blob: 1d7b9941366a0ff5a12106780aff0711c2f41695 [file] [log] [blame]
/*
* (C) Copyright 2006
* Texas Instruments, <www.ti.com>
* Jian Zhang <jzhang@ti.com>
* Richard Woodruff <r-woodruff2@ti.com>
*
* See file CREDITS for list of people who contributed to this
* project.
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License as
* published by the Free Software Foundation; either version 2 of
* the License, or (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 59 Temple Place, Suite 330, Boston,
* MA 02111-1307 USA
*/
#include <common.h>
#include <command.h>
#include <part.h>
#include <fat.h>
#include <asm/arch/cpu.h>
#include <asm/arch/bits.h>
#include <asm/arch/mux.h>
#include <asm/arch/sys_proto.h>
#include <asm/arch/sys_info.h>
#include <asm/arch/clocks.h>
#include <asm/arch/mem.h>
/* Used to index into DPLL parameter tables */
struct dpll_param {
unsigned int m;
unsigned int n;
unsigned int fsel;
unsigned int m2;
};
struct dpll_per_36x_param {
unsigned int sys_clk;
unsigned int m;
unsigned int n;
unsigned int m2;
unsigned int m3;
unsigned int m4;
unsigned int m5;
unsigned int m6;
unsigned int m2div;
};
typedef struct dpll_param dpll_param;
#define MAX_SIL_INDEX 3
/* Following functions are exported from lowlevel_init.S */
extern dpll_param *get_mpu_dpll_param(void);
extern dpll_param *get_iva_dpll_param(void);
extern dpll_param *get_core_dpll_param(void);
extern dpll_param *get_per_dpll_param(void);
extern dpll_param *get_36x_mpu_dpll_param(void);
extern dpll_param *get_36x_iva_dpll_param(void);
extern dpll_param *get_36x_core_dpll_param(void);
extern dpll_param *get_36x_per_dpll_param(void);
extern int mmc_init(int verbose);
extern block_dev_desc_t *mmc_get_dev(int dev);
/*******************************************************
* Routine: delay
* Description: spinning delay to use before udelay works
******************************************************/
static inline void delay(unsigned long loops)
{
__asm__ volatile ("1:\n" "subs %0, %1, #1\n"
"bne 1b":"=r" (loops):"0"(loops));
}
void udelay (unsigned long usecs) {
delay(usecs);
}
/*****************************************
* Routine: board_init
* Description: Early hardware init.
*****************************************/
int board_init (void)
{
return 0;
}
/*************************************************************
* get_device_type(): tell if GP/HS/EMU/TST
*************************************************************/
u32 get_device_type(void)
{
int mode;
mode = __raw_readl(CONTROL_STATUS) & (DEVICE_MASK);
return(mode >>= 8);
}
/************************************************
* get_sysboot_value(void) - return SYS_BOOT[4:0]
************************************************/
u32 get_sysboot_value(void)
{
int mode;
mode = __raw_readl(CONTROL_STATUS) & (SYSBOOT_MASK);
return mode;
}
/*************************************************************
* Routine: get_mem_type(void) - returns the kind of memory connected
* to GPMC that we are trying to boot form. Uses SYS BOOT settings.
*************************************************************/
u32 get_mem_type(void)
{
u32 mem_type = get_sysboot_value();
switch (mem_type){
case 0:
case 2:
case 4:
case 16:
case 22: return GPMC_ONENAND;
case 1:
case 12:
case 15:
case 21:
case 27: return GPMC_NAND;
case 3:
case 6: return MMC_ONENAND;
case 8:
case 11:
case 14:
case 20:
case 26: return GPMC_MDOC;
case 17:
case 18:
case 24: return MMC_NAND;
case 7:
case 10:
case 13:
case 19:
case 25:
default: return GPMC_NOR;
}
}
/******************************************
* get_cpu_rev(void) - extract version info
******************************************/
u32 get_cpu_rev(void)
{
u32 cpuid=0;
/* On ES1.0 the IDCODE register is not exposed on L4
* so using CPU ID to differentiate
* between ES2.0 and ES1.0.
*/
__asm__ __volatile__("mrc p15, 0, %0, c0, c0, 0":"=r" (cpuid));
if((cpuid & 0xf) == 0x0)
return CPU_3430_ES1;
else
return CPU_3430_ES2;
}
u32 is_cpu_family(void)
{
u32 cpuid = 0, cpu_family = 0;
u16 hawkeye;
__asm__ __volatile__("mrc p15, 0, %0, c0, c0, 0":"=r"(cpuid));
if ((cpuid & 0xf) == 0x0) {
cpu_family = CPU_OMAP34XX;
} else {
cpuid = __raw_readl(OMAP34XX_CONTROL_ID);
hawkeye = (cpuid >> HAWKEYE_SHIFT) & 0xffff;
switch (hawkeye) {
case HAWKEYE_OMAP34XX:
cpu_family = CPU_OMAP34XX;
break;
case HAWKEYE_AM35XX:
cpu_family = CPU_AM35XX;
break;
case HAWKEYE_OMAP36XX:
cpu_family = CPU_OMAP36XX;
break;
default:
cpu_family = CPU_OMAP34XX;
break;
}
}
return cpu_family;
}
/******************************************
* cpu_is_3410(void) - returns true for 3410
******************************************/
u32 cpu_is_3410(void)
{
int status;
if(get_cpu_rev() < CPU_3430_ES2) {
return 0;
} else {
/* read scalability status and return 1 for 3410*/
status = __raw_readl(CONTROL_SCALABLE_OMAP_STATUS);
/* Check whether MPU frequency is set to 266 MHz which
* is nominal for 3410. If yes return true else false
*/
if (((status >> 8) & 0x3) == 0x2)
return 1;
else
return 0;
}
}
/*****************************************************************
* sr32 - clear & set a value in a bit range for a 32 bit address
*****************************************************************/
void sr32(u32 addr, u32 start_bit, u32 num_bits, u32 value)
{
u32 tmp, msk = 0;
msk = 1 << num_bits;
--msk;
tmp = __raw_readl(addr) & ~(msk << start_bit);
tmp |= value << start_bit;
__raw_writel(tmp, addr);
}
/*********************************************************************
* wait_on_value() - common routine to allow waiting for changes in
* volatile regs.
*********************************************************************/
u32 wait_on_value(u32 read_bit_mask, u32 match_value, u32 read_addr, u32 bound)
{
u32 i = 0, val;
do {
++i;
val = __raw_readl(read_addr) & read_bit_mask;
if (val == match_value)
return (1);
if (i == bound)
return (0);
} while (1);
}
#ifdef CFG_OMAPEVM_DDR
#ifdef CONFIG_DDR_256MB_STACKED
/**************************************************************************
* make_cs1_contiguous() - for es2 and above remap cs1 behind cs0 to allow
* command line mem=xyz use all memory with out discontinuous support
* compiled in. Could do it at the ATAG, but there really is two banks...
* Called as part of 2nd phase DDR init.
**************************************************************************/
void make_cs1_contiguous(void)
{
u32 size, a_add_low, a_add_high;
size = get_sdr_cs_size(SDRC_CS0_OSET);
size /= SZ_32M; /* find size to offset CS1 */
a_add_high = (size & 3) << 8; /* set up low field */
a_add_low = (size & 0x3C) >> 2; /* set up high field */
__raw_writel((a_add_high | a_add_low), SDRC_CS_CFG);
}
/***********************************************************************
* get_cs0_size() - get size of chip select 0/1
************************************************************************/
u32 get_sdr_cs_size(u32 offset)
{
u32 size;
/* get ram size field */
size = __raw_readl(SDRC_MCFG_0 + offset) >> 8;
size &= 0x3FF; /* remove unwanted bits */
size *= SZ_2M; /* find size in MB */
return size;
}
#endif
/*********************************************************************
* config_3430sdram_ddr() - Init DDR on 3430SDP dev board.
