blob: 13b0b5e34dbd380ec1ec4b306e3bbc4b89066132 [file] [log] [blame]
[section:extending Extending the library]
[section:method_1 Method 1: provide member functions and nested types]
This procedure assumes that you have control over the types that should be made conformant to a Range concept. If not, see [link range.reference.extending.method_2 method 2].
The primary templates in this library are implemented such that standard containers will work automatically and so will __boost_array__. Below is given an overview of which member functions and member types a class must specify to be useable as a certain Range concept.
[table
[[Member function] [Related concept ]]
[[`begin()` ] [__single_pass_range__]]
[[`end()` ] [__single_pass_range__]]
]
Notice that `rbegin()` and `rend()` member functions are not needed even though the container can support bidirectional iteration.
The required member types are:
[table
[[Member type ] [Related concept ]]
[[`iterator` ] [__single_pass_range__]]
[[`const_iterator`] [__single_pass_range__]]
]
Again one should notice that member types `reverse_iterator` and `const_reverse_iterator` are not needed.
[endsect]
[section:method_2 Method 2: provide free-standing functions and specialize metafunctions]
This procedure assumes that you cannot (or do not wish to) change the types that should be made conformant to a Range concept. If this is not true, see [link range.reference.extending.method_1 method 1].
The primary templates in this library are implemented such that certain functions are found via argument-dependent-lookup (ADL). Below is given an overview of which free-standing functions a class must specify to be useable as a certain Range concept. Let `x` be a variable (`const` or `mutable`) of the class in question.
[table
[[Function ] [Related concept ]]
[[`range_begin(x)`] [__single_pass_range__]]
[[`range_end(x)` ] [__single_pass_range__]]
]
`range_begin()` and `range_end()` must be overloaded for both `const` and `mutable` reference arguments.
You must also specialize two metafunctions for your type `X`:
[table
[[Metafunction ] [Related concept ]]
[[`boost::range_mutable_iterator`] [__single_pass_range__]]
[[`boost::range_const_iterator`] [__single_pass_range__]]
]
A complete example is given here:
``
#include <boost/range.hpp>
#include <iterator> // for std::iterator_traits, std::distance()
namespace Foo
{
//
// Our sample UDT. A 'Pair'
// will work as a range when the stored
// elements are iterators.
//
template< class T >
struct Pair
{
T first, last;
};
} // namespace 'Foo'
namespace boost
{
//
// Specialize metafunctions. We must include the range.hpp header.
// We must open the 'boost' namespace.
//
template< class T >
struct range_mutable_iterator< Foo::Pair<T> >
{
typedef T type;
};
template< class T >
struct range_const_iterator< Foo::Pair<T> >
{
//
// Remark: this is defined similar to 'range_iterator'
// because the 'Pair' type does not distinguish
// between an iterator and a const_iterator.
//
typedef T type;
};
} // namespace 'boost'
namespace Foo
{
//
// The required functions. These should be defined in
// the same namespace as 'Pair', in this case
// in namespace 'Foo'.
//
template< class T >
inline T range_begin( Pair<T>& x )
{
return x.first;
}
template< class T >
inline T range_begin( const Pair<T>& x )
{
return x.first;
}
template< class T >
inline T range_end( Pair<T>& x )
{
return x.last;
}
template< class T >
inline T range_end( const Pair<T>& x )
{
return x.last;
}
} // namespace 'Foo'
#include <vector>
int main(int argc, const char* argv[])
{
typedef std::vector<int>::iterator iter;
std::vector<int> vec;
Foo::Pair<iter> pair = { vec.begin(), vec.end() };
const Foo::Pair<iter>& cpair = pair;
//
// Notice that we call 'begin' etc with qualification.
