| #ifndef _BACKPORT_CRYPTO_SKCIPHER_H |
| #define _BACKPORT_CRYPTO_SKCIPHER_H |
| #include_next <crypto/skcipher.h> |
| #include <linux/version.h> |
| |
| #if LINUX_VERSION_IS_LESS(4,3,0) |
| /** |
| * struct skcipher_request - Symmetric key cipher request |
| * @cryptlen: Number of bytes to encrypt or decrypt |
| * @iv: Initialisation Vector |
| * @src: Source SG list |
| * @dst: Destination SG list |
| * @base: Underlying async request request |
| * @__ctx: Start of private context data |
| */ |
| #define skcipher_request LINUX_BACKPORT(skcipher_request) |
| struct skcipher_request { |
| unsigned int cryptlen; |
| |
| u8 *iv; |
| |
| struct scatterlist *src; |
| struct scatterlist *dst; |
| |
| struct crypto_async_request base; |
| |
| void *__ctx[] CRYPTO_MINALIGN_ATTR; |
| }; |
| |
| #define crypto_skcipher LINUX_BACKPORT(crypto_skcipher) |
| struct crypto_skcipher { |
| int (*setkey)(struct crypto_skcipher *tfm, const u8 *key, |
| unsigned int keylen); |
| int (*encrypt)(struct skcipher_request *req); |
| int (*decrypt)(struct skcipher_request *req); |
| |
| unsigned int ivsize; |
| unsigned int reqsize; |
| unsigned int keysize; |
| |
| struct crypto_tfm base; |
| }; |
| |
| #ifndef SKCIPHER_REQUEST_ON_STACK |
| #define SKCIPHER_REQUEST_ON_STACK(name, tfm) \ |
| char __##name##_desc[sizeof(struct skcipher_request) + \ |
| crypto_skcipher_reqsize(tfm)] CRYPTO_MINALIGN_ATTR; \ |
| struct skcipher_request *name = (void *)__##name##_desc |
| #endif |
| |
| /** |
| * DOC: Symmetric Key Cipher API |
| * |
| * Symmetric key cipher API is used with the ciphers of type |
| * CRYPTO_ALG_TYPE_SKCIPHER (listed as type "skcipher" in /proc/crypto). |
| * |
| * Asynchronous cipher operations imply that the function invocation for a |
| * cipher request returns immediately before the completion of the operation. |
| * The cipher request is scheduled as a separate kernel thread and therefore |
| * load-balanced on the different CPUs via the process scheduler. To allow |
| * the kernel crypto API to inform the caller about the completion of a cipher |
| * request, the caller must provide a callback function. That function is |
| * invoked with the cipher handle when the request completes. |
| * |
| * To support the asynchronous operation, additional information than just the |
| * cipher handle must be supplied to the kernel crypto API. That additional |
| * information is given by filling in the skcipher_request data structure. |
| * |
| * For the symmetric key cipher API, the state is maintained with the tfm |
| * cipher handle. A single tfm can be used across multiple calls and in |
| * parallel. For asynchronous block cipher calls, context data supplied and |
| * only used by the caller can be referenced the request data structure in |
| * addition to the IV used for the cipher request. The maintenance of such |
| * state information would be important for a crypto driver implementer to |
| * have, because when calling the callback function upon completion of the |
| * cipher operation, that callback function may need some information about |
| * which operation just finished if it invoked multiple in parallel. This |
| * state information is unused by the kernel crypto API. |
| */ |
| |
| #define __crypto_skcipher_cast LINUX_BACKPORT(__crypto_skcipher_cast) |
| static inline struct crypto_skcipher *__crypto_skcipher_cast( |
| struct crypto_tfm *tfm) |
| { |
| return container_of(tfm, struct crypto_skcipher, base); |
| } |
| |
| /** |
| * crypto_alloc_skcipher() - allocate symmetric key cipher handle |
| * @alg_name: is the cra_name / name or cra_driver_name / driver name of the |
| * skcipher cipher |
| * @type: specifies the type of the cipher |
| * @mask: specifies the mask for the cipher |
| * |
| * Allocate a cipher handle for an skcipher. The returned struct |
| * crypto_skcipher is the cipher handle that is required for any subsequent |
| * API invocation for that skcipher. |
| * |