*********************************************************************/
void config_3430sdram_ddr(void)
{
#ifndef CONFIG_DDR_256MB_STACKED
/* reset sdrc controller */
__raw_writel(SOFTRESET, SDRC_SYSCONFIG);
wait_on_value(BIT0, BIT0, SDRC_STATUS, 12000000);
__raw_writel(0, SDRC_SYSCONFIG);
/* setup sdrc to ball mux */
__raw_writel(SDP_SDRC_SHARING, SDRC_SHARING);
/* set mdcfg */
__raw_writel(SDP_SDRC_MDCFG_0_DDR, SDRC_MCFG_0);
/* set timing */
if (is_cpu_family() == CPU_OMAP36XX) {
__raw_writel(HYNIX_SDRC_ACTIM_CTRLA_0, SDRC_ACTIM_CTRLA_0);
__raw_writel(HYNIX_SDRC_ACTIM_CTRLB_0, SDRC_ACTIM_CTRLB_0);
} else {
if ((get_mem_type() == GPMC_ONENAND) || (get_mem_type() == MMC_ONENAND)){
__raw_writel(INFINEON_SDRC_ACTIM_CTRLA_0, SDRC_ACTIM_CTRLA_0);
__raw_writel(INFINEON_SDRC_ACTIM_CTRLB_0, SDRC_ACTIM_CTRLB_0);
}
if ((get_mem_type() == GPMC_NAND) ||(get_mem_type() == MMC_NAND)){
__raw_writel(MICRON_SDRC_ACTIM_CTRLA_0, SDRC_ACTIM_CTRLA_0);
__raw_writel(MICRON_SDRC_ACTIM_CTRLB_0, SDRC_ACTIM_CTRLB_0);
}
}
__raw_writel(SDP_SDRC_RFR_CTRL, SDRC_RFR_CTRL);
__raw_writel(SDP_SDRC_POWER_POP, SDRC_POWER);
/* init sequence for mDDR/mSDR using manual commands (DDR is different) */
__raw_writel(CMD_NOP, SDRC_MANUAL_0);
delay(5000);
__raw_writel(CMD_PRECHARGE, SDRC_MANUAL_0);
__raw_writel(CMD_AUTOREFRESH, SDRC_MANUAL_0);
__raw_writel(CMD_AUTOREFRESH, SDRC_MANUAL_0);
/* set mr0 */
__raw_writel(SDP_SDRC_MR_0_DDR, SDRC_MR_0);
/* set up dll */
__raw_writel(SDP_SDRC_DLLAB_CTRL, SDRC_DLLA_CTRL);
delay(0x2000); /* give time to lock */
#else
/* reset sdrc controller */
__raw_writel(SOFTRESET, SDRC_SYSCONFIG);
wait_on_value(BIT0, BIT0, SDRC_STATUS, 12000000);
__raw_writel(0, SDRC_SYSCONFIG);
/* setup sdrc to ball mux */
__raw_writel(SDP_SDRC_SHARING, SDRC_SHARING);
/* SDRC_MCFG0 register */
(*(unsigned int*)0x6D000080) = 0x02584099;//from Micron
if (is_cpu_family() == CPU_OMAP36XX) {
/* SDRC_ACTIM_CTRLA0 register */
(*(unsigned int*)0x6D00009c) = 0x92e1c4c6;// for 200M
/* SDRC_ACTIM_CTRLB0 register */
(*(unsigned int*)0x6D0000a0) = 0x0002111c;
} else {
/* SDRC_ACTIM_CTRLA0 register */
(*(unsigned int*)0x6D00009c) = 0xaa9db4c6;// for 166M from rkw
/* SDRC_ACTIM_CTRLB0 register */
(*(unsigned int*)0x6D0000a0) = 0x00011517;
}
(*(unsigned int*)0x6D0000a4) =0x0004DC01;
/* Disble Power Down of CKE cuz of 1 CKE on combo part */
(*(unsigned int*)0x6D000070) = 0x00000081;
/* SDRC_Manual command register */
(*(unsigned int*)0x6D0000a8) = 0x00000000; // NOP command
delay(5000);
(*(unsigned int*)0x6D0000a8) = 0x00000001; // Precharge command
(*(unsigned int*)0x6D0000a8) = 0x00000002; // Auto-refresh command
(*(unsigned int*)0x6D0000a8) = 0x00000002; // Auto-refresh command
/* SDRC MR0 register */
(*(int*)0x6D000084) = 0x00000032; // Burst length =4
// CAS latency = 3
// Write Burst = Read Burst
// Serial Mode
/* SDRC DLLA control register */
(*(unsigned int*)0x6D000060) = 0x0000A;
delay(0x20000); // some delay
#endif
#ifdef CONFIG_DDR_256MB_STACKED
make_cs1_contiguous();
__raw_writel(SDP_SDRC_MDCFG_0_DDR, SDRC_MCFG_0 + SDRC_CS1_OSET);
__raw_writel(MICRON_SDRC_ACTIM_CTRLA_0, SDRC_ACTIM_CTRLA_1);
__raw_writel(MICRON_SDRC_ACTIM_CTRLB_0, SDRC_ACTIM_CTRLB_1);
__raw_writel(SDP_SDRC_RFR_CTRL, SDRC_RFR_CTRL + SDRC_CS1_OSET);
/* init sequence for mDDR/mSDR using manual commands */
__raw_writel(CMD_NOP, SDRC_MANUAL_0 + SDRC_CS1_OSET);
delay(5000); /* supposed to be 100us per design spec for mddr/msdr */
__raw_writel(CMD_PRECHARGE, SDRC_MANUAL_0 + SDRC_CS1_OSET);
__raw_writel(CMD_AUTOREFRESH, SDRC_MANUAL_0 + SDRC_CS1_OSET);
__raw_writel(CMD_AUTOREFRESH, SDRC_MANUAL_0 + SDRC_CS1_OSET);
__raw_writel(SDP_SDRC_MR_0_DDR, SDRC_MR_0 + SDRC_CS1_OSET);
#endif
}
#endif /* CFG_OMAPEVM_DDR */
/*************************************************************
* get_sys_clk_speed - determine reference oscillator speed
* based on known 32kHz clock and gptimer.
*************************************************************/
u32 get_osc_clk_speed(void)
{
u32 start, cstart, cend, cdiff, cdiv, val;
val = __raw_readl(PRM_CLKSRC_CTRL);
if (val & BIT7)
cdiv = 2;
else if (val & BIT6)
cdiv = 1;
else
/*
* Should never reach here!
* TBD: Add a WARN()/BUG()
* For now, assume divider as 1.
