Since numDays is originally the number of days since January 1, 1970, |
| * we must change it to be the number of days from January 1, 0001. |
| */ |
| |
| numDays += 719162; /* 719162 = days from year 1 up to 1970 */ |
| tmp = numDays / 146097; /* 146097 = days in 400 years */ |
| rem = numDays % 146097; |
| gmt->tm_year = tmp * 400 + 1; |
| |
| /* Compute the 100 year period. */ |
| |
| tmp = rem / 36524; /* 36524 = days in 100 years */ |
| rem %= 36524; |
| if (tmp == 4) { /* the 400th year is a leap year */ |
| tmp = 3; |
| rem = 36524; |
| } |
| gmt->tm_year += tmp * 100; |
| |
| /* Compute the 4 year period. */ |
| |
| tmp = rem / 1461; /* 1461 = days in 4 years */ |
| rem %= 1461; |
| gmt->tm_year += tmp * 4; |
| |
| /* Compute which year in the 4. */ |
| |
| tmp = rem / 365; |
| rem %= 365; |
| if (tmp == 4) { /* the 4th year is a leap year */ |
| tmp = 3; |
| rem = 365; |
| } |
| |
| gmt->tm_year += tmp; |
| gmt->tm_yday = rem; |
| isLeap = IsLeapYear(gmt->tm_year); |
| |
| /* Compute the month and day of month. */ |
| |
| for (tmp = 1; lastDayOfMonth[isLeap][tmp] < gmt->tm_yday; tmp++) { |
| } |
| gmt->tm_month = --tmp; |
| gmt->tm_mday = gmt->tm_yday - lastDayOfMonth[isLeap][tmp]; |
| |
| gmt->tm_params.tp_gmt_offset = 0; |
| gmt->tm_params.tp_dst_offset = 0; |
| } |
| |
| |
| /* |
| *------------------------------------------------------------------------ |
| * |
| * PR_ExplodeTime -- |
| * |
| * Cf. struct tm *gmtime(const time_t *tp) and |
| * struct tm *localtime(const time_t *tp) |
| * |
| *------------------------------------------------------------------------ |
| */ |
| |
| PR_IMPLEMENT(void) |
| PR_ExplodeTime( |
| PRTime usecs, |
| PRTimeParamFn params, |
| PRExplodedTime *exploded) |
| { |
| ComputeGMT(usecs, exploded); |
| exploded->tm_params = params(exploded); |
| ApplySecOffset(exploded, exploded->tm_params.tp_gmt_offset |
| + exploded->tm_params.tp_dst_offset); |
| AdjustDSTGMTOffsets(usecs, exploded); |
| } |
| |
| |
| /* |
| *------------------------------------------------------------------------ |
| * |
| * PR_ImplodeTime -- |
| * |
| * Cf. time_t mktime(struct tm *tp) |
| * Note that 1 year has < 2^25 seconds. So an PRInt32 is large enough. |
| * |
| *------------------------------------------------------------------------ |
| */ |
| PR_IMPLEMENT(PRTime) |
| PR_ImplodeTime(const PRExplodedTime *exploded) |
| { |
| PRExplodedTime copy; |
| PRTime retVal; |
| PRInt64 secPerDay, usecPerSec; |
| PRInt64 temp; |
| PRInt64 numSecs64; |
| PRInt32 numDays; |
| PRInt32 numSecs; |
| |
| /* Normalize first. Do this on our copy */ |
| copy = *exploded; |
| PR_NormalizeTime_NoDSTAdjust(©, PR_GMTParameters); |
| |
| numDays = DAYS_BETWEEN_YEARS(1970, copy.tm_year); |
| |
| numSecs = copy.tm_yday * 86400 + copy.tm_hour * 3600 |
| + copy.tm_min * 60 + copy.tm_sec; |
| |
| LL_I2L(temp, numDays); |
| LL_I2L(secPerDay, 86400); |
| LL_MUL(temp, temp, secPerDay); |
| LL_I2L(numSecs64, numSecs); |
| LL_ADD(numSecs64, numSecs64, temp); |
| |
| /* apply the GMT and DST offsets */ |
| LL_I2L(temp, copy.tm_params.tp_gmt_offset); |
| LL_SUB(numSecs64, numSecs64, temp); |
| LL_I2L(temp, copy.tm_params.tp_dst_offset); |
| LL_SUB(numSecs64, numSecs64, temp); |
| |
| LL_I2L(usecPerSec, 1000000L); |
| LL_MUL(temp, numSecs64, usecPerSec); |
| LL_I2L(retVal, copy.tm_usec); |
| LL_ADD(retVal, retVal, temp); |
| |
| return retVal; |
| } |
| |
| /* |
| *------------------------------------------------------------------------- |
| * |
| * IsLeapYear -- |
| * |
| * Returns 1 if the year is a leap year, 0 otherwise. |
| * |
| *------------------------------------------------------------------------- |
| */ |
| |
| static int IsLeapYear(PRInt16 year) |
| { |
| if ((year % 4 == 0 && year % 100 != 0) || year % 400 == 0) |
| return 1; |
| else |
| return 0; |
| } |
| |
| /* |
| * 'secOffset' should be less than 86400 (i.e., a day). |
| * 'time' should point to a normalized PRExplodedTime. |
| */ |
| |
| static void |
| ApplySecOffset(PRExplodedTime *time, PRInt32 secOffset) |
| { |
| time->tm_sec += secOffset; |
| |
| /* Note that in this implementation we do not count leap seconds */ |
| if (time->tm_sec < 0 || time->tm_sec >= 60) { |
| time->tm_min += time->tm_sec / 60; |
| time->tm_sec %= 60; |
| if (time->tm_sec < 0) { |
| time->tm_sec += 60; |
| time->tm_min--; |
| } |
| } |
| |
| if (time->tm_min < 0 || time->tm_min >= 60) { |
| time->tm_hour += time->tm_min / 60; |
| time->tm_min %= 60; |
| if (time->tm_min < 0) { |
| time->tm_min += 60; |
| time->tm_hour--; |
| } |
| } |
| |
| if (time->tm_hour < 0) { |
| /* Decrement mday, yday, and wday */ |
| time->tm_hour += 24; |
| time->tm_mday--; |
| time->tm_yday--; |
| if (time->tm_mday < 1) { |
| time->tm_month--; |
| if (time->tm_month < 0) { |
| time->tm_month = 11; |
| time->tm_year--; |
| if (IsLeapYear(time->tm_year)) |
| time->tm_yday = 365; |
| else |
| time->tm_yday = 364; |
| } |
| time->tm_mday = nDays[IsLeapYear(time->tm_year)][time->tm_month]; |
| } |
| time->tm_wday--; |
| if (time->tm_wday < 0) |
| time->tm_wday = 6; |
| } else if (time->tm_hour > 23) { |
| /* Increment mday, yday, and wday */ |
| time->tm_hour -= 24; |
| time->tm_mday++; |
| time->tm_yday++; |
| if (time->tm_mday > |
| nDays[IsLeapYear(time->tm_year)][time->tm_month]) { |
| time->tm_mday = 1; |
| time->tm_month++; |
| if (time->tm_month > 11) { |
| time->tm_month = 0; |
| time->tm_year++; |
| time->tm_yday = 0; |
| } |
| } |
| time->tm_wday++; |
| if (time->tm_wday > 6) |
| time->tm_wday = 0; |
| } |
| } |
| |
| NSPR_API(PRTime) |
| PR_NormalizeTime(PRExplodedTime *time, PRTimeParamFn params) |
| { |
| PRTime resolvedtime; |
| PR_NormalizeTime_NoDSTAdjust(time, PR_LocalTimeParameters); |
| |
| // Resolve DST shifts explicitly. Note that this will also update *time |
| // with the corrected time. |
| resolvedtime = PR_ImplodeTime(time); |
| PR_ExplodeTime(resolvedtime, params, time); |
| |
| // Return the DST-resolved PRTime. |
| return resolvedtime; |
| } |
| |
| // This function normalizes time, but does not always resolve Daylight Savings |
| // Time correctly (see SAPPHIRE-10133 for an example). It is the original |
| // built-in PR_NormalizeTime function in NSPR, but should not be used outside |
| // of the functions in this file - users should continue to utilize the newer |
| // PR_NormalizeTime function below (see SAPPHIRE-10152). |
| PR_IMPLEMENT(void) |
| PR_NormalizeTime_NoDSTAdjust(PRExplodedTime *time, PRTimeParamFn params) |
| { |
| int daysInMonth; |
| PRInt32 numDays; |
| |
| /* Get back to GMT */ |
| time->tm_sec -= time->tm_params.tp_gmt_offset |
| + time->tm_params.tp_dst_offset; |
| time->tm_params.tp_gmt_offset = 0; |
| time->tm_params.tp_dst_offset = 0; |
| |
| /* Now normalize GMT */ |
| |
| if (time->tm_usec < 0 || time->tm_usec >= 1000000) { |
| time->tm_sec += time->tm_usec / 1000000; |
| time->tm_usec %= 1000000; |
| if (time->tm_usec < 0) { |
| time->tm_usec += 1000000; |
| time->tm_sec--; |
| } |
| } |
| |
| /* Note that we do not count leap seconds in this implementation */ |
| if (time->tm_sec < 0 || time->tm_sec >= 60) { |
| time->tm_min += time->tm_sec / 60; |
| time->tm_sec %= 60; |
| if (time->tm_sec < 0) { |
| time->tm_sec += 60; |
| time->tm_min--; |
| } |
| } |
| |
| if (time->tm_min < 0 || time->tm_min >= 60) { |
| time->tm_hour += time->tm_min / 60; |
| time->tm_min %= 60; |