//
iter i = boost::begin( pair );
iter e = boost::end( pair );
i = boost::begin( cpair );
e = boost::end( cpair );
boost::range_difference< Foo::Pair<iter> >::type s = boost::size( pair );
s = boost::size( cpair );
boost::range_reverse_iterator< const Foo::Pair<iter> >::type
ri = boost::rbegin( cpair ),
re = boost::rend( cpair );
return 0;
}
``
[endsect]
[section:method_3 Method 3: provide range adaptor implementations]
[section:method_3_1 Method 3.1: Implement a Range Adaptor without arguments]
To implement a Range Adaptor without arguments (e.g. reversed) you need to:
# Provide a range for your return type, for example:
``
#include <boost/range/iterator_range.hpp>
#include <boost/iterator/reverse_iterator.hpp>
template< typename R >
struct reverse_range :
boost::iterator_range<
boost::reverse_iterator<
typename boost::range_iterator<R>::type> >
{
private:
typedef boost::iterator_range<
boost::reverse_iterator<
typename boost::range_iterator<R>::type> > base;
public:
typedef boost::reverse_iterator<
typename boost::range_iterator<R>::type > iterator;
reverse_range(R& r)
: base(iterator(boost::end(r)), iterator(boost::begin(r)))
{ }
};
``
# Provide a tag to uniquely identify your adaptor in the `operator|` function overload set
``
namespace detail {
struct reverse_forwarder {};
}
``
# Implement `operator|`
``
template< class BidirectionalRng >
inline reverse_range<BidirectionalRng>
operator|( BidirectionalRng& r, detail::reverse_forwarder )
{
return reverse_range<BidirectionalRng>( r );
}
template< class BidirectionalRng >
inline reverse_range<const BidirectionalRng>
operator|( const BidirectionalRng& r, detail::reverse_forwarder )
{
return reverse_range<const BidirectionalRng>( r );
}
``
[endsect]
[section:method_3_2 Method 3.2: Implement a Range Adaptor with arguments]
# Provide a range for your return type, for example:
``
#include <boost/range/adaptor/argument_fwd.hpp>
#include <boost/range/iterator_range.hpp>
#include <boost/iterator/transform_iterator.hpp>
template<typename Value>
class replace_value
{
public:
typedef const Value& result_type;
typedef const Value& argument_type;
replace_value(const Value& from, const Value& to)
: m_from(from), m_to(to)
{
}
const Value& operator()(const Value& x) const
{
return (x == m_from) ? m_to : x;
}
private:
Value m_from;
Value m_to;
};
template<typename Range>
class replace_range
: public boost::iterator_range<
boost::transform_iterator<
replace_value<typename boost::range_value<Range>::type>,
typename boost::range_iterator<Range>::type> >
{
private:
typedef typename boost::range_value<Range>::type value_type;
typedef typename boost::range_iterator<Range>::type iterator_base;
typedef replace_value<value_type> Fn;
typedef boost::transform_iterator<Fn, iterator_base> replaced_iterator;
typedef boost::iterator_range<replaced_iterator> base_t;
public:
replace_range(Range& rng, value_type from, value_type to)
: base_t(replaced_iterator(boost::begin(rng), Fn(from,to)),
replaced_iterator(boost::end(rng), Fn(from,to)))
{
}
};
``
# Implement a holder class to hold the arguments required to construct the RangeAdaptor.
The holder combines multiple parameters into one that can be passed as the right operand of `operator|()`.
``
template<typename T>
class replace_holder : public boost::range_detail::holder2<T>
{
public:
replace_holder(const T& from, const T& to)
: boost::range_detail::holder2<T>(from, to)
{ }
private:
void operator=(const replace_holder&);
};
``
# Define an instance of the holder with the name of the adaptor
``
static boost::range_detail::forwarder2<replace_holder>
replaced = boost::range_detail::forwarder2<replace_holder>();
``
# Define `operator|`
``
template<typename SinglePassRange>
inline replace_range<SinglePassRange>
operator|(SinglePassRange& rng,
const replace_holder<typename boost::range_value<SinglePassRange>::type>& f)
{
return replace_range<SinglePassRange>(rng, f.val1, f.val2);
}
template<typename SinglePassRange>
inline replace_range<const SinglePassRange>
operator|(const SinglePassRange& rng,
const replace_holder<typename boost::range_value<SinglePassRange>::type>& f)
{
return replace_range<const SinglePassRange>(rng, f.val1, f.val2);
}
``
[endsect]
[endsect]
[endsect]