*/
cdiv = 1;
/* enable timer2 */
val = __raw_readl(CM_CLKSEL_WKUP) | BIT0;
__raw_writel(val, CM_CLKSEL_WKUP); /* select sys_clk for GPT1 */
/* Enable I and F Clocks for GPT1 */
val = __raw_readl(CM_ICLKEN_WKUP) | BIT0 | BIT2;
__raw_writel(val, CM_ICLKEN_WKUP);
val = __raw_readl(CM_FCLKEN_WKUP) | BIT0;
__raw_writel(val, CM_FCLKEN_WKUP);
__raw_writel(0, OMAP34XX_GPT1 + TLDR); /* start counting at 0 */
__raw_writel(GPT_EN, OMAP34XX_GPT1 + TCLR); /* enable clock */
/* enable 32kHz source *//* enabled out of reset */
/* determine sys_clk via gauging */
start = 20 + __raw_readl(S32K_CR); /* start time in 20 cycles */
while (__raw_readl(S32K_CR) < start); /* dead loop till start time */
cstart = __raw_readl(OMAP34XX_GPT1 + TCRR); /* get start sys_clk count */
while (__raw_readl(S32K_CR) < (start + 20)); /* wait for 40 cycles */
cend = __raw_readl(OMAP34XX_GPT1 + TCRR); /* get end sys_clk count */
cdiff = cend - cstart; /* get elapsed ticks */
if (cdiv == 2)
{
cdiff *= 2;
}
/* based on number of ticks assign speed */
if (cdiff > 19000)
return (S38_4M);
else if (cdiff > 15200)
return (S26M);
else if (cdiff > 13000)
return (S24M);
else if (cdiff > 9000)
return (S19_2M);
else if (cdiff > 7600)
return (S13M);
else
return (S12M);
}
/******************************************************************************
* get_sys_clkin_sel() - returns the sys_clkin_sel field value based on
* -- input oscillator clock frequency.
*
*****************************************************************************/
void get_sys_clkin_sel(u32 osc_clk, u32 *sys_clkin_sel)
{
if(osc_clk == S38_4M)
*sys_clkin_sel= 4;
else if(osc_clk == S26M)
*sys_clkin_sel = 3;
else if(osc_clk == S19_2M)
*sys_clkin_sel = 2;
else if(osc_clk == S13M)
*sys_clkin_sel = 1;
else if(osc_clk == S12M)
*sys_clkin_sel = 0;
}
/*
* OMAP34x/35x specific functions
*/
static void dpll3_init_34xx(u32 sil_index, u32 clk_index)
{
dpll_param *ptr;
/* Getting the base address of Core DPLL param table*/
ptr = (dpll_param *)get_core_dpll_param();
/* Moving it to the right sysclk and ES rev base */
ptr = ptr + 2*clk_index + sil_index;
/* CORE DPLL */
/* Select relock bypass: CM_CLKEN_PLL[0:2] */
sr32(CM_CLKEN_PLL, 0, 3, PLL_FAST_RELOCK_BYPASS);
wait_on_value(BIT0, 0, CM_IDLEST_CKGEN, LDELAY);
/* CM_CLKSEL1_EMU[DIV_DPLL3] */
sr32(CM_CLKSEL1_EMU, 16, 5, CORE_M3X2);
/* M2 (CORE_DPLL_CLKOUT_DIV): CM_CLKSEL1_PLL[27:31] */
sr32(CM_CLKSEL1_PLL, 27, 5, ptr->m2);
/* M (CORE_DPLL_MULT): CM_CLKSEL1_PLL[16:26] */
sr32(CM_CLKSEL1_PLL, 16, 11, ptr->m);
/* N (CORE_DPLL_DIV): CM_CLKSEL1_PLL[8:14] */
sr32(CM_CLKSEL1_PLL, 8, 7, ptr->n);
/* Source is the CM_96M_FCLK: CM_CLKSEL1_PLL[6] */
sr32(CM_CLKSEL1_PLL, 6, 1, 0);
sr32(CM_CLKSEL_CORE, 8, 4, CORE_SSI_DIV); /* ssi */
sr32(CM_CLKSEL_CORE, 4, 2, CORE_FUSB_DIV); /* fsusb */
sr32(CM_CLKSEL_CORE, 2, 2, CORE_L4_DIV); /* l4 */
sr32(CM_CLKSEL_CORE, 0, 2, CORE_L3_DIV); /* l3 */
sr32(CM_CLKSEL_GFX, 0, 3, GFX_DIV_34X); /* gfx */
sr32(CM_CLKSEL_WKUP, 1, 2, WKUP_RSM); /* reset mgr */
/* FREQSEL (CORE_DPLL_FREQSEL): CM_CLKEN_PLL[4:7] */
sr32(CM_CLKEN_PLL, 4, 4, ptr->fsel);
sr32(CM_CLKEN_PLL, 0, 3, PLL_LOCK); /* lock mode */
wait_on_value(BIT0, 1, CM_IDLEST_CKGEN, LDELAY);
}
static void dpll4_init_34xx(u32 sil_index, u32 clk_index)
{
dpll_param *ptr;
ptr = (dpll_param *)get_per_dpll_param();
/* Moving it to the right sysclk base */
ptr = ptr + clk_index;
/* EN_PERIPH_DPLL: CM_CLKEN_PLL[16:18] */
sr32(CM_CLKEN_PLL, 16, 3, PLL_STOP);
wait_on_value(BIT1, 0, CM_IDLEST_CKGEN, LDELAY);
sr32(CM_CLKSEL1_EMU, 24, 5, PER_M6X2); /* set M6 */
sr32(CM_CLKSEL_CAM, 0, 5, PER_M5X2); /* set M5 */
sr32(CM_CLKSEL_DSS, 0, 5, PER_M4X2); /* set M4 */
sr32(CM_CLKSEL_DSS, 8, 5, PER_M3X2); /* set M3 */
/* M2 (DIV_96M): CM_CLKSEL3_PLL[0:4] */
sr32(CM_CLKSEL3_PLL, 0, 5, ptr->m2);
/* M (PERIPH_DPLL_MULT): CM_CLKSEL2_PLL[8:18] */
sr32(CM_CLKSEL2_PLL, 8, 11, ptr->m);
/* N (PERIPH_DPLL_DIV): CM_CLKSEL2_PLL[0:6] */
sr32(CM_CLKSEL2_PLL, 0, 7, ptr->n);
/* FREQSEL (PERIPH_DPLL_FREQSEL): CM_CLKEN_PLL[20:23] */
sr32(CM_CLKEN_PLL, 20, 4, ptr->fsel);
/* LOCK MODE (EN_PERIPH_DPLL) : CM_CLKEN_PLL[16:18] */
sr32(CM_CLKEN_PLL, 16, 3, PLL_LOCK);
wait_on_value(BIT1, 2, CM_IDLEST_CKGEN, LDELAY);
}
static void mpu_init_34xx(u32 sil_index, u32 clk_index)
{
dpll_param *ptr;
/* Getting the base address to MPU DPLL param table*/
ptr = (dpll_param *)get_mpu_dpll_param();
/* Moving it to the right sysclk and ES rev base */
ptr = ptr + 2*clk_index + sil_index;
/* MPU DPLL (unlocked already) */
/* M2 (MPU_DPLL_CLKOUT_DIV) : CM_CLKSEL2_PLL_MPU[0:4] */
sr32(CM_CLKSEL2_PLL_MPU, 0, 5, ptr->m2);
/* M (MPU_DPLL_MULT) : CM_CLKSEL2_PLL_MPU[8:18] */