| if (time->tm_min < 0) { |
| time->tm_min += 60; |
| time->tm_hour--; |
| } |
| } |
| |
| if (time->tm_hour < 0 || time->tm_hour >= 24) { |
| time->tm_mday += time->tm_hour / 24; |
| time->tm_hour %= 24; |
| if (time->tm_hour < 0) { |
| time->tm_hour += 24; |
| time->tm_mday--; |
| } |
| } |
| |
| /* Normalize month and year before mday */ |
| if (time->tm_month < 0 || time->tm_month >= 12) { |
| time->tm_year += time->tm_month / 12; |
| time->tm_month %= 12; |
| if (time->tm_month < 0) { |
| time->tm_month += 12; |
| time->tm_year--; |
| } |
| } |
| |
| /* Now that month and year are in proper range, normalize mday */ |
| |
| if (time->tm_mday < 1) { |
| /* mday too small */ |
| do { |
| /* the previous month */ |
| time->tm_month--; |
| if (time->tm_month < 0) { |
| time->tm_month = 11; |
| time->tm_year--; |
| } |
| time->tm_mday += nDays[IsLeapYear(time->tm_year)][time->tm_month]; |
| } while (time->tm_mday < 1); |
| } else { |
| daysInMonth = nDays[IsLeapYear(time->tm_year)][time->tm_month]; |
| while (time->tm_mday > daysInMonth) { |
| /* mday too large */ |
| time->tm_mday -= daysInMonth; |
| time->tm_month++; |
| if (time->tm_month > 11) { |
| time->tm_month = 0; |
| time->tm_year++; |
| } |
| daysInMonth = nDays[IsLeapYear(time->tm_year)][time->tm_month]; |
| } |
| } |
| |
| /* Recompute yday and wday */ |
| time->tm_yday = time->tm_mday + |
| lastDayOfMonth[IsLeapYear(time->tm_year)][time->tm_month]; |
| |
| numDays = DAYS_BETWEEN_YEARS(1970, time->tm_year) + time->tm_yday; |
| time->tm_wday = (numDays + 4) % 7; |
| if (time->tm_wday < 0) { |
| time->tm_wday += 7; |
| } |
| |
| /* Recompute time parameters */ |
| |
| time->tm_params = params(time); |
| |
| ApplySecOffset(time, time->tm_params.tp_gmt_offset |
| + time->tm_params.tp_dst_offset); |
| } |
| |
| |
| /* |
| *------------------------------------------------------------------------- |
| * |
| * PR_LocalTimeParameters -- |
| * |
| * returns the time parameters for the local time zone |
| * |
| * The following uses localtime() from the standard C library. |
| * (time.h) This is our fallback implementation. Unix, PC, and BeOS |
| * use this version. A platform may have its own machine-dependent |
| * implementation of this function. |
| * |
| *------------------------------------------------------------------------- |
| */ |
| |
| #if defined(HAVE_INT_LOCALTIME_R) |
| |
| /* |
| * In this case we could define the macro as |
| * #define MT_safe_localtime(timer, result) \ |
| * (localtime_r(timer, result) == 0 ? result : NULL) |
| * I chose to compare the return value of localtime_r with -1 so |
| * that I can catch the cases where localtime_r returns a pointer |
| * to struct tm. The macro definition above would not be able to |
| * detect such mistakes because it is legal to compare a pointer |
| * with 0. |
| */ |
| |
| #define MT_safe_localtime(timer, result) \ |
| (localtime_r(timer, result) == -1 ? NULL: result) |
| |
| #elif defined(HAVE_POINTER_LOCALTIME_R) |
| |
| #define MT_safe_localtime localtime_r |
| |
| #else |
| |
| #define HAVE_LOCALTIME_MONITOR 1 /* We use 'monitor' to serialize our calls |
| * to localtime(). */ |
| static PRLock *monitor = NULL; |
| |
| static struct tm *MT_safe_localtime(const time_t *clock, struct tm *result) |
| { |
| struct tm *tmPtr; |
| int needLock = PR_Initialized(); /* We need to use a lock to protect |
| * against NSPR threads only when the |
| * NSPR thread system is activated. */ |
| |
| if (needLock) PR_Lock(monitor); |
| |
| /* |
| * Microsoft (all flavors) localtime() returns a NULL pointer if 'clock' |
| * represents a time before midnight January 1, 1970. In |
| * that case, we also return a NULL pointer and the struct tm |
| * object pointed to by 'result' is not modified. |
| * |
| * Watcom C/C++ 11.0 localtime() treats time_t as unsigned long |
| * hence, does not recognize negative values of clock as pre-1/1/70. |
| * We have to manually check (WIN16 only) for negative value of |
| * clock and return NULL. |
| * |
| * With negative values of clock, OS/2 returns the struct tm for |
| * clock plus ULONG_MAX. So we also have to check for the invalid |
| * structs returned for timezones west of Greenwich when clock == 0. |
| */ |
| |
| tmPtr = localtime(clock); |
| |
| #if defined(WIN16) || defined(XP_OS2) |
| if ( (PRInt32) *clock < 0 || |
| ( (PRInt32) *clock == 0 && tmPtr->tm_year != 70)) |
| result = NULL; |
| else |
| *result = *tmPtr; |
| #else |
| if (tmPtr) { |
| *result = *tmPtr; |
| } else { |
| result = NULL; |
| } |
| #endif /* WIN16 */ |
| |
| if (needLock) PR_Unlock(monitor); |
| |
| return result; |
| } |
| |
| #endif /* definition of MT_safe_localtime() */ |
| |
| static PRBool ComputeLocalTime(time_t local, struct tm *ptm) |
| { |
| #ifdef HAVE_LOCALTIME_R |
| return localtime_r(&local, ptm); |
| |
| #elif HAVE_LOCALTIME_MONITOR |
| |
| if (MT_safe_localtime(&local, ptm) != NULL) |
| return PR_TRUE; |
| else |
| return PR_FALSE; |
| #else |
| |
| #error no ComputeLocalTime() |
| |
| #endif /* definition of ComputeLocalTime() */ |
| } |
| |
| #ifndef HAVE_GMTIME_R |
| |
| #define HAVE_GMT_MONITOR 1 /* We use 'monitorgmt' to serialize our calls |
| * to gmtime(). */ |
| |
| static PRLock *monitorgmt = NULL; |
| #endif |
| |
| static PRBool ComputeUTCTime(time_t t, struct tm *ptm) |
| { |
| #ifdef HAVE_GMTIME_R |
| return gmtime_r(&t, ptm); |
| #else |
| PRBool retval = PR_TRUE; |
| struct tm *otm = NULL; |
| int needLock = PR_Initialized(); /* We need to use a lock to protect |
| * against NSPR threads only when the |
| * NSPR thread system is activated. */ |
| if (needLock) PR_Lock(monitorgmt); |
| |
| otm = gmtime(&t); |
| |
| if (!otm) |
| retval = PR_FALSE; |
| else |
| { |
| *ptm = *otm; |
| retval = PR_TRUE; |
| } |
| |
| if (needLock) PR_Unlock(monitorgmt); |
| |
| return retval; |
| #endif /* definition of ComputeUTCTime() */ |
| } |
| |
| void _PR_InitTime(void) |
| { |
| #ifdef HAVE_LOCALTIME_MONITOR |
| monitor = PR_NewLock(); |
| #endif |
| #ifdef HAVE_GMT_MONITOR |
| monitorgmt = PR_NewLock(); |
| #endif |
| #ifdef WINCE |
| _MD_InitTime(); |
| #endif |
| } |
| |
| void _PR_CleanupTime(void) |
| { |
| #ifdef HAVE_LOCALTIME_MONITOR |
| if (monitor) { |
| PR_DestroyLock(monitor); |
| monitor = NULL; |
| } |
| #endif |
| #ifdef HAVE_GMT_MONITOR |
| if (monitorgmt) { |
| PR_DestroyLock(monitorgmt); |
| monitorgmt = NULL; |
| } |
| #endif |
| #ifdef WINCE |
| _MD_CleanupTime(); |
| #endif |
| } |
| |
| /* |
| * from https://mxr.mozilla.org/mozilla-central/source/js/src/vm/DateTime.cpp?rev=699228670afb |
| * but slightly adjusted as the modzilla has an issue during the hours close to the dst-std change |
| * Compute the offset in seconds from the current UTC time to the current local |
| * time |
| * |
| * Examples: |
| * |
| * Suppose we are in California, USA on January 1, 2013 at 04:00 PST (UTC-8, no |
| * DST in effect), corresponding to 12:00 UTC. This function would then return |
| * -8 * SecondsPerHour, or -28800. |
| * |
| * Or suppose we are in Berlin, Germany on July 1, 2013 at 17:00 CEST (UTC+2, |
| * DST in effect), corresponding to 15:00 UTC. This function would then return |
| * +2 * SecondsPerHour, or +7200. |
| */ |
| static PRInt32 |
| UTCToLocalTimeOffsetSeconds(time_t time) |
| { |
| PRInt32 SecondsPerDay = 86400; |
| PRInt32 SecondsPerHour = 3600; |
| PRInt32 SecondsPerMinute = 60; |