| * Return: allocated cipher handle in case of success; IS_ERR() is true in case |
| * of an error, PTR_ERR() returns the error code. |
| */ |
| #define crypto_alloc_skcipher LINUX_BACKPORT(crypto_alloc_skcipher) |
| struct crypto_skcipher *crypto_alloc_skcipher(const char *alg_name, |
| u32 type, u32 mask); |
| |
| #define crypto_skcipher_tfm LINUX_BACKPORT(crypto_skcipher_tfm) |
| static inline struct crypto_tfm *crypto_skcipher_tfm( |
| struct crypto_skcipher *tfm) |
| { |
| return &tfm->base; |
| } |
| |
| /** |
| * crypto_free_skcipher() - zeroize and free cipher handle |
| * @tfm: cipher handle to be freed |
| */ |
| #define crypto_free_skcipher LINUX_BACKPORT(crypto_free_skcipher) |
| static inline void crypto_free_skcipher(struct crypto_skcipher *tfm) |
| { |
| crypto_destroy_tfm(tfm, crypto_skcipher_tfm(tfm)); |
| } |
| |
| /** |
| * crypto_has_skcipher() - Search for the availability of an skcipher. |
| * @alg_name: is the cra_name / name or cra_driver_name / driver name of the |
| * skcipher |
| * @type: specifies the type of the cipher |
| * @mask: specifies the mask for the cipher |
| * |
| * Return: true when the skcipher is known to the kernel crypto API; false |
| * otherwise |
| */ |
| #define crypto_has_skcipher LINUX_BACKPORT(crypto_has_skcipher) |
| static inline int crypto_has_skcipher(const char *alg_name, u32 type, |
| u32 mask) |
| { |
| return crypto_has_alg(alg_name, crypto_skcipher_type(type), |
| crypto_skcipher_mask(mask)); |
| } |
| |
| #define crypto_skcipher_driver_name LINUX_BACKPORT(crypto_skcipher_driver_name) |
| static inline const char *crypto_skcipher_driver_name( |
| struct crypto_skcipher *tfm) |
| { |
| return crypto_tfm_alg_driver_name(crypto_skcipher_tfm(tfm)); |
| } |
| |
| /** |
| * crypto_skcipher_ivsize() - obtain IV size |
| * @tfm: cipher handle |
| * |
| * The size of the IV for the skcipher referenced by the cipher handle is |
| * returned. This IV size may be zero if the cipher does not need an IV. |
| * |
| * Return: IV size in bytes |
| */ |
| #define crypto_skcipher_ivsize LINUX_BACKPORT(crypto_skcipher_ivsize) |
| static inline unsigned int crypto_skcipher_ivsize(struct crypto_skcipher *tfm) |
| { |
| return tfm->ivsize; |
| } |
| |
| /** |
| * crypto_skcipher_blocksize() - obtain block size of cipher |
| * @tfm: cipher handle |
| * |
| * The block size for the skcipher referenced with the cipher handle is |
| * returned. The caller may use that information to allocate appropriate |
| * memory for the data returned by the encryption or decryption operation |
| * |
| * Return: block size of cipher |
| */ |
| #define crypto_skcipher_blocksize LINUX_BACKPORT(crypto_skcipher_blocksize) |
| static inline unsigned int crypto_skcipher_blocksize( |
| struct crypto_skcipher *tfm) |
| { |
| return crypto_tfm_alg_blocksize(crypto_skcipher_tfm(tfm)); |
| } |
| |
| #define crypto_skcipher_alignmask LINUX_BACKPORT(crypto_skcipher_alignmask) |
| static inline unsigned int crypto_skcipher_alignmask( |
| struct crypto_skcipher *tfm) |
| { |
| return crypto_tfm_alg_alignmask(crypto_skcipher_tfm(tfm)); |
| } |
| |
| #define crypto_skcipher_get_flags LINUX_BACKPORT(crypto_skcipher_get_flags) |
| static inline u32 crypto_skcipher_get_flags(struct crypto_skcipher *tfm) |
| { |
| return crypto_tfm_get_flags(crypto_skcipher_tfm(tfm)); |
| } |
| |
| #define crypto_skcipher_set_flags LINUX_BACKPORT(crypto_skcipher_set_flags) |
| static inline void crypto_skcipher_set_flags(struct crypto_skcipher *tfm, |
| u32 flags) |
| { |
| crypto_tfm_set_flags(crypto_skcipher_tfm(tfm), flags); |
| } |
| |
| #define crypto_skcipher_clear_flags LINUX_BACKPORT(crypto_skcipher_clear_flags) |
| static inline void crypto_skcipher_clear_flags(struct crypto_skcipher *tfm, |
| u32 flags) |
| { |
| crypto_tfm_clear_flags(crypto_skcipher_tfm(tfm), flags); |
| } |
| |
| /** |
| * crypto_skcipher_setkey() - set key for cipher |
| * @tfm: cipher handle |
| * @key: buffer holding the key |
| * @keylen: length of the key in bytes |