sr32(CM_CLKSEL1_PLL_MPU, 8, 11, ptr->m);
/* N (MPU_DPLL_DIV) : CM_CLKSEL2_PLL_MPU[0:6] */
sr32(CM_CLKSEL1_PLL_MPU, 0, 7, ptr->n);
/* FREQSEL (MPU_DPLL_FREQSEL) : CM_CLKEN_PLL_MPU[4:7] */
sr32(CM_CLKEN_PLL_MPU, 4, 4, ptr->fsel);
}
static void iva_init_34xx(u32 sil_index, u32 clk_index)
{
dpll_param *ptr;
/* Getting the base address to IVA DPLL param table*/
ptr = (dpll_param *)get_iva_dpll_param();
/* Moving it to the right sysclk and ES rev base */
ptr = ptr + 2*clk_index + sil_index;
/* IVA DPLL */
/* EN_IVA2_DPLL : CM_CLKEN_PLL_IVA2[0:2] */
sr32(CM_CLKEN_PLL_IVA2, 0, 3, PLL_STOP);
wait_on_value(BIT0, 0, CM_IDLEST_PLL_IVA2, LDELAY);
/* M2 (IVA2_DPLL_CLKOUT_DIV) : CM_CLKSEL2_PLL_IVA2[0:4] */
sr32(CM_CLKSEL2_PLL_IVA2, 0, 5, ptr->m2);
/* M (IVA2_DPLL_MULT) : CM_CLKSEL1_PLL_IVA2[8:18] */
sr32(CM_CLKSEL1_PLL_IVA2, 8, 11, ptr->m);
/* N (IVA2_DPLL_DIV) : CM_CLKSEL1_PLL_IVA2[0:6] */
sr32(CM_CLKSEL1_PLL_IVA2, 0, 7, ptr->n);
/* FREQSEL (IVA2_DPLL_FREQSEL) : CM_CLKEN_PLL_IVA2[4:7] */
sr32(CM_CLKEN_PLL_IVA2, 4, 4, ptr->fsel);
/* LOCK MODE (EN_IVA2_DPLL) : CM_CLKEN_PLL_IVA2[0:2] */
sr32(CM_CLKEN_PLL_IVA2, 0, 3, PLL_LOCK);
wait_on_value(BIT0, 1, CM_IDLEST_PLL_IVA2, LDELAY);
}
/*
* OMAP3630 specific functions
*/
static void dpll3_init_36xx(u32 sil_index, u32 clk_index)
{
dpll_param *ptr;
/* Getting the base address of Core DPLL param table*/
ptr = (dpll_param *)get_36x_core_dpll_param();
/* Moving it to the right sysclk and ES rev base */
ptr += clk_index;
/* CORE DPLL */
/* Select relock bypass: CM_CLKEN_PLL[0:2] */
sr32(CM_CLKEN_PLL, 0, 3, PLL_FAST_RELOCK_BYPASS);
wait_on_value(BIT0, 0, CM_IDLEST_CKGEN, LDELAY);
/* CM_CLKSEL1_EMU[DIV_DPLL3] */
sr32(CM_CLKSEL1_EMU, 16, 5, CORE_M3X2);
/* M2 (CORE_DPLL_CLKOUT_DIV): CM_CLKSEL1_PLL[27:31] */
sr32(CM_CLKSEL1_PLL, 27, 5, ptr->m2);
/* M (CORE_DPLL_MULT): CM_CLKSEL1_PLL[16:26] */
sr32(CM_CLKSEL1_PLL, 16, 11, ptr->m);
/* N (CORE_DPLL_DIV): CM_CLKSEL1_PLL[8:14] */
sr32(CM_CLKSEL1_PLL, 8, 7, ptr->n);
/* Source is the CM_96M_FCLK: CM_CLKSEL1_PLL[6] */
sr32(CM_CLKSEL1_PLL, 6, 1, 0);
sr32(CM_CLKSEL_CORE, 8, 4, CORE_SSI_DIV); /* ssi */
sr32(CM_CLKSEL_CORE, 4, 2, CORE_FUSB_DIV); /* fsusb */
sr32(CM_CLKSEL_CORE, 2, 2, CORE_L4_DIV); /* l4 */
sr32(CM_CLKSEL_CORE, 0, 2, CORE_L3_DIV); /* l3 */
sr32(CM_CLKSEL_GFX, 0, 3, GFX_DIV_36X); /* gfx */
sr32(CM_CLKSEL_WKUP, 1, 2, WKUP_RSM); /* reset mgr */
/* FREQSEL (CORE_DPLL_FREQSEL): CM_CLKEN_PLL[4:7] */
sr32(CM_CLKEN_PLL, 4, 4, ptr->fsel);
sr32(CM_CLKEN_PLL, 0, 3, PLL_LOCK); /* lock mode */
wait_on_value(BIT0, 1, CM_IDLEST_CKGEN, LDELAY);
}
static void dpll4_init_36xx(u32 sil_index, u32 clk_index)
{
struct dpll_per_36x_param *ptr;
ptr = (struct dpll_per_36x_param *)get_36x_per_dpll_param();
/* Moving it to the right sysclk base */
ptr += clk_index;
/* EN_PERIPH_DPLL: CM_CLKEN_PLL[16:18] */
sr32(CM_CLKEN_PLL, 16, 3, PLL_STOP);
wait_on_value(BIT1, 0, CM_IDLEST_CKGEN, LDELAY);
/* M6 (DIV_DPLL4): CM_CLKSEL1_EMU[24:29] */
sr32(CM_CLKSEL1_EMU, 24, 6, ptr->m6);
/* M5 (CLKSEL_CAM): CM_CLKSEL1_EMU[0:5] */
sr32(CM_CLKSEL_CAM, 0, 6, ptr->m5);
/* M4 (CLKSEL_DSS1): CM_CLKSEL_DSS[0:5] */
sr32(CM_CLKSEL_DSS, 0, 6, ptr->m4);
/* M3 (CLKSEL_DSS1): CM_CLKSEL_DSS[8:13] */
sr32(CM_CLKSEL_DSS, 8, 6, ptr->m3);
/* M2 (DIV_96M): CM_CLKSEL3_PLL[0:4] */
sr32(CM_CLKSEL3_PLL, 0, 5, ptr->m2);
/* M (PERIPH_DPLL_MULT): CM_CLKSEL2_PLL[8:19] */
sr32(CM_CLKSEL2_PLL, 8, 12, ptr->m);
/* N (PERIPH_DPLL_DIV): CM_CLKSEL2_PLL[0:6] */
sr32(CM_CLKSEL2_PLL, 0, 7, ptr->n);
/* M2DIV (CLKSEL_96M): CM_CLKSEL_CORE[12:13] */
sr32(CM_CLKSEL_CORE, 12, 2, ptr->m2div);
/* LOCK MODE (EN_PERIPH_DPLL): CM_CLKEN_PLL[16:18] */
sr32(CM_CLKEN_PLL, 16, 3, PLL_LOCK);
wait_on_value(BIT1, 2, CM_IDLEST_CKGEN, LDELAY);
}
static void mpu_init_36xx(u32 sil_index, u32 clk_index)
{
dpll_param *ptr;
/* Getting the base address to MPU DPLL param table*/
ptr = (dpll_param *)get_36x_mpu_dpll_param();
/* Moving it to the right sysclk and ES rev base */
ptr = ptr + (2*clk_index) + sil_index;
/* MPU DPLL (unlocked already) */
/* M2 (MPU_DPLL_CLKOUT_DIV) : CM_CLKSEL2_PLL_MPU[0:4] */
sr32(CM_CLKSEL2_PLL_MPU, 0, 5, ptr->m2);
/* M (MPU_DPLL_MULT) : CM_CLKSEL2_PLL_MPU[8:18] */
sr32(CM_CLKSEL1_PLL_MPU, 8, 11, ptr->m);
/* N (MPU_DPLL_DIV) : CM_CLKSEL2_PLL_MPU[0:6] */
sr32(CM_CLKSEL1_PLL_MPU, 0, 7, ptr->n);
/* LOCK MODE (EN_MPU_DPLL) : CM_CLKEN_PLL_IVA2[0:2] */
sr32(CM_CLKEN_PLL_MPU, 0, 3, PLL_LOCK);
wait_on_value(BIT0, 1, CM_IDLEST_PLL_MPU, LDELAY);
}
static void iva_init_36xx(u32 sil_index, u32 clk_index)
{
dpll_param *ptr;
/* Getting the base address to IVA DPLL param table*/
ptr = (dpll_param *)get_36x_iva_dpll_param();
/* Moving it to the right sysclk and ES rev base */