| struct tm local; |
| struct tm utc; |
| |
| memset(&local, 0, sizeof(local)); |
| memset(&utc, 0, sizeof(utc)); |
| |
| |
| #if defined(XP_WIN) |
| // Windows doesn't follow POSIX: updates to the TZ environment variable are |
| // not reflected immediately on that platform as they are on other systems |
| // without this call. |
| _tzset(); |
| #endif |
| |
| // Break down the current time into its components. |
| if (!ComputeLocalTime(time, &local)) |
| return 0; |
| |
| // Break down the local time into UTC-based components. |
| memset(&utc, 0, sizeof(utc)); |
| if (!ComputeUTCTime(time, &utc)) |
| return 0; |
| |
| // Finally, compare the seconds-based components of the local |
| // representation and the UTC representation to determine the actual |
| // difference. |
| PRInt32 utc_secs = utc.tm_hour * SecondsPerHour + utc.tm_min * SecondsPerMinute; |
| PRInt32 local_secs = local.tm_hour * SecondsPerHour + local.tm_min * SecondsPerMinute; |
| |
| // Same-day? Just subtract the seconds counts. |
| if (utc.tm_mday == local.tm_mday) |
| return local_secs - utc_secs; |
| |
| // If we have more UTC seconds, move local seconds into the UTC seconds' |
| // frame of reference and then subtract. |
| if (utc_secs > local_secs) |
| return (SecondsPerDay + local_secs) - utc_secs; |
| |
| // Otherwise we have more local seconds, so move the UTC seconds into the |
| // local seconds' frame of reference and then subtract. |
| return local_secs - (utc_secs + SecondsPerDay); |
| } |
| |
| static void |
| AdjustDSTGMTOffsets(PRTime time, PRExplodedTime *exploded) |
| { |
| PRInt64 sec64; |
| PRInt64 usecPerSec; |
| PRInt32 overallOffsetFromUTC; |
| PRInt32 dstoffset = 3600; |
| struct tm localTime; |
| time_t timetsecs; |
| |
| LL_I2L(usecPerSec, 1000000L); |
| LL_DIV(sec64, time, usecPerSec); |
| |
| timetsecs = sec64; |
| |
| /* |
| * overall_offset = gmt_offset + dst_offset |
| */ |
| overallOffsetFromUTC = UTCToLocalTimeOffsetSeconds(timetsecs); |
| |
| /* |
| * used the passed time to calculate the right offsets based on |
| * linux call to localtime |
| */ |
| (void) MT_safe_localtime(&timetsecs, &localTime); |
| |
| if (localTime.tm_isdst <= 0) { |
| /* DST is not in effect */ |
| exploded->tm_params.tp_gmt_offset = overallOffsetFromUTC; |
| exploded->tm_params.tp_dst_offset = 0; |
| } else { |
| exploded->tm_params.tp_gmt_offset = overallOffsetFromUTC - dstoffset; |
| exploded->tm_params.tp_dst_offset = dstoffset; |
| } |
| } |
| |
| #if defined(XP_UNIX) || defined(XP_PC) || defined(XP_BEOS) |
| |
| PR_IMPLEMENT(PRTimeParameters) |
| PR_LocalTimeParameters(const PRExplodedTime *gmt) |
| { |
| |
| PRTimeParameters retVal; |
| struct tm localTime; |
| time_t secs; |
| PRTime secs64; |
| PRInt64 usecPerSec; |
| PRInt64 usecPerSec_1; |
| PRInt64 maxInt32; |
| PRInt64 minInt32; |
| PRInt32 dayOffset; |
| PRInt32 offset2Jan1970; |
| PRInt32 offsetNew; |
| int isdst2Jan1970; |
| |
| /* |
| * Calculate the GMT offset. First, figure out what is |
| * 00:00:00 Jan. 2, 1970 GMT (which is exactly a day, or 86400 |
| * seconds, since the epoch) in local time. Then we calculate |
| * the difference between local time and GMT in seconds: |
| * gmt_offset = local_time - GMT |
| * |
| * Caveat: the validity of this calculation depends on two |
| * assumptions: |
| * 1. Daylight saving time was not in effect on Jan. 2, 1970. |
| * 2. The time zone of the geographic location has not changed |
| * since Jan. 2, 1970. |
| */ |
| |
| secs = 86400L; |
| (void) MT_safe_localtime(&secs, &localTime); |
| |
| /* GMT is 00:00:00, 2nd of Jan. */ |
| |
| offset2Jan1970 = (PRInt32)localTime.tm_sec |
| + 60L * (PRInt32)localTime.tm_min |
| + 3600L * (PRInt32)localTime.tm_hour |
| + 86400L * (PRInt32)((PRInt32)localTime.tm_mday - 2L); |
| |
| isdst2Jan1970 = localTime.tm_isdst; |
| |
| /* |
| * Now compute DST offset. We calculate the overall offset |
| * of local time from GMT, similar to above. The overall |
| * offset has two components: gmt offset and dst offset. |
| * We subtract gmt offset from the overall offset to get |
| * the dst offset. |
| * overall_offset = local_time - GMT |
| * overall_offset = gmt_offset + dst_offset |
| * ==> dst_offset = local_time - GMT - gmt_offset |
| */ |
| |
| secs64 = PR_ImplodeTime(gmt); /* This is still in microseconds */ |
| LL_I2L(usecPerSec, PR_USEC_PER_SEC); |
| LL_I2L(usecPerSec_1, PR_USEC_PER_SEC - 1); |
| /* Convert to seconds, truncating down (3.1 -> 3 and -3.1 -> -4) */ |
| if (LL_GE_ZERO(secs64)) { |
| LL_DIV(secs64, secs64, usecPerSec); |
| } else { |
| LL_NEG(secs64, secs64); |
| LL_ADD(secs64, secs64, usecPerSec_1); |
| LL_DIV(secs64, secs64, usecPerSec); |
| LL_NEG(secs64, secs64); |
| } |
| LL_I2L(maxInt32, PR_INT32_MAX); |
| LL_I2L(minInt32, PR_INT32_MIN); |
| if (LL_CMP(secs64, >, maxInt32) || LL_CMP(secs64, <, minInt32)) { |
| /* secs64 is too large or too small for time_t (32-bit integer) */ |
| retVal.tp_gmt_offset = offset2Jan1970; |
| retVal.tp_dst_offset = 0; |
| return retVal; |
| } |
| LL_L2I(secs, secs64); |
| |
| /* |
| * On Windows, localtime() (and our MT_safe_localtime() too) |
| * returns a NULL pointer for time before midnight January 1, |
| * 1970 GMT. In that case, we just use the GMT offset for |
| * Jan 2, 1970 and assume that DST was not in effect. |
| */ |
| |
| if (MT_safe_localtime(&secs, &localTime) == NULL) { |
| retVal.tp_gmt_offset = offset2Jan1970; |
| retVal.tp_dst_offset = 0; |
| return retVal; |
| } |
| |
| /* |
| * dayOffset is the offset between local time and GMT in |
| * the day component, which can only be -1, 0, or 1. We |
| * use the day of the week to compute dayOffset. |
| */ |
| |
| dayOffset = (PRInt32) localTime.tm_wday - gmt->tm_wday; |
| |
| /* |
| * Need to adjust for wrapping around of day of the week from |
| * 6 back to 0. |
| */ |
| |
| if (dayOffset == -6) { |
| /* Local time is Sunday (0) and GMT is Saturday (6) */ |
| dayOffset = 1; |
| } else if (dayOffset == 6) { |
| /* Local time is Saturday (6) and GMT is Sunday (0) */ |
| dayOffset = -1; |
| } |
| |
| offsetNew = (PRInt32)localTime.tm_sec - gmt->tm_sec |
| + 60L * ((PRInt32)localTime.tm_min - gmt->tm_min) |
| + 3600L * ((PRInt32)localTime.tm_hour - gmt->tm_hour) |
| + 86400L * (PRInt32)dayOffset; |
| |
| if (localTime.tm_isdst <= 0) { |
| /* DST is not in effect */ |
| retVal.tp_gmt_offset = offsetNew; |
| retVal.tp_dst_offset = 0; |
| } else { |
| /* DST is in effect */ |
| if (isdst2Jan1970 <=0) { |
| /* |
| * DST was not in effect back in 2 Jan. 1970. |
| * Use the offset back then as the GMT offset, |
| * assuming the time zone has not changed since then. |
| */ |
| retVal.tp_gmt_offset = offset2Jan1970; |
| retVal.tp_dst_offset = offsetNew - offset2Jan1970; |
| } else { |
| /* |
| * DST was also in effect back in 2 Jan. 1970. |
| * Then our clever trick (or rather, ugly hack) fails. |
| * We will just assume DST offset is an hour. |
| */ |
| retVal.tp_gmt_offset = offsetNew - 3600; |
| retVal.tp_dst_offset = 3600; |
| } |
| } |
| |
| return retVal; |
| } |
| |
| #endif /* defined(XP_UNIX) || defined(XP_PC) || defined(XP_BEOS) */ |
| |
| /* |
| *------------------------------------------------------------------------ |
| * |
| * PR_USPacificTimeParameters -- |
| * |
| * The time parameters function for the US Pacific Time Zone. |
| * |
| *------------------------------------------------------------------------ |
| */ |