| * |
| * The caller provided key is set for the skcipher referenced by the cipher |
| * handle. |
| * |
| * Note, the key length determines the cipher type. Many block ciphers implement |
| * different cipher modes depending on the key size, such as AES-128 vs AES-192 |
| * vs. AES-256. When providing a 16 byte key for an AES cipher handle, AES-128 |
| * is performed. |
| * |
| * Return: 0 if the setting of the key was successful; < 0 if an error occurred |
| */ |
| #define crypto_skcipher_setkey LINUX_BACKPORT(crypto_skcipher_setkey) |
| static inline int crypto_skcipher_setkey(struct crypto_skcipher *tfm, |
| const u8 *key, unsigned int keylen) |
| { |
| return tfm->setkey(tfm, key, keylen); |
| } |
| |
| #define crypto_skcipher_has_setkey LINUX_BACKPORT(crypto_skcipher_has_setkey) |
| static inline bool crypto_skcipher_has_setkey(struct crypto_skcipher *tfm) |
| { |
| return tfm->keysize; |
| } |
| |
| #define crypto_skcipher_default_keysize LINUX_BACKPORT(crypto_skcipher_default_keysize) |
| static inline unsigned int crypto_skcipher_default_keysize( |
| struct crypto_skcipher *tfm) |
| { |
| return tfm->keysize; |
| } |
| |
| /** |
| * crypto_skcipher_reqtfm() - obtain cipher handle from request |
| * @req: skcipher_request out of which the cipher handle is to be obtained |
| * |
| * Return the crypto_skcipher handle when furnishing an skcipher_request |
| * data structure. |
| * |
| * Return: crypto_skcipher handle |
| */ |
| #define crypto_skcipher_reqtfm LINUX_BACKPORT(crypto_skcipher_reqtfm) |
| static inline struct crypto_skcipher *crypto_skcipher_reqtfm( |
| struct skcipher_request *req) |
| { |
| return __crypto_skcipher_cast(req->base.tfm); |
| } |
| |
| /** |
| * crypto_skcipher_encrypt() - encrypt plaintext |
| * @req: reference to the skcipher_request handle that holds all information |
| * needed to perform the cipher operation |
| * |
| * Encrypt plaintext data using the skcipher_request handle. That data |
| * structure and how it is filled with data is discussed with the |
| * skcipher_request_* functions. |
| * |
| * Return: 0 if the cipher operation was successful; < 0 if an error occurred |
| */ |
| #define crypto_skcipher_encrypt LINUX_BACKPORT(crypto_skcipher_encrypt) |
| static inline int crypto_skcipher_encrypt(struct skcipher_request *req) |
| { |
| struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(req); |
| |
| return tfm->encrypt(req); |
| } |
| |
| /** |
| * crypto_skcipher_decrypt() - decrypt ciphertext |
| * @req: reference to the skcipher_request handle that holds all information |
| * needed to perform the cipher operation |
| * |
| * Decrypt ciphertext data using the skcipher_request handle. That data |
| * structure and how it is filled with data is discussed with the |
| * skcipher_request_* functions. |
| * |
| * Return: 0 if the cipher operation was successful; < 0 if an error occurred |
| */ |
| #define crypto_skcipher_decrypt LINUX_BACKPORT(crypto_skcipher_decrypt) |
| static inline int crypto_skcipher_decrypt(struct skcipher_request *req) |
| { |
| struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(req); |
| |
| return tfm->decrypt(req); |
| } |
| |
| /** |
| * DOC: Symmetric Key Cipher Request Handle |
| * |
| * The skcipher_request data structure contains all pointers to data |
| * required for the symmetric key cipher operation. This includes the cipher |
| * handle (which can be used by multiple skcipher_request instances), pointer |
| * to plaintext and ciphertext, asynchronous callback function, etc. It acts |
| * as a handle to the skcipher_request_* API calls in a similar way as |
| * skcipher handle to the crypto_skcipher_* API calls. |
| */ |
| |
| /** |
| * crypto_skcipher_reqsize() - obtain size of the request data structure |
| * @tfm: cipher handle |
| * |
| * Return: number of bytes |
| */ |
| #define crypto_skcipher_reqsize LINUX_BACKPORT(crypto_skcipher_reqsize) |
| static inline unsigned int crypto_skcipher_reqsize(struct crypto_skcipher *tfm) |