ptr = ptr + (2*clk_index) + sil_index;
/* IVA DPLL */
/* EN_IVA2_DPLL : CM_CLKEN_PLL_IVA2[0:2] */
sr32(CM_CLKEN_PLL_IVA2, 0, 3, PLL_STOP);
wait_on_value(BIT0, 0, CM_IDLEST_PLL_IVA2, LDELAY);
/* M2 (IVA2_DPLL_CLKOUT_DIV) : CM_CLKSEL2_PLL_IVA2[0:4] */
sr32(CM_CLKSEL2_PLL_IVA2, 0, 5, ptr->m2);
/* M (IVA2_DPLL_MULT) : CM_CLKSEL1_PLL_IVA2[8:18] */
sr32(CM_CLKSEL1_PLL_IVA2, 8, 11, ptr->m);
/* N (IVA2_DPLL_DIV) : CM_CLKSEL1_PLL_IVA2[0:6] */
sr32(CM_CLKSEL1_PLL_IVA2, 0, 7, ptr->n);
/* LOCK MODE (EN_IVA2_DPLL) : CM_CLKEN_PLL_IVA2[0:2] */
sr32(CM_CLKEN_PLL_IVA2, 0, 3, PLL_LOCK);
wait_on_value(BIT0, 1, CM_IDLEST_PLL_IVA2, LDELAY);
}
/******************************************************************************
* prcm_init() - inits clocks for PRCM as defined in clocks.h
* -- called from SRAM, or Flash (using temp SRAM stack).
*****************************************************************************/
void prcm_init(void)
{
u32 osc_clk=0, sys_clkin_sel;
u32 clk_index, sil_index;
/* Gauge the input clock speed and find out the sys_clkin_sel
* value corresponding to the input clock.
*/
osc_clk = get_osc_clk_speed();
get_sys_clkin_sel(osc_clk, &sys_clkin_sel);
sr32(PRM_CLKSEL, 0, 3, sys_clkin_sel); /* set input crystal speed */
/* If the input clock is greater than 19.2M always divide/2 */
/*
* On OMAP3630, DDR data corruption has been observed on OFF mode
* exit if the sys clock was lower than 26M. As a work around,
* OMAP3630 is operated at 26M sys clock and this internal division
* is not performed.
*/
if((is_cpu_family() != CPU_OMAP36XX) && (sys_clkin_sel > 2)) {
sr32(PRM_CLKSRC_CTRL, 6, 2, 2);/* input clock divider */
clk_index = sys_clkin_sel/2;
} else {
sr32(PRM_CLKSRC_CTRL, 6, 2, 1);/* input clock divider */
clk_index = sys_clkin_sel;
}
if (is_cpu_family() == CPU_OMAP36XX) {
dpll3_init_36xx(0, clk_index);
dpll4_init_36xx(0, clk_index);
mpu_init_36xx(0, clk_index);
iva_init_36xx(0, clk_index);
} else {
sil_index = get_cpu_rev() - 1;
/* The DPLL tables are defined according to sysclk value and
* silicon revision. The clk_index value will be used to get
* the values for that input sysclk from the DPLL param table
* and sil_index will get the values for that SysClk for the
* appropriate silicon rev.
*/
/* Unlock MPU DPLL (slows things down, and needed later) */
sr32(CM_CLKEN_PLL_MPU, 0, 3, PLL_LOW_POWER_BYPASS);
wait_on_value(BIT0, 0, CM_IDLEST_PLL_MPU, LDELAY);
dpll3_init_34xx(sil_index, clk_index);
dpll4_init_34xx(sil_index, clk_index);
iva_init_34xx(sil_index, clk_index);
mpu_init_34xx(sil_index, clk_index);
/* Lock MPU DPLL to set frequency */
sr32(CM_CLKEN_PLL_MPU, 0, 3, PLL_LOCK);
wait_on_value(BIT0, 1, CM_IDLEST_PLL_MPU, LDELAY);
}
/* Set up GPTimers to sys_clk source only */
sr32(CM_CLKSEL_PER, 0, 8, 0xff);
sr32(CM_CLKSEL_WKUP, 0, 1, 1);
delay(5000);
}
/*****************************************
* Routine: secure_unlock
* Description: Setup security registers for access
* (GP Device only)
*****************************************/
void secure_unlock(void)
{
/* Permission values for registers -Full fledged permissions to all */
#define UNLOCK_1 0xFFFFFFFF
#define UNLOCK_2 0x00000000
#define UNLOCK_3 0x0000FFFF
/* Protection Module Register Target APE (PM_RT)*/
__raw_writel(UNLOCK_1, RT_REQ_INFO_PERMISSION_1);
__raw_writel(UNLOCK_1, RT_READ_PERMISSION_0);
__raw_writel(UNLOCK_1, RT_WRITE_PERMISSION_0);
__raw_writel(UNLOCK_2, RT_ADDR_MATCH_1);
__raw_writel(UNLOCK_3, GPMC_REQ_INFO_PERMISSION_0);
__raw_writel(UNLOCK_3, GPMC_READ_PERMISSION_0);
__raw_writel(UNLOCK_3, GPMC_WRITE_PERMISSION_0);
__raw_writel(UNLOCK_3, OCM_REQ_INFO_PERMISSION_0);
__raw_writel(UNLOCK_3, OCM_READ_PERMISSION_0);
__raw_writel(UNLOCK_3, OCM_WRITE_PERMISSION_0);
__raw_writel(UNLOCK_2, OCM_ADDR_MATCH_2);
/* IVA Changes */
__raw_writel(UNLOCK_3, IVA2_REQ_INFO_PERMISSION_0);
__raw_writel(UNLOCK_3, IVA2_READ_PERMISSION_0);
__raw_writel(UNLOCK_3, IVA2_WRITE_PERMISSION_0);
__raw_writel(UNLOCK_1, SMS_RG_ATT0); /* SDRC region 0 public */
}
/**********************************************************
* Routine: try_unlock_sram()
* Description: If chip is GP type, unlock the SRAM for
* general use.
***********************************************************/
void try_unlock_memory(void)
{
int mode;
/* if GP device unlock device SRAM for general use */
/* secure code breaks for Secure/Emulation device - HS/E/T*/
mode = get_device_type();
if (mode == GP_DEVICE) {
secure_unlock();
}
return;
}
/**********************************************************
* Routine: s_init
* Description: Does early system init of muxing and clocks.
* - Called at time when only stack is available.