| |
| /* |
| * Returns the mday of the first sunday of the month, where |
| * mday and wday are for a given day in the month. |
| * mdays start with 1 (e.g. 1..31). |
| * wdays start with 0 and are in the range 0..6. 0 = Sunday. |
| */ |
| #define firstSunday(mday, wday) (((mday - wday + 7 - 1) % 7) + 1) |
| |
| /* |
| * Returns the mday for the N'th Sunday of the month, where |
| * mday and wday are for a given day in the month. |
| * mdays start with 1 (e.g. 1..31). |
| * wdays start with 0 and are in the range 0..6. 0 = Sunday. |
| * N has the following values: 0 = first, 1 = second (etc), -1 = last. |
| * ndays is the number of days in that month, the same value as the |
| * mday of the last day of the month. |
| */ |
| static PRInt32 |
| NthSunday(PRInt32 mday, PRInt32 wday, PRInt32 N, PRInt32 ndays) |
| { |
| PRInt32 firstSun = firstSunday(mday, wday); |
| |
| if (N < 0) |
| N = (ndays - firstSun) / 7; |
| return firstSun + (7 * N); |
| } |
| |
| typedef struct DSTParams { |
| PRInt8 dst_start_month; /* 0 = January */ |
| PRInt8 dst_start_Nth_Sunday; /* N as defined above */ |
| PRInt8 dst_start_month_ndays; /* ndays as defined above */ |
| PRInt8 dst_end_month; /* 0 = January */ |
| PRInt8 dst_end_Nth_Sunday; /* N as defined above */ |
| PRInt8 dst_end_month_ndays; /* ndays as defined above */ |
| } DSTParams; |
| |
| static const DSTParams dstParams[2] = { |
| /* year < 2007: First April Sunday - Last October Sunday */ |
| { 3, 0, 30, 9, -1, 31 }, |
| /* year >= 2007: Second March Sunday - First November Sunday */ |
| { 2, 1, 31, 10, 0, 30 } |
| }; |
| |
| PR_IMPLEMENT(PRTimeParameters) |
| PR_USPacificTimeParameters(const PRExplodedTime *gmt) |
| { |
| const DSTParams *dst; |
| PRTimeParameters retVal; |
| PRExplodedTime st; |
| |
| /* |
| * Based on geographic location and GMT, figure out offset of |
| * standard time from GMT. In this example implementation, we |
| * assume the local time zone is US Pacific Time. |
| */ |
| |
| retVal.tp_gmt_offset = -8L * 3600L; |
| |
| /* |
| * Make a copy of GMT. Note that the tm_params field of this copy |
| * is ignored. |
| */ |
| |
| st.tm_usec = gmt->tm_usec; |
| st.tm_sec = gmt->tm_sec; |
| st.tm_min = gmt->tm_min; |
| st.tm_hour = gmt->tm_hour; |
| st.tm_mday = gmt->tm_mday; |
| st.tm_month = gmt->tm_month; |
| st.tm_year = gmt->tm_year; |
| st.tm_wday = gmt->tm_wday; |
| st.tm_yday = gmt->tm_yday; |
| |
| /* Apply the offset to GMT to obtain the local standard time */ |
| ApplySecOffset(&st, retVal.tp_gmt_offset); |
| |
| if (st.tm_year < 2007) { /* first April Sunday - Last October Sunday */ |
| dst = &dstParams[0]; |
| } else { /* Second March Sunday - First November Sunday */ |
| dst = &dstParams[1]; |
| } |
| |
| /* |
| * Apply the rules on standard time or GMT to obtain daylight saving |
| * time offset. In this implementation, we use the US DST rule. |
| */ |
| if (st.tm_month < dst->dst_start_month) { |
| retVal.tp_dst_offset = 0L; |
| } else if (st.tm_month == dst->dst_start_month) { |
| int NthSun = NthSunday(st.tm_mday, st.tm_wday, |
| dst->dst_start_Nth_Sunday, |
| dst->dst_start_month_ndays); |
| if (st.tm_mday < NthSun) { /* Before starting Sunday */ |
| retVal.tp_dst_offset = 0L; |
| } else if (st.tm_mday == NthSun) { /* Starting Sunday */ |
| /* 01:59:59 PST -> 03:00:00 PDT */ |
| if (st.tm_hour < 2) { |
| retVal.tp_dst_offset = 0L; |
| } else { |
| retVal.tp_dst_offset = 3600L; |
| } |
| } else { /* After starting Sunday */ |
| retVal.tp_dst_offset = 3600L; |
| } |
| } else if (st.tm_month < dst->dst_end_month) { |
| retVal.tp_dst_offset = 3600L; |
| } else if (st.tm_month == dst->dst_end_month) { |
| int NthSun = NthSunday(st.tm_mday, st.tm_wday, |
| dst->dst_end_Nth_Sunday, |
| dst->dst_end_month_ndays); |
| if (st.tm_mday < NthSun) { /* Before ending Sunday */ |
| retVal.tp_dst_offset = 3600L; |
| } else if (st.tm_mday == NthSun) { /* Ending Sunday */ |
| /* 01:59:59 PDT -> 01:00:00 PST */ |
| if (st.tm_hour < 1) { |
| retVal.tp_dst_offset = 3600L; |
| } else { |
| retVal.tp_dst_offset = 0L; |
| } |
| } else { /* After ending Sunday */ |
| retVal.tp_dst_offset = 0L; |
| } |
| } else { |
| retVal.tp_dst_offset = 0L; |
| } |
| return retVal; |
| } |
| |
| /* |
| *------------------------------------------------------------------------ |
| * |
| * PR_GMTParameters -- |
| * |
| * Returns the PRTimeParameters for Greenwich Mean Time. |
| * Trivially, both the tp_gmt_offset and tp_dst_offset fields are 0. |
| * |
| *------------------------------------------------------------------------ |
| */ |
| |
| PR_IMPLEMENT(PRTimeParameters) |
| PR_GMTParameters(const PRExplodedTime *gmt) |
| { |
| PRTimeParameters retVal = { 0, 0 }; |
| return retVal; |
| } |
| |
| /* |
| * The following code implements PR_ParseTimeString(). It is based on |
| * ns/lib/xp/xp_time.c, revision 1.25, by Jamie Zawinski <jwz@netscape.com>. |
| */ |
| |
| /* |
| * We only recognize the abbreviations of a small subset of time zones |
| * in North America, Europe, and Japan. |
| * |
| * PST/PDT: Pacific Standard/Daylight Time |
| * MST/MDT: Mountain Standard/Daylight Time |
| * CST/CDT: Central Standard/Daylight Time |
| * EST/EDT: Eastern Standard/Daylight Time |
| * AST: Atlantic Standard Time |
| * NST: Newfoundland Standard Time |
| * GMT: Greenwich Mean Time |
| * BST: British Summer Time |
| * MET: Middle Europe Time |
| * EET: Eastern Europe Time |
| * JST: Japan Standard Time |
| */ |
| |
| typedef enum |
| { |
| TT_UNKNOWN, |
| |
| TT_SUN, TT_MON, TT_TUE, TT_WED, TT_THU, TT_FRI, TT_SAT, |
| |
| TT_JAN, TT_FEB, TT_MAR, TT_APR, TT_MAY, TT_JUN, |
| TT_JUL, TT_AUG, TT_SEP, TT_OCT, TT_NOV, TT_DEC, |
| |
| TT_PST, TT_PDT, TT_MST, TT_MDT, TT_CST, TT_CDT, TT_EST, TT_EDT, |
| TT_AST, TT_NST, TT_GMT, TT_BST, TT_MET, TT_EET, TT_JST |
| } TIME_TOKEN; |
| |
| /* |
| * This parses a time/date string into a PRTime |
| * (microseconds after "1-Jan-1970 00:00:00 GMT"). |
| * It returns PR_SUCCESS on success, and PR_FAILURE |
| * if the time/date string can't be parsed. |
| * |
| * Many formats are handled, including: |
| * |
| * 14 Apr 89 03:20:12 |
| * 14 Apr 89 03:20 GMT |
| * Fri, 17 Mar 89 4:01:33 |
| * Fri, 17 Mar 89 4:01 GMT |
| * Mon Jan 16 16:12 PDT 1989 |
| * Mon Jan 16 16:12 +0130 1989 |
| * 6 May 1992 16:41-JST (Wednesday) |
| * 22-AUG-1993 10:59:12.82 |
| * 22-AUG-1993 10:59pm |
| * 22-AUG-1993 12:59am |
| * 22-AUG-1993 12:59 PM |
| * Friday, August 04, 1995 3:54 PM |
| * 06/21/95 04:24:34 PM |
| * 20/06/95 21:07 |
| * 95-06-08 19:32:48 EDT |
| * |
| * If the input string doesn't contain a description of the timezone, |
| * we consult the `default_to_gmt' to decide whether the string should |
| * be interpreted relative to the local time zone (PR_FALSE) or GMT (PR_TRUE). |
| * The correct value for this argument depends on what standard specified |
| * the time string which you are parsing. |
| */ |
| |
| PR_IMPLEMENT(PRStatus) |
| PR_ParseTimeStringToExplodedTime( |
| const char *string, |
| PRBool default_to_gmt, |
| PRExplodedTime *result) |
| { |
| TIME_TOKEN dotw = TT_UNKNOWN; |
| TIME_TOKEN month = TT_UNKNOWN; |
| TIME_TOKEN zone = TT_UNKNOWN; |
| int zone_offset = -1; |
| int dst_offset = 0; |
| int date = -1; |
| PRInt32 year = -1; |
| int hour = -1; |
| int min = -1; |
| int sec = -1; |
| |
| const char *rest = string; |
| |
| int iterations = 0; |
| |
| PR_ASSERT(string && result); |