| { |
| return tfm->reqsize; |
| } |
| |
| /** |
| * skcipher_request_set_tfm() - update cipher handle reference in request |
| * @req: request handle to be modified |
| * @tfm: cipher handle that shall be added to the request handle |
| * |
| * Allow the caller to replace the existing skcipher handle in the request |
| * data structure with a different one. |
| */ |
| #define skcipher_request_set_tfm LINUX_BACKPORT(skcipher_request_set_tfm) |
| static inline void skcipher_request_set_tfm(struct skcipher_request *req, |
| struct crypto_skcipher *tfm) |
| { |
| req->base.tfm = crypto_skcipher_tfm(tfm); |
| } |
| |
| #define skcipher_request_cast LINUX_BACKPORT(skcipher_request_cast) |
| static inline struct skcipher_request *skcipher_request_cast( |
| struct crypto_async_request *req) |
| { |
| return container_of(req, struct skcipher_request, base); |
| } |
| |
| /** |
| * skcipher_request_alloc() - allocate request data structure |
| * @tfm: cipher handle to be registered with the request |
| * @gfp: memory allocation flag that is handed to kmalloc by the API call. |
| * |
| * Allocate the request data structure that must be used with the skcipher |
| * encrypt and decrypt API calls. During the allocation, the provided skcipher |
| * handle is registered in the request data structure. |
| * |
| * Return: allocated request handle in case of success; IS_ERR() is true in case |
| * of an error, PTR_ERR() returns the error code. |
| */ |
| #define skcipher_request LINUX_BACKPORT(skcipher_request) |
| static inline struct skcipher_request *skcipher_request_alloc( |
| struct crypto_skcipher *tfm, gfp_t gfp) |
| { |
| struct skcipher_request *req; |
| |
| req = kmalloc(sizeof(struct skcipher_request) + |
| crypto_skcipher_reqsize(tfm), gfp); |
| |
| if (likely(req)) |
| skcipher_request_set_tfm(req, tfm); |
| |
| return req; |
| } |
| |
| /** |
| * skcipher_request_free() - zeroize and free request data structure |
| * @req: request data structure cipher handle to be freed |
| */ |
| #define skcipher_request_free LINUX_BACKPORT(skcipher_request_free) |
| static inline void skcipher_request_free(struct skcipher_request *req) |
| { |
| kzfree(req); |
| } |
| |
| /** |
| * skcipher_request_set_callback() - set asynchronous callback function |
| * @req: request handle |
| * @flags: specify zero or an ORing of the flags |
| * CRYPTO_TFM_REQ_MAY_BACKLOG the request queue may back log and |
| * increase the wait queue beyond the initial maximum size; |
| * CRYPTO_TFM_REQ_MAY_SLEEP the request processing may sleep |
| * @compl: callback function pointer to be registered with the request handle |
| * @data: The data pointer refers to memory that is not used by the kernel |
| * crypto API, but provided to the callback function for it to use. Here, |
| * the caller can provide a reference to memory the callback function can |
| * operate on. As the callback function is invoked asynchronously to the |
| * related functionality, it may need to access data structures of the |
| * related functionality which can be referenced using this pointer. The |
| * callback function can access the memory via the "data" field in the |
| * crypto_async_request data structure provided to the callback function. |
| * |
| * This function allows setting the callback function that is triggered once the |
| * cipher operation completes. |
| * |
| * The callback function is registered with the skcipher_request handle and |
| * must comply with the following template |
| * |
| * void callback_function(struct crypto_async_request *req, int error) |
| */ |
| #define skcipher_request_set_callback LINUX_BACKPORT(skcipher_request_set_callback) |
| static inline void skcipher_request_set_callback(struct skcipher_request *req, |
| u32 flags, |
| crypto_completion_t compl, |
| void *data) |
| { |
| req->base.complete = compl; |
| req->base.data = data; |
| req->base.flags = flags; |
| } |
| |
| /** |
| * skcipher_request