**********************************************************/
void s_init(void)
{
watchdog_init();
#ifdef CONFIG_3430_AS_3410
/* setup the scalability control register for
* 3430 to work in 3410 mode
*/
__raw_writel(0x5ABF,CONTROL_SCALABLE_OMAP_OCP);
#endif
try_unlock_memory();
set_muxconf_regs();
delay(100);
prcm_init();
per_clocks_enable();
config_3430sdram_ddr();
}
/*******************************************************
* Routine: misc_init_r
* Description: Init ethernet (done here so udelay works)
********************************************************/
int misc_init_r (void)
{
return(0);
}
/******************************************************
* Routine: wait_for_command_complete
* Description: Wait for posting to finish on watchdog
******************************************************/
void wait_for_command_complete(unsigned int wd_base)
{
int pending = 1;
do {
pending = __raw_readl(wd_base + WWPS);
} while (pending);
}
/****************************************
* Routine: watchdog_init
* Description: Shut down watch dogs
*****************************************/
void watchdog_init(void)
{
/* There are 3 watch dogs WD1=Secure, WD2=MPU, WD3=IVA. WD1 is
* either taken care of by ROM (HS/EMU) or not accessible (GP).
* We need to take care of WD2-MPU or take a PRCM reset. WD3
* should not be running and does not generate a PRCM reset.
*/
sr32(CM_FCLKEN_WKUP, 5, 1, 1);
sr32(CM_ICLKEN_WKUP, 5, 1, 1);
wait_on_value(BIT5, 0x20, CM_IDLEST_WKUP, 5); /* some issue here */
__raw_writel(WD_UNLOCK1, WD2_BASE + WSPR);
wait_for_command_complete(WD2_BASE);
__raw_writel(WD_UNLOCK2, WD2_BASE + WSPR);
}
/**********************************************
* Routine: dram_init
* Description: sets uboots idea of sdram size
**********************************************/
int dram_init (void)
{
return 0;
}
/*****************************************************************
* Routine: peripheral_enable
* Description: Enable the clks & power for perifs (GPT2, UART1,...)
******************************************************************/
void per_clocks_enable(void)
{
/* Enable GP2 timer. */
sr32(CM_CLKSEL_PER, 0, 1, 0x1); /* GPT2 = sys clk */
sr32(CM_ICLKEN_PER, 3, 1, 0x1); /* ICKen GPT2 */
sr32(CM_FCLKEN_PER, 3, 1, 0x1); /* FCKen GPT2 */
#ifdef CFG_NS16550
/* Enable UART1 clocks */
sr32(CM_FCLKEN1_CORE, 13, 1, 0x1);
sr32(CM_ICLKEN1_CORE, 13, 1, 0x1);
#endif
#ifdef CONFIG_MMC
/* Enable MMC1 clocks */
sr32(CM_FCLKEN1_CORE, 24, 1, 0x1);
sr32(CM_ICLKEN1_CORE, 24, 1, 0x1);
#endif
delay(1000);
}
/* Set MUX for UART, GPMC, SDRC, GPIO */
/*
* IEN - Input Enable
* IDIS - Input Disable
* PTD - Pull type Down
* PTU - Pull type Up
* DIS - Pull type selection is inactive
* EN - Pull type selection is active
* M0 - Mode 0
* The commented string gives the final mux configuration for that pin
*/
#define MUX_DEFAULT()\
MUX_VAL(CP(SDRC_D0), (IEN | PTD | DIS | M0)) /*SDRC_D0*/\
MUX_VAL(CP(SDRC_D1), (IEN | PTD | DIS | M0)) /*SDRC_D1*/\
MUX_VAL(CP(SDRC_D2), (IEN | PTD | DIS | M0)) /*SDRC_D2*/\
MUX_VAL(CP(SDRC_D3), (IEN | PTD | DIS | M0)) /*SDRC_D3*/\
MUX_VAL(CP(SDRC_D4), (IEN | PTD | DIS | M0)) /*SDRC_D4*/\
MUX_VAL(CP(SDRC_D5), (IEN | PTD | DIS | M0)) /*SDRC_D5*/\
MUX_VAL(CP(SDRC_D6), (IEN | PTD | DIS | M0)) /*SDRC_D6*/\
MUX_VAL(CP(SDRC_D7), (IEN | PTD | DIS | M0)) /*SDRC_D7*/\
MUX_VAL(CP(SDRC_D8), (IEN | PTD | DIS | M0)) /*SDRC_D8*/\
MUX_VAL(CP(SDRC_D9), (IEN | PTD | DIS | M0)) /*SDRC_D9*/\
MUX_VAL(CP(SDRC_D10), (IEN | PTD | DIS | M0)) /*SDRC_D10*/\
MUX_VAL(CP(SDRC_D11), (IEN | PTD | DIS | M0)) /*SDRC_D11*/\
MUX_VAL(CP(SDRC_D12), (IEN | PTD | DIS | M0)) /*SDRC_D12*/\
MUX_VAL(CP(SDRC_D13), (IEN | PTD | DIS | M0)) /*SDRC_D13*/\
MUX_VAL(CP(SDRC_D14), (IEN | PTD | DIS | M0)) /*SDRC_D14*/\
MUX_VAL(CP(SDRC_D15), (IEN | PTD | DIS | M0)) /*SDRC_D15*/\
MUX_VAL(CP(SDRC_D16), (IEN | PTD | DIS | M0)) /*SDRC_D16*/\
MUX_VAL(CP(SDRC_D17), (IEN | PTD | DIS | M0)) /*SDRC_D17*/\
MUX_VAL(CP(SDRC_D18), (IEN | PTD | DIS | M0)) /*SDRC_D18*/\
MUX_VAL(CP(SDRC_D19), (IEN | PTD | DIS | M0)) /*SDRC_D19*/\
MUX_VAL(CP(SDRC_D20), (IEN | PTD | DIS | M0)) /*SDRC_D20*/\
MUX_VAL(CP(SDRC_D21), (IEN | PTD | DIS | M0)) /*SDRC_D21*/\
MUX_VAL(CP(SDRC_D22), (IEN | PTD | DIS | M0)) /*SDRC_D22*/\
MUX_VAL(CP(SDRC_D23), (IEN | PTD | DIS | M0)) /*SDRC_D23*/\
MUX_VAL(CP(SDRC_D24), (IEN | PTD | DIS | M0)) /*SDRC_D24*/\
MUX_VAL(CP(SDRC_D25), (IEN | PTD | DIS | M0)) /*SDRC_D25*/\