| if (!string || !result) return PR_FAILURE; |
| |
| while (*rest) |
| { |
| |
| if (iterations++ > 1000) |
| { |
| return PR_FAILURE; |
| } |
| |
| switch (*rest) |
| { |
| case 'a': case 'A': |
| if (month == TT_UNKNOWN && |
| (rest[1] == 'p' || rest[1] == 'P') && |
| (rest[2] == 'r' || rest[2] == 'R')) |
| month = TT_APR; |
| else if (zone == TT_UNKNOWN && |
| (rest[1] == 's' || rest[1] == 'S') && |
| (rest[2] == 't' || rest[2] == 'T')) |
| zone = TT_AST; |
| else if (month == TT_UNKNOWN && |
| (rest[1] == 'u' || rest[1] == 'U') && |
| (rest[2] == 'g' || rest[2] == 'G')) |
| month = TT_AUG; |
| break; |
| case 'b': case 'B': |
| if (zone == TT_UNKNOWN && |
| (rest[1] == 's' || rest[1] == 'S') && |
| (rest[2] == 't' || rest[2] == 'T')) |
| zone = TT_BST; |
| break; |
| case 'c': case 'C': |
| if (zone == TT_UNKNOWN && |
| (rest[1] == 'd' || rest[1] == 'D') && |
| (rest[2] == 't' || rest[2] == 'T')) |
| zone = TT_CDT; |
| else if (zone == TT_UNKNOWN && |
| (rest[1] == 's' || rest[1] == 'S') && |
| (rest[2] == 't' || rest[2] == 'T')) |
| zone = TT_CST; |
| break; |
| case 'd': case 'D': |
| if (month == TT_UNKNOWN && |
| (rest[1] == 'e' || rest[1] == 'E') && |
| (rest[2] == 'c' || rest[2] == 'C')) |
| month = TT_DEC; |
| break; |
| case 'e': case 'E': |
| if (zone == TT_UNKNOWN && |
| (rest[1] == 'd' || rest[1] == 'D') && |
| (rest[2] == 't' || rest[2] == 'T')) |
| zone = TT_EDT; |
| else if (zone == TT_UNKNOWN && |
| (rest[1] == 'e' || rest[1] == 'E') && |
| (rest[2] == 't' || rest[2] == 'T')) |
| zone = TT_EET; |
| else if (zone == TT_UNKNOWN && |
| (rest[1] == 's' || rest[1] == 'S') && |
| (rest[2] == 't' || rest[2] == 'T')) |
| zone = TT_EST; |
| break; |
| case 'f': case 'F': |
| if (month == TT_UNKNOWN && |
| (rest[1] == 'e' || rest[1] == 'E') && |
| (rest[2] == 'b' || rest[2] == 'B')) |
| month = TT_FEB; |
| else if (dotw == TT_UNKNOWN && |
| (rest[1] == 'r' || rest[1] == 'R') && |
| (rest[2] == 'i' || rest[2] == 'I')) |
| dotw = TT_FRI; |
| break; |
| case 'g': case 'G': |
| if (zone == TT_UNKNOWN && |
| (rest[1] == 'm' || rest[1] == 'M') && |
| (rest[2] == 't' || rest[2] == 'T')) |
| zone = TT_GMT; |
| break; |
| case 'j': case 'J': |
| if (month == TT_UNKNOWN && |
| (rest[1] == 'a' || rest[1] == 'A') && |
| (rest[2] == 'n' || rest[2] == 'N')) |
| month = TT_JAN; |
| else if (zone == TT_UNKNOWN && |
| (rest[1] == 's' || rest[1] == 'S') && |
| (rest[2] == 't' || rest[2] == 'T')) |
| zone = TT_JST; |
| else if (month == TT_UNKNOWN && |
| (rest[1] == 'u' || rest[1] == 'U') && |
| (rest[2] == 'l' || rest[2] == 'L')) |
| month = TT_JUL; |
| else if (month == TT_UNKNOWN && |
| (rest[1] == 'u' || rest[1] == 'U') && |
| (rest[2] == 'n' || rest[2] == 'N')) |
| month = TT_JUN; |
| break; |
| case 'm': case 'M': |
| if (month == TT_UNKNOWN && |
| (rest[1] == 'a' || rest[1] == 'A') && |
| (rest[2] == 'r' || rest[2] == 'R')) |
| month = TT_MAR; |
| else if (month == TT_UNKNOWN && |
| (rest[1] == 'a' || rest[1] == 'A') && |
| (rest[2] == 'y' || rest[2] == 'Y')) |
| month = TT_MAY; |
| else if (zone == TT_UNKNOWN && |
| (rest[1] == 'd' || rest[1] == 'D') && |
| (rest[2] == 't' || rest[2] == 'T')) |
| zone = TT_MDT; |
| else if (zone == TT_UNKNOWN && |
| (rest[1] == 'e' || rest[1] == 'E') && |
| (rest[2] == 't' || rest[2] == 'T')) |
| zone = TT_MET; |
| else if (dotw == TT_UNKNOWN && |
| (rest[1] == 'o' || rest[1] == 'O') && |
| (rest[2] == 'n' || rest[2] == 'N')) |
| dotw = TT_MON; |
| else if (zone == TT_UNKNOWN && |
| (rest[1] == 's' || rest[1] == 'S') && |
| (rest[2] == 't' || rest[2] == 'T')) |
| zone = TT_MST; |
| break; |
| case 'n': case 'N': |
| if (month == TT_UNKNOWN && |
| (rest[1] == 'o' || rest[1] == 'O') && |
| (rest[2] == 'v' || rest[2] == 'V')) |
| month = TT_NOV; |
| else if (zone == TT_UNKNOWN && |
| (rest[1] == 's' || rest[1] == 'S') && |
| (rest[2] == 't' || rest[2] == 'T')) |
| zone = TT_NST; |
| break; |
| case 'o': case 'O': |
| if (month == TT_UNKNOWN && |
| (rest[1] == 'c' || rest[1] == 'C') && |
| (rest[2] == 't' || rest[2] == 'T')) |
| month = TT_OCT; |
| break; |
| case 'p': case 'P': |
| if (zone == TT_UNKNOWN && |
| (rest[1] == 'd' || rest[1] == 'D') && |
| (rest[2] == 't' || rest[2] == 'T')) |
| zone = TT_PDT; |
| else if (zone == TT_UNKNOWN && |
| (rest[1] == 's' || rest[1] == 'S') && |
| (rest[2] == 't' || rest[2] == 'T')) |
| zone = TT_PST; |
| break; |
| case 's': case 'S': |
| if (dotw == TT_UNKNOWN && |
| (rest[1] == 'a' || rest[1] == 'A') && |
| (rest[2] == 't' || rest[2] == 'T')) |
| dotw = TT_SAT; |
| else if (month == TT_UNKNOWN && |
| (rest[1] == 'e' || rest[1] == 'E') && |
| (rest[2] == 'p' || rest[2] == 'P')) |
| month = TT_SEP; |
| else if (dotw == TT_UNKNOWN && |
| (rest[1] == 'u' || rest[1] == 'U') && |
| (rest[2] == 'n' || rest[2] == 'N')) |
| dotw = TT_SUN; |
| break; |
| case 't': case 'T': |
| if (dotw == TT_UNKNOWN && |
| (rest[1] == 'h' || rest[1] == 'H') && |
| (rest[2] == 'u' || rest[2] == 'U')) |
| dotw = TT_THU; |
| else if (dotw == TT_UNKNOWN && |
| (rest[1] == 'u' || rest[1] == 'U') && |
| (rest[2] == 'e' || rest[2] == 'E')) |
| dotw = TT_TUE; |
| break; |
| case 'u': case 'U': |
| if (zone == TT_UNKNOWN && |
| (rest[1] == 't' || rest[1] == 'T') && |
| !(rest[2] >= 'A' && rest[2] <= 'Z') && |
| !(rest[2] >= 'a' && rest[2] <= 'z')) |
| /* UT is the same as GMT but UTx is not. */ |
| zone = TT_GMT; |
| break; |
| case 'w': case 'W': |
| if (dotw == TT_UNKNOWN && |
| (rest[1] == 'e' || rest[1] == 'E') && |
| (rest[2] == 'd' || rest[2] == 'D')) |
| dotw = TT_WED; |
| break; |
| |
| case '+': case '-': |
| { |
| const char *end; |
| int sign; |
| if (zone_offset != -1) |
| { |
| /* already got one... */ |
| rest++; |
| break; |
| } |
| if (zone != TT_UNKNOWN && zone != TT_GMT) |
| { |
| /* GMT+0300 is legal, but PST+0300 is not. */ |
| rest++; |
| break; |
| } |
| |
| sign = ((*rest == '+') ? 1 : -1); |
| rest++; /* move over sign */ |
| end = rest; |
| while (*end >= '0' && *end <= '9') |
| end++; |
| if (rest == end) /* no digits here */ |
| break; |
| |
| if ((end - rest) == 4) |
| /* offset in HHMM */ |
| zone_offset = (((((rest[0]-'0')*10) + (rest[1]-'0')) * 60) + |
| (((rest[2]-'0')*10) + (rest[3]-'0'))); |
| else if ((end - rest) == 2) |
| /* offset in hours */ |
| zone_offset = (((rest[0]-'0')*10) + (rest[1]-'0')) * 60; |
| else if ((end - rest) == 1) |
| /* offset in hours */ |
| zone_offset = (rest[0]-'0') * 60; |
| else |
| /* 3 or >4 */ |
| break; |
| |
| zone_offset *= sign; |
| zone = TT_GMT; |
| break; |
| } |
| |
| case '0': case '1': case '2': case '3': case '4': |
| case '5': case '6': case '7': case '8': case '9': |
| { |
| int tmp_hour = -1; |
| int tmp_min = -1; |
| int tmp_sec = -1; |
| const char *end = rest + 1; |
| while (*end >= '0' && *end <= '9') |
| end++; |
| |
| /* end is now the first character after a range of digits. */ |
| |
| if (*end == ':') |
| { |
| if (hour >= 0 && min >= 0) /* already got it */ |
| break; |
| |
| /* We have seen "[0-9]+:", so this is probably HH:MM[:SS] */ |
| if ((end - rest) > 2) |
| /* it is [0-9][0-9][0-9]+: */ |
| break; |
| else if ((end - rest) == 2) |
| tmp_hour = ((rest[0]-'0')*10 + |
| (rest[1]-'0')); |
| else |
| tmp_hour = (rest[0]-'0'); |
| |
| /* move over the colon, and parse minutes */ |
| |
| rest = ++end; |
| while (*end >= '0' && *end <= '9') |
| end++; |
| |
| if (end == rest) |
| /* no digits after first colon? */ |
| break; |
| else if ((end - rest) > 2) |
| /* it is [0-9][0-9][0-9]+: */ |
| break; |
| else if ((end - rest) == 2) |
| tmp_min = ((rest[0]-'0')*10 + |
| (rest[1]-'0')); |
| else |
| tmp_min = (rest[0]-'0'); |
| |
| /* now go for seconds */ |
| rest = end; |
| if (*rest == ':') |
| rest++; |
| end = rest; |
| while (*end >= '0' && *end <= '9') |
| end++; |
| |
| if (end == rest) |
| /* no digits after second colon - that's ok. */ |
| ; |
| else if ((end - rest) > 2) |
| /* it is [0-9][0-9][0-9]+: */ |
| break; |
| else if ((end - rest) == 2) |
| tmp_sec = ((rest[0]-'0')*10 + |
| (rest[1]-'0')); |
| else |
| tmp_sec = (rest[0]-'0'); |
| |
| /* If we made it here, we've parsed hour and min, |
| and possibly sec, so it worked as a unit. */ |
| |
| /* skip over whitespace and see if there's an AM or PM |
| directly following the time. |
| */ |
| if (tmp_hour <= 12) |
| { |
| const char *s = end; |
| while (*s && (*s == ' ' || *s == '\t')) |
| s++; |
| if ((s[0] == 'p' || s[0] == 'P') && |
| (s[1] == 'm' || s[1] == 'M')) |
| /* 10:05pm == 22:05, and 12:05pm == 12:05 */ |
| tmp_hour = (tmp_hour == 12 ? 12 : tmp_hour + 12); |
| else if (tmp_hour == 12 && |
| (s[0] == 'a' || s[0] == 'A') && |
| (s[1] == 'm' || s[1] == 'M')) |
| /* 12:05am == 00:05 */ |
| tmp_hour = 0; |
| } |
| |
| hour = tmp_hour; |
| min = tmp_min; |
| sec = tmp_sec; |
| rest = end; |
| break; |
| } |
| else if ((*end == '/' || *end == '-') && |
| end[1] >= '0' && end[1] <= '9') |
| { |
| /* Perhaps this is 6/16/95, 16/6/95, 6-16-95, or 16-6-95 |
| or even 95-06-05... |
| #### But it doesn't handle 1995-06-22. |
| */ |
| int n1, n2, n3; |
| const char *s; |
| |
| if (month != TT_UNKNOWN) |
| /* if we saw a month name, this can't be. */ |
| break; |
| |
| s = rest; |
| |
| n1 = (*s++ - '0'); /* first 1 or 2 digits */ |
| if (*s >= '0' && *s <= '9') |
| n1 = n1*10 + (*s++ - '0'); |
| |
| if (*s != '/' && *s != '-') /* slash */ |
| break; |
| s++; |
| |
| if (*s < '0' || *s > '9') /* second 1 or 2 digits */ |
| break; |
| n2 = (*s++ - '0'); |
| if (*s >= '0' && *s <= '9') |
| n2 = n2*10 + (*s++ - '0'); |
| |
| if (*s != '/' && *s != '-') /* slash */ |
| break; |
| s++; |
| |
| if (*s < '0' || *s > '9') /* third 1, 2, 4, or 5 digits */ |
| break; |
| n3 = (*s++ - '0'); |
| if (*s >= '0' && *s <= '9') |
| n3 = n3*10 + (*s++ - '0'); |
| |
| if (*s >= '0' && *s <= '9') /* optional digits 3, 4, and 5 */ |
| { |
| n3 = n3*10 + (*s++ - '0'); |
| if (*s < '0' || *s > '9') |
| break; |
| n3 = n3*10 + (*s++ - '0'); |
| if (*s >= '0' && *s <= '9') |
| n3 = n3*10 + (*s++ - '0'); |
| } |
| |
| if ((*s >= '0' && *s <= '9') || /* followed by non-alphanum */ |
| (*s >= 'A' && *s <= 'Z') || |
| (*s >= 'a' && *s <= 'z')) |
| break; |
| |
| /* Ok, we parsed three 1-2 digit numbers, with / or - |
| between them. Now decide what the hell they are |
| (DD/MM/YY or MM/DD/YY or YY/MM/DD.) |
| */ |
| |
| if (n1 > 31 || n1 == 0) /* must be YY/MM/DD */ |
| { |
| if (n2 > 12) break; |
| if (n3 > 31) break; |
| year = n1; |
| if (year < 70) |
| year += 2000; |
| else if (year < 100) |
| year += 1900; |
| month = (TIME_TOKEN)(n2 + ((int)TT_JAN) - 1); |
| date = n3; |
| rest = s; |
| break; |
| } |
| |
| if (n1 > 12 && n2 > 12) /* illegal */ |
| { |
| rest = s; |
| break; |
| } |
| |
| if (n3 < 70) |
| n3 += 2000; |
| else if (n3 < 100) |
| n3 += 1900; |
| |
| if (n1 > 12) /* must be DD/MM/YY */ |
| { |
| date = n1; |
| month = (TIME_TOKEN)(n2 + ((int)TT_JAN) - 1); |
| year = n3; |
| } |
| else /* assume MM/DD/YY */ |
| { |
| /* #### In the ambiguous case, should we consult the |
| locale to find out the local default? */ |
| month = (TIME_TOKEN)(n1 + ((int)TT_JAN) - 1); |
| date = n2; |
| year = n3; |
| } |
| rest = s; |
| } |
| else if ((*end >= 'A' && *end <= 'Z') || |
| (*end >= 'a' && *end <= 'z')) |
| /* Digits followed by non-punctuation - what's that? */ |
| ; |
| else if ((end - rest) == 5) /* five digits is a year */ |
| year = (year < 0 |
| ? ((rest[0]-'0')*10000L + |
| (rest[1]-'0')*1000L + |
| (rest[2]-'0')*100L + |
| (rest[3]-'0')*10L + |
| (rest[4]-'0')) |
| : year); |
| else if ((end - rest) == 4) /* four digits is a year */ |
| year = (year < 0 |
| ? ((rest[0]-'0')*1000L + |
| (rest[1]-'0')*100L + |
| (rest[2]-'0')*10L + |
| (rest[3]-'0')) |
| : year); |
| else if ((end - rest) == 2) /* two digits - date or year */ |
| { |
| int n = ((rest[0]-'0')*10 + |
| (rest[1]-'0')); |
| /* If we don't have a date (day of the month) and we see a number |
| less than 32, then assume that is the date. |
| |
| Otherwise, if we have a date and not a year, assume this is the |
| year. If it is less than 70, then assume it refers to the 21st |
| century. If it is two digits (>= 70), assume it refers to this |
| century. Otherwise, assume it refers to an unambiguous year. |
| |
| The world will surely end soon. |
| */ |
| if (date < 0 && n < 32) |
| date = n; |
| else if (year < 0) |
| { |
| if (n < 70) |
| year = 2000 + n; |
| else if (n < 100) |
| year = 1900 + n; |
| else |
| year = n; |
| } |
| /* else what the hell is this. */ |
| } |
| else if ((end - rest) == 1) /* one digit - date */ |
| date = (date < 0 ? (rest[0]-'0') : date); |
| /* else, three or more than five digits - what's that? */ |
| |
| break; |
| } |
| } |
| |
| /* Skip to the end of this token, whether we parsed it or not. |
| Tokens are delimited by whitespace, or ,;-/ |
| But explicitly not :+-. |
| */ |
| while (*rest && |
| *rest != ' ' && *rest != '\t' && |
| *rest != ',' && *rest != ';' && |
| *rest != '-' && *rest != '+' && |
| *rest != '/' && |
| *rest != '(' && *rest != ')' && *rest != '[' && *rest != ']') |
| rest++; |
| /* skip over uninteresting chars. */ |
| SKIP_MORE: |
| while (*rest && |
| (*rest == ' ' || *rest == '\t' || |
| *rest == ',' || *rest == ';' || *rest == '/' || |
| *rest == '(' || *rest == ')' || *rest == '[' || *rest == ']')) |
| rest++; |
| |
| /* "-" is ignored at the beginning of a token if we have not yet |
| parsed a year (e.g., the second "-" in "30-AUG-1966"), or if |
| the character after the dash is not a digit. */ |
| if (*rest == '-' && ((rest > string && isalpha(rest[-1]) && year < 0) |
| || rest[1] < '0' || rest[1] > '9')) |
| { |
| rest++; |
| goto SKIP_MORE; |
| } |
| |
| } |
| |
| if (zone != TT_UNKNOWN && zone_offset == -1) |
| { |
| switch (zone) |
| { |
| case TT_PST: zone_offset = -8 * 60; break; |
| case TT_PDT: zone_offset = -8 * 60; dst_offset = 1 * 60; break; |
| case TT_MST: zone_offset = -7 * 60; break; |
| case TT_MDT: zone_offset = -7 * 60; dst_offset = 1 * 60; break; |
| case TT_CST: zone_offset = -6 * 60; break; |
| case TT_CDT: zone_offset = -6 * 60; dst_offset = 1 * 60; break; |
| case TT_EST: zone_offset = -5 * 60; break; |
| case TT_EDT: zone_offset = -5 * 60; dst_offset = 1 * 60; break; |
| case TT_AST: zone_offset = -4 * 60; break; |
| case TT_NST: zone_offset = -3 * 60 - 30; break; |
| case TT_GMT: zone_offset = 0 * 60; break; |
| case TT_BST: zone_offset = 0 * 60; dst_offset = 1 * 60; break; |
| case TT_MET: zone_offset = 1 * 60; break; |
| case TT_EET: zone_offset = 2 * 60; break; |
| case TT_JST: zone_offset = 9 * 60; break; |
| default: |
| PR_ASSERT (0); |
| break; |
| } |
| } |
| |
| /* If we didn't find a year, month, or day-of-the-month, we can't |
| possibly parse this, and in fact, mktime() will do something random |
| (I'm seeing it return "Tue Feb 5 06:28:16 2036", which is no doubt |