MUX_VAL(CP(SDRC_D26), (IEN | PTD | DIS | M0)) /*SDRC_D26*/\
MUX_VAL(CP(SDRC_D27), (IEN | PTD | DIS | M0)) /*SDRC_D27*/\
MUX_VAL(CP(SDRC_D28), (IEN | PTD | DIS | M0)) /*SDRC_D28*/\
MUX_VAL(CP(SDRC_D29), (IEN | PTD | DIS | M0)) /*SDRC_D29*/\
MUX_VAL(CP(SDRC_D30), (IEN | PTD | DIS | M0)) /*SDRC_D30*/\
MUX_VAL(CP(SDRC_D31), (IEN | PTD | DIS | M0)) /*SDRC_D31*/\
MUX_VAL(CP(SDRC_CLK), (IEN | PTD | DIS | M0)) /*SDRC_CLK*/\
MUX_VAL(CP(SDRC_DQS0), (IEN | PTD | DIS | M0)) /*SDRC_DQS0*/\
MUX_VAL(CP(SDRC_DQS1), (IEN | PTD | DIS | M0)) /*SDRC_DQS1*/\
MUX_VAL(CP(SDRC_DQS2), (IEN | PTD | DIS | M0)) /*SDRC_DQS2*/\
MUX_VAL(CP(SDRC_DQS3), (IEN | PTD | DIS | M0)) /*SDRC_DQS3*/\
MUX_VAL(CP(GPMC_A1), (IDIS | PTD | DIS | M0)) /*GPMC_A1*/\
MUX_VAL(CP(GPMC_A2), (IDIS | PTD | DIS | M0)) /*GPMC_A2*/\
MUX_VAL(CP(GPMC_A3), (IDIS | PTD | DIS | M0)) /*GPMC_A3*/\
MUX_VAL(CP(GPMC_A4), (IDIS | PTD | DIS | M0)) /*GPMC_A4*/\
MUX_VAL(CP(GPMC_A5), (IDIS | PTD | DIS | M0)) /*GPMC_A5*/\
MUX_VAL(CP(GPMC_A6), (IDIS | PTD | DIS | M0)) /*GPMC_A6*/\
MUX_VAL(CP(GPMC_A7), (IDIS | PTD | DIS | M0)) /*GPMC_A7*/\
MUX_VAL(CP(GPMC_A8), (IDIS | PTD | DIS | M0)) /*GPMC_A8*/\
MUX_VAL(CP(GPMC_A9), (IDIS | PTD | DIS | M0)) /*GPMC_A9*/\
MUX_VAL(CP(GPMC_A10), (IDIS | PTD | DIS | M0)) /*GPMC_A10*/\
MUX_VAL(CP(GPMC_D0), (IEN | PTD | DIS | M0)) /*GPMC_D0*/\
MUX_VAL(CP(GPMC_D1), (IEN | PTD | DIS | M0)) /*GPMC_D1*/\
MUX_VAL(CP(GPMC_D2), (IEN | PTD | DIS | M0)) /*GPMC_D2*/\
MUX_VAL(CP(GPMC_D3), (IEN | PTD | DIS | M0)) /*GPMC_D3*/\
MUX_VAL(CP(GPMC_D4), (IEN | PTD | DIS | M0)) /*GPMC_D4*/\
MUX_VAL(CP(GPMC_D5), (IEN | PTD | DIS | M0)) /*GPMC_D5*/\
MUX_VAL(CP(GPMC_D6), (IEN | PTD | DIS | M0)) /*GPMC_D6*/\
MUX_VAL(CP(GPMC_D7), (IEN | PTD | DIS | M0)) /*GPMC_D7*/\
MUX_VAL(CP(GPMC_D8), (IEN | PTD | DIS | M0)) /*GPMC_D8*/\
MUX_VAL(CP(GPMC_D9), (IEN | PTD | DIS | M0)) /*GPMC_D9*/\
MUX_VAL(CP(GPMC_D10), (IEN | PTD | DIS | M0)) /*GPMC_D10*/\
MUX_VAL(CP(GPMC_D11), (IEN | PTD | DIS | M0)) /*GPMC_D11*/\
MUX_VAL(CP(GPMC_D12), (IEN | PTD | DIS | M0)) /*GPMC_D12*/\
MUX_VAL(CP(GPMC_D13), (IEN | PTD | DIS | M0)) /*GPMC_D13*/\
MUX_VAL(CP(GPMC_D14), (IEN | PTD | DIS | M0)) /*GPMC_D14*/\
MUX_VAL(CP(GPMC_D15), (IEN | PTD | DIS | M0)) /*GPMC_D15*/\
MUX_VAL(CP(GPMC_NCS0), (IDIS | PTU | EN | M0)) /*GPMC_NCS0*/\
MUX_VAL(CP(GPMC_NCS1), (IDIS | PTU | EN | M0)) /*GPMC_NCS1*/\
MUX_VAL(CP(GPMC_NCS2), (IDIS | PTU | EN | M0)) /*GPMC_NCS2*/\
MUX_VAL(CP(GPMC_NCS3), (IDIS | PTU | EN | M0)) /*GPMC_NCS3*/\
MUX_VAL(CP(GPMC_NCS4), (IDIS | PTU | EN | M0)) /*GPMC_NCS4*/\
MUX_VAL(CP(GPMC_NCS5), (IDIS | PTU | EN | M0)) /*GPMC_NCS5*/\
MUX_VAL(CP(GPMC_NCS6), (IDIS | PTU | EN | M0)) /*GPMC_NCS6*/\
MUX_VAL(CP(GPMC_NCS7), (IDIS | PTU | EN | M0)) /*GPMC_NCS7*/\
MUX_VAL(CP(GPMC_CLK), (IDIS | PTD | DIS | M0)) /*GPMC_CLK*/\
MUX_VAL(CP(GPMC_NADV_ALE), (IDIS | PTD | DIS | M0)) /*GPMC_NADV_ALE*/\
MUX_VAL(CP(GPMC_NOE), (IDIS | PTD | DIS | M0)) /*GPMC_NOE*/\
MUX_VAL(CP(GPMC_NWE), (IDIS | PTD | DIS | M0)) /*GPMC_NWE*/\
MUX_VAL(CP(GPMC_NBE0_CLE), (IDIS | PTD | DIS | M0)) /*GPMC_NBE0_CLE*/\
MUX_VAL(CP(GPMC_NBE1), (IDIS | PTD | DIS | M4)) /*GPIO_61*/\
MUX_VAL(CP(GPMC_NWP), (IEN | PTD | DIS | M0)) /*GPMC_NWP*/\
MUX_VAL(CP(GPMC_WAIT0), (IEN | PTU | EN | M0)) /*GPMC_WAIT0*/\
MUX_VAL(CP(GPMC_WAIT1), (IEN | PTU | EN | M0)) /*GPMC_WAIT1*/\
MUX_VAL(CP(GPMC_WAIT2), (IEN | PTU | EN | M4)) /*GPIO_64*/\
MUX_VAL(CP(GPMC_WAIT3), (IEN | PTU | EN | M4)) /*GPIO_65*/\
MUX_VAL(CP(DSS_DATA18), (IEN | PTD | DIS | M4)) /*GPIO_88*/\
MUX_VAL(CP(DSS_DATA19), (IEN | PTD | DIS | M4)) /*GPIO_89*/\
MUX_VAL(CP(DSS_DATA20), (IEN | PTD | DIS | M4)) /*GPIO_90*/\
MUX_VAL(CP(DSS_DATA21), (IEN | PTD | DIS | M4)) /*GPIO_91*/\
MUX_VAL(CP(CAM_WEN), (IEN | PTD | DIS | M4)) /*GPIO_167*/\
MUX_VAL(CP(UART1_TX), (IDIS | PTD | DIS | M0)) /*UART1_TX*/\
MUX_VAL(CP(UART1_RTS), (IDIS | PTD | DIS | M0)) /*UART1_RTS*/\
MUX_VAL(CP(UART1_CTS), (IEN | PTU | DIS | M0)) /*UART1_CTS*/\
MUX_VAL(CP(UART1_RX), (IEN | PTD | DIS | M0)) /*UART1_RX*/\
MUX_VAL(CP(MCBSP1_DX), (IEN | PTD | DIS | M4)) /*GPIO_158*/\
MUX_VAL(CP(SYS_32K), (IEN | PTD | DIS | M0)) /*SYS_32K*/\
MUX_VAL(CP(SYS_BOOT0), (IEN | PTD | DIS | M4)) /*GPIO_2 */\
MUX_VAL(CP(SYS_BOOT1), (IEN | PTD | DIS | M4)) /*GPIO_3 */\
MUX_VAL(CP(SYS_BOOT2), (IEN | PTD | DIS | M4)) /*GPIO_4 */\
MUX_VAL(CP(SYS_BOOT3), (IEN | PTD | DIS | M4)) /*GPIO_5 */\
MUX_VAL(CP(SYS_BOOT4), (IEN | PTD | DIS | M4)) /*GPIO_6 */\
MUX_VAL(CP(SYS_BOOT5), (IEN | PTD | DIS | M4)) /*GPIO_7 */\
MUX_VAL(CP(SYS_BOOT6), (IEN | PTD | DIS | M4)) /*GPIO_8 */\
MUX_VAL(CP(SYS_CLKOUT2), (IEN | PTU | EN | M4)) /*GPIO_186*/\
MUX_VAL(CP(JTAG_nTRST), (IEN | PTD | DIS | M0)) /*JTAG_nTRST*/\
MUX_VAL(CP(JTAG_TCK), (IEN | PTD | DIS | M0)) /*JTAG_TCK*/\
MUX_VAL(CP(JTAG_TMS), (IEN | PTD | DIS | M0)) /*JTAG_TMS*/\
MUX_VAL(CP(JTAG_TDI), (IEN | PTD | DIS | M0)) /*JTAG_TDI*/\
MUX_VAL(CP(JTAG_EMU0), (IEN | PTD | DIS | M0)) /*JTAG_EMU0*/\
MUX_VAL(CP(JTAG_EMU1), (IEN | PTD | DIS | M0)) /*JTAG_EMU1*/\
MUX_VAL(CP(ETK_CLK), (IEN | PTD | DIS | M4)) /*GPIO_12*/\
MUX_VAL(CP(ETK_CTL), (IEN | PTD | DIS | M4)) /*GPIO_13*/\
MUX_VAL(CP(ETK_D0 ), (IEN | PTD | DIS | M4)) /*GPIO_14*/\
MUX_VAL(CP(ETK_D1 ), (IEN | PTD | DIS | M4)) /*GPIO_15*/\
MUX_VAL(CP(ETK_D2 ), (IEN | PTD | DIS | M4)) /*GPIO_16*/\
MUX_VAL(CP(ETK_D10), (IEN | PTD | DIS | M4)) /*GPIO_24*/\
MUX_VAL(CP(ETK_D11), (IEN | PTD | DIS | M4)) /*GPIO_25*/\
MUX_VAL(CP(ETK_D12), (IEN | PTD | DIS | M4)) /*GPIO_26*/\
MUX_VAL(CP(ETK_D13), (IEN | PTD | DIS | M4)) /*GPIO_27*/\
MUX_VAL(CP(ETK_D14), (IEN | PTD | DIS | M4)) /*GPIO_28*/\
MUX_VAL(CP(ETK_D15), (IEN | PTD | DIS | M4)) /*GPIO_29*/
/**********************************************************
* Routine: set_muxconf_regs
* Description: Setting up the configuration Mux registers
* specific to the hardware. Many pins need
* to be moved from protect to primary mode.
*********************************************************/
void set_muxconf_regs(void)
{
MUX_DEFAULT();
}
/**********************************************************
* Routine: nand+_init
* Description: Set up nand for nand and jffs2 commands
*********************************************************/
int nand_init(void)
{
/* global settings */
__raw_writel(0x10, GPMC_SYSCONFIG); /* smart idle */
__raw_writel(0x0, GPMC_IRQENABLE); /* isr's sources masked */
__raw_writel(0, GPMC_TIMEOUT_CONTROL);/* timeout disable */
/* Set the GPMC Vals . For NAND boot on 3430SDP, NAND is mapped at CS0
* , NOR at CS1 and MPDB at CS3. And oneNAND boot, we map oneNAND at CS0.
* We configure only GPMC CS0 with required values. Configiring other devices
* at other CS in done in u-boot anyway. So we don't have to bother doing it here.
*/
__raw_writel(0 , GPMC_CONFIG7 + GPMC_CONFIG_CS0);
delay(1000);
if ((get_mem_type() == GPMC_NAND) || (get_mem_type() == MMC_NAND)){
__raw_writel( M_NAND_GPMC_CONFIG1, GPMC_CONFIG1 + GPMC_CONFIG_CS0);
__raw_writel( M_NAND_GPMC_CONFIG2, GPMC_CONFIG2 + GPMC_CONFIG_CS0);
__raw_writel( M_NAND_GPMC_CONFIG3, GPMC_CONFIG3 + GPMC_CONFIG_CS0);
__raw_writel( M_NAND_GPMC_CONFIG4, GPMC_CONFIG4 + GPMC_CONFIG_CS0);
__raw_writel( M_NAND_GPMC_CONFIG5, GPMC_CONFIG5 + GPMC_CONFIG_CS0);
__raw_writel( M_NAND_GPMC_CONFIG6, GPMC_CONFIG6 + GPMC_CONFIG_CS0);
/* Enable the GPMC Mapping */
__raw_writel(( ((OMAP34XX_GPMC_CS0_SIZE & 0xF)<<8) |
((NAND_BASE_ADR>>24) & 0x3F) |
(1<<6) ), (GPMC_CONFIG7 + GPMC_CONFIG_CS0));
delay(2000);
if (nand_chip()){
#ifdef CFG_PRINTF
printf("Unsupported Chip!\n");
#endif
return 1;
}
}
if ((get_mem_type() == GPMC_ONENAND) || (get_mem_type() == MMC_ONENAND)){
__raw_writel( ONENAND_GPMC_CONFIG1, GPMC_CONFIG1 + GPMC_CONFIG_CS0);
__raw_writel( ONENAND_GPMC_CONFIG2, GPMC_CONFIG2 + GPMC_CONFIG_CS0);
__raw_writel( ONENAND_GPMC_CONFIG3, GPMC_CONFIG3 + GPMC_CONFIG_CS0);
__raw_writel( ONENAND_GPMC_CONFIG4, GPMC_CONFIG4 + GPMC_CONFIG_CS0);
__raw_writel( ONENAND_GPMC_CONFIG5, GPMC_CONFIG5 + GPMC_CONFIG_CS0);
__raw_writel( ONENAND_GPMC_CONFIG6, GPMC_CONFIG6 + GPMC_CONFIG_CS0);
/* Enable the GPMC Mapping */
__raw_writel(( ((OMAP34XX_GPMC_CS0_SIZE & 0xF)<<8) |
((ONENAND_BASE>>24) & 0x3F) |
(1<<6) ), (GPMC_CONFIG7 + GPMC_CONFIG_CS0));
delay(2000);
if (onenand_chip()){
#ifdef CFG_PRINTF
printf("OneNAND Unsupported !\n");
#endif
return 1;
}
}
return 0;
}
typedef int (mmc_boot_addr) (void);
int mmc_boot(unsigned char *buf)
{
long size = 0;
#ifdef CFG_CMD_FAT
block_dev_desc_t *dev_desc = NULL;
unsigned char ret = 0;
printf("Starting X-loader on MMC\n");
ret = mmc_init(1);
if(ret == 0){
printf("\n MMC init failed\n");
return 0;
}
dev_desc = mmc_get_dev(0);
fat_register_device(dev_desc, 1);
size = file_fat_read("u-boot.bin", buf, 0);
if (size == -1) {
return 0;
}
printf("\n%ld Bytes Read from MMC\n", size);
printf("Starting OS Bootloader from MMC...\n");
#endif
return size;
}
/* optionally do something like blinking LED */
void board_hang (void)
{ while (0) {};}