| a numerologically significant date... */ |
| if (month == TT_UNKNOWN || date == -1 || year == -1 || year > PR_INT16_MAX) |
| return PR_FAILURE; |
| |
| memset(result, 0, sizeof(*result)); |
| if (sec != -1) |
| result->tm_sec = sec; |
| if (min != -1) |
| result->tm_min = min; |
| if (hour != -1) |
| result->tm_hour = hour; |
| if (date != -1) |
| result->tm_mday = date; |
| if (month != TT_UNKNOWN) |
| result->tm_month = (((int)month) - ((int)TT_JAN)); |
| if (year != -1) |
| result->tm_year = year; |
| if (dotw != TT_UNKNOWN) |
| result->tm_wday = (((int)dotw) - ((int)TT_SUN)); |
| /* |
| * Mainly to compute wday and yday, but normalized time is also required |
| * by the check below that works around a Visual C++ 2005 mktime problem. |
| */ |
| PR_NormalizeTime_NoDSTAdjust(result, PR_GMTParameters); |
| /* The remaining work is to set the gmt and dst offsets in tm_params. */ |
| |
| if (zone == TT_UNKNOWN && default_to_gmt) |
| { |
| /* No zone was specified, so pretend the zone was GMT. */ |
| zone = TT_GMT; |
| zone_offset = 0; |
| } |
| |
| if (zone_offset == -1) |
| { |
| /* no zone was specified, and we're to assume that everything |
| is local. */ |
| struct tm localTime; |
| time_t secs; |
| |
| PR_ASSERT(result->tm_month > -1 && |
| result->tm_mday > 0 && |
| result->tm_hour > -1 && |
| result->tm_min > -1 && |
| result->tm_sec > -1); |
| |
| /* |
| * To obtain time_t from a tm structure representing the local |
| * time, we call mktime(). However, we need to see if we are |
| * on 1-Jan-1970 or before. If we are, we can't call mktime() |
| * because mktime() will crash on win16. In that case, we |
| * calculate zone_offset based on the zone offset at |
| * 00:00:00, 2 Jan 1970 GMT, and subtract zone_offset from the |
| * date we are parsing to transform the date to GMT. We also |
| * do so if mktime() returns (time_t) -1 (time out of range). |
| */ |
| |
| /* month, day, hours, mins and secs are always non-negative |
| so we dont need to worry about them. */ |
| if(result->tm_year >= 1970) |
| { |
| PRInt64 usec_per_sec; |
| |
| localTime.tm_sec = result->tm_sec; |
| localTime.tm_min = result->tm_min; |
| localTime.tm_hour = result->tm_hour; |
| localTime.tm_mday = result->tm_mday; |
| localTime.tm_mon = result->tm_month; |
| localTime.tm_year = result->tm_year - 1900; |
| /* Set this to -1 to tell mktime "I don't care". If you set |
| it to 0 or 1, you are making assertions about whether the |
| date you are handing it is in daylight savings mode or not; |
| and if you're wrong, it will "fix" it for you. */ |
| localTime.tm_isdst = -1; |
| |
| #if _MSC_VER == 1400 /* 1400 = Visual C++ 2005 (8.0) */ |
| /* |
| * mktime will return (time_t) -1 if the input is a date |
| * after 23:59:59, December 31, 3000, US Pacific Time (not |
| * UTC as documented): |
| * http://msdn.microsoft.com/en-us/library/d1y53h2a(VS.80).aspx |
| * But if the year is 3001, mktime also invokes the invalid |
| * parameter handler, causing the application to crash. This |
| * problem has been reported in |
| * http://connect.microsoft.com/VisualStudio/feedback/ViewFeedback.aspx?FeedbackID=266036. |
| * We avoid this crash by not calling mktime if the date is |
| * out of range. To use a simple test that works in any time |
| * zone, we consider year 3000 out of range as well. (See |
| * bug 480740.) |
| */ |
| if (result->tm_year >= 3000) { |
| /* Emulate what mktime would have done. */ |
| errno = EINVAL; |
| secs = (time_t) -1; |
| } else { |
| secs = mktime(&localTime); |
| } |
| #else |
| secs = mktime(&localTime); |
| #endif |
| if (secs != (time_t) -1) |
| { |
| PRTime usecs64; |
| LL_I2L(usecs64, secs); |
| LL_I2L(usec_per_sec, PR_USEC_PER_SEC); |
| LL_MUL(usecs64, usecs64, usec_per_sec); |
| PR_ExplodeTime(usecs64, PR_LocalTimeParameters, result); |
| return PR_SUCCESS; |
| } |
| } |
| |
| /* So mktime() can't handle this case. We assume the |
| zone_offset for the date we are parsing is the same as |
| the zone offset on 00:00:00 2 Jan 1970 GMT. */ |
| secs = 86400; |
| (void) MT_safe_localtime(&secs, &localTime); |
| zone_offset = localTime.tm_min |
| + 60 * localTime.tm_hour |
| + 1440 * (localTime.tm_mday - 2); |
| } |
| |
| result->tm_params.tp_gmt_offset = zone_offset * 60; |
| result->tm_params.tp_dst_offset = dst_offset * 60; |
| |
| return PR_SUCCESS; |
| } |
| |
| PR_IMPLEMENT(PRStatus) |
| PR_ParseTimeString( |
| const char *string, |
| PRBool default_to_gmt, |
| PRTime *result) |
| { |
| PRExplodedTime tm; |
| PRStatus rv; |
| |
| rv = PR_ParseTimeStringToExplodedTime(string, |
| default_to_gmt, |
| &tm); |
| if (rv != PR_SUCCESS) |
| return rv; |
| |
| *result = PR_ImplodeTime(&tm); |
| |
| return PR_SUCCESS; |
| } |
| |
| /* |
| ******************************************************************* |
| ******************************************************************* |
| ** |
| ** OLD COMPATIBILITY FUNCTIONS |
| ** |
| ******************************************************************* |
| ******************************************************************* |
| */ |
| |
| |
| /* |
| *----------------------------------------------------------------------- |
| * |
| * PR_FormatTime -- |
| * |
| * Format a time value into a buffer. Same semantics as strftime(). |
| * |
| *----------------------------------------------------------------------- |
| */ |
| |
| PR_IMPLEMENT(PRUint32) |
| PR_FormatTime(char *buf, int buflen, const char *fmt, const PRExplodedTime *tm) |
| { |
| size_t rv; |
| struct tm a; |
| struct tm *ap; |
| |
| if (tm) { |
| ap = &a; |
| a.tm_sec = tm->tm_sec; |
| a.tm_min = tm->tm_min; |
| a.tm_hour = tm->tm_hour; |
| a.tm_mday = tm->tm_mday; |
| a.tm_mon = tm->tm_month; |
| a.tm_wday = tm->tm_wday; |
| a.tm_year = tm->tm_year - 1900; |
| a.tm_yday = tm->tm_yday; |
| a.tm_isdst = tm->tm_params.tp_dst_offset ? 1 : 0; |
| |
| /* |
| * On some platforms, for example SunOS 4, struct tm has two |
| * additional fields: tm_zone and tm_gmtoff. |
| */ |
| |
| #if defined(SUNOS4) || (__GLIBC__ >= 2) || defined(XP_BEOS) \ |
| || defined(NETBSD) || defined(OPENBSD) || defined(FREEBSD) \ |
| || defined(DARWIN) || defined(SYMBIAN) || defined(ANDROID) |
| a.tm_zone = NULL; |
| a.tm_gmtoff = tm->tm_params.tp_gmt_offset + |
| tm->tm_params.tp_dst_offset; |
| #endif |
| } else { |
| ap = NULL; |
| } |
| |
| rv = strftime(buf, buflen, fmt, ap); |
| if (!rv && buf && buflen > 0) { |
| /* |
| * When strftime fails, the contents of buf are indeterminate. |
| * Some callers don't check the return value from this function, |
| * so store an empty string in buf in case they try to print it. |
| */ |
| buf[0] = '\0'; |
| } |
| return rv; |
| } |
| |
| |
| /* |
| * The following string arrays and macros are used by PR_FormatTimeUSEnglish(). |
| */ |
| |
| static const char* abbrevDays[] = |
| { |
| "Sun","Mon","Tue","Wed","Thu","Fri","Sat" |
| }; |
| |
| static const char* days[] = |
| { |
| "Sunday","Monday","Tuesday","Wednesday","Thursday","Friday","Saturday" |
| }; |
| |
| static const char* abbrevMonths[] = |
| { |
| "Jan", "Feb", "Mar", "Apr", "May", "Jun", |
| "Jul", "Aug", "Sep", "Oct", "Nov", "Dec" |
| }; |
| |
| static const char* months[] = |
| { |
| "January", "February", "March", "April", "May", "June", |
| "July", "August", "September", "October", "November", "December" |
| }; |
| |
| |
| /* |
| * Add a single character to the given buffer, incrementing the buffer pointer |
| * and decrementing the buffer size. Return 0 on error. |
| */ |
| #define ADDCHAR( buf, bufSize, ch ) \ |
| do \ |
| { \ |
| if( bufSize < 1 ) \ |
| { \ |
| *(--buf) = '\0'; \ |
| return 0; \ |
| } \ |
| *buf++ = ch; \ |
| bufSize--; \ |
| } \ |
| while(0) |
| |
| |
| /* |
| * Add a string to the given buffer, incrementing the buffer pointer |
| * and decrementing the buffer size appropriately. Return 0 on error. |
| */ |
| #define ADDSTR( buf, bufSize, str ) \ |
| do \ |
| { \ |
| PRUint32 strSize = strlen( str ); \ |
| if( strSize > bufSize ) \ |
| { \ |
| if( bufSize==0 ) \ |
| *(--buf) = '\0'; \ |
| else \ |
| *buf = '\0'; \ |
| return 0; \ |
| } \ |
| memcpy(buf, str, strSize); \ |
| buf += strSize; \ |
| bufSize -= strSize; \ |
| } \ |
| while(0) |
| |
| /* Needed by PR_FormatTimeUSEnglish() */ |
| static unsigned int pr_WeekOfYear(const PRExplodedTime* time, |
| unsigned int firstDayOfWeek); |
| |
| |
| /*********************************************************************************** |
| * |
| * Description: |
| * This is a dumbed down version of strftime that will format the date in US |
| * English regardless of the setting of the global locale. This functionality is |
| * needed to write things like MIME headers which must always be in US English. |
| * |
| **********************************************************************************/ |
| |
| PR_IMPLEMENT(PRUint32) |
| PR_FormatTimeUSEnglish( char* buf, PRUint32 bufSize, |
| const char* format, const PRExplodedTime* time ) |
| { |
| char* bufPtr = buf; |
| const char* fmtPtr; |
| char tmpBuf[ 40 ]; |
| const int tmpBufSize = sizeof( tmpBuf ); |
| |
| |
| for( fmtPtr=format; *fmtPtr != '\0'; fmtPtr++ ) |
| { |
| if( *fmtPtr != '%' ) |
| { |
| ADDCHAR( bufPtr, bufSize, *fmtPtr ); |
| } |
| else |
| { |
| switch( *(++fmtPtr) ) |
| { |
| case '%': |
| /* escaped '%' character */ |
| ADDCHAR( bufPtr, bufSize, '%' ); |
| break; |
| |
| case 'a': |
| /* abbreviated weekday name */ |
| ADDSTR( bufPtr, bufSize, abbrevDays[ time->tm_wday ] ); |
| break; |
| |
| case 'A': |
| /* full weekday name */ |
| ADDSTR( bufPtr, bufSize, days[ time->tm_wday ] ); |
| break; |
| |
| case 'b': |
| /* abbreviated month name */ |
| ADDSTR( bufPtr, bufSize, abbrevMonths[ time->tm_month ] ); |
| break; |
| |
| case 'B': |
| /* full month name */ |
| ADDSTR(bufPtr, bufSize, months[ time->tm_month ] ); |
| break; |
| |
| case 'c': |
| /* Date and time. */ |
| PR_FormatTimeUSEnglish( tmpBuf, tmpBufSize, "%a %b %d %H:%M:%S %Y", time ); |
| ADDSTR( bufPtr, bufSize, tmpBuf ); |
| break; |
| |
| case 'd': |
| /* day of month ( 01 - 31 ) */ |
| PR_snprintf(tmpBuf,tmpBufSize,"%.2ld",time->tm_mday ); |
| ADDSTR( bufPtr, bufSize, tmpBuf ); |
| break; |
| |
| case 'H': |
| /* hour ( 00 - 23 ) */ |
| PR_snprintf(tmpBuf,tmpBufSize,"%.2ld",time->tm_hour ); |
| ADDSTR( bufPtr, bufSize, tmpBuf ); |
| break; |
| |
| case 'I': |
| /* hour ( 01 - 12 ) */ |
| PR_snprintf(tmpBuf,tmpBufSize,"%.2ld", |
| (time->tm_hour%12) ? time->tm_hour%12 : (PRInt32) 12 ); |
| ADDSTR( bufPtr, bufSize, tmpBuf ); |
| break; |
| |
| case 'j': |
| /* day number of year ( 001 - 366 ) */ |
| PR_snprintf(tmpBuf,tmpBufSize,"%.3d",time->tm_yday + 1); |
| ADDSTR( bufPtr, bufSize, tmpBuf ); |
| break; |
| |
| case 'm': |
| /* month number ( 01 - 12 ) */ |
| PR_snprintf(tmpBuf,tmpBufSize,"%.2ld",time->tm_month+1); |
| ADDSTR( bufPtr, bufSize, tmpBuf ); |
| break; |
| |
| case 'M': |
| /* minute ( 00 - 59 ) */ |
| PR_snprintf(tmpBuf,tmpBufSize,"%.2ld",time->tm_min ); |
| ADDSTR( bufPtr, bufSize, tmpBuf ); |
| break; |
| |
| case 'p': |
| /* locale's equivalent of either AM or PM */ |
| ADDSTR( bufPtr, bufSize, (time->tm_hour<12)?"AM":"PM" ); |
| break; |
| |
| case 'S': |
| /* seconds ( 00 - 61 ), allows for leap seconds */ |
| PR_snprintf(tmpBuf,tmpBufSize,"%.2ld",time->tm_sec ); |
| ADDSTR( bufPtr, bufSize, tmpBuf ); |
| break; |
| |
| case 'U': |
| /* week number of year ( 00 - 53 ), Sunday is the first day of week 1 */ |
| PR_snprintf(tmpBuf,tmpBufSize,"%.2d", pr_WeekOfYear( time, 0 ) ); |
| ADDSTR( bufPtr, bufSize, tmpBuf ); |
| break; |
| |
| case 'w': |
| /* weekday number ( 0 - 6 ), Sunday = 0 */ |
| PR_snprintf(tmpBuf,tmpBufSize,"%d",time->tm_wday ); |
| ADDSTR( bufPtr, bufSize, tmpBuf ); |
| break; |
| |
| case 'W': |
| /* Week number of year ( 00 - 53 ), Monday is the first day of week 1 */ |
| PR_snprintf(tmpBuf,tmpBufSize,"%.2d", pr_WeekOfYear( time, 1 ) ); |
| ADDSTR( bufPtr, bufSize, tmpBuf ); |
| break; |
| |
| case 'x': |
| /* Date representation */ |
| PR_FormatTimeUSEnglish( tmpBuf, tmpBufSize, "%m/%d/%y", time ); |
| ADDSTR( bufPtr, bufSize, tmpBuf ); |
| break; |
| |
| case 'X': |
| /* Time representation. */ |
| PR_FormatTimeUSEnglish( tmpBuf, tmpBufSize, "%H:%M:%S", time ); |
| ADDSTR( bufPtr, bufSize, tmpBuf ); |
| break; |
| |
| case 'y': |
| /* year within century ( 00 - 99 ) */ |
| PR_snprintf(tmpBuf,tmpBufSize,"%.2d",time->tm_year % 100 ); |
| ADDSTR( bufPtr, bufSize, tmpBuf ); |
| break; |
| |
| case 'Y': |
| /* year as ccyy ( for example 1986 ) */ |
| PR_snprintf(tmpBuf,tmpBufSize,"%.4d",time->tm_year ); |
| ADDSTR( bufPtr, bufSize, tmpBuf ); |
| break; |
| |
| case 'Z': |
| /* Time zone name or no characters if no time zone exists. |
| * Since time zone name is supposed to be independant of locale, we |
| * defer to PR_FormatTime() for this option. |
| */ |
| PR_FormatTime( tmpBuf, tmpBufSize, "%Z", time ); |
| ADDSTR( bufPtr, bufSize, tmpBuf ); |
| break; |
| |
| default: |
| /* Unknown format. Simply copy format into output buffer. */ |
| ADDCHAR( bufPtr, bufSize, '%' ); |
| ADDCHAR( bufPtr, bufSize, *fmtPtr ); |
| break; |
| |
| } |
| } |
| } |
| |
| ADDCHAR( bufPtr, bufSize, '\0' ); |
| return (PRUint32)(bufPtr - buf - 1); |
| } |
| |
| |
| |
| /*********************************************************************************** |
| * |
| * Description: |
| * Returns the week number of the year (0-53) for the given time. firstDayOfWeek |
| * is the day on which the week is considered to start (0=Sun, 1=Mon, ...). |
| * Week 1 starts the first time firstDayOfWeek occurs in the year. In other words, |
| * a partial week at the start of the year is considered week 0. |
| * |
| **********************************************************************************/ |
| |
| static unsigned int |
| pr_WeekOfYear(const PRExplodedTime* time, unsigned int firstDayOfWeek) |
| { |
| int dayOfWeek; |
| int dayOfYear; |
| |
| /* Get the day of the year for the given time then adjust it to represent the |
| * first day of the week containing the given time. |
| */ |
| dayOfWeek = time->tm_wday - firstDayOfWeek; |
| if (dayOfWeek < 0) |
| dayOfWeek += 7; |
| |
| dayOfYear = time->tm_yday - dayOfWeek; |
| |
| |
| if( dayOfYear <= 0 ) |
| { |
| /* If dayOfYear is <= 0, it is in the first partial week of the year. */ |
| return 0; |
| } |
| else |
| { |
| /* Count the number of full weeks ( dayOfYear / 7 ) then add a week if there |
| * are any days left over ( dayOfYear % 7 ). Because we are only counting to |
| * the first day of the week containing the given time, rather than to the |
| * actual day representing the given time, any days in week 0 will be "absorbed" |
| * as extra days in the given week. |
| */ |
| return (dayOfYear / 7) + ( (dayOfYear % 7) == 0 ? 0 : 1 ); |
| } |
| } |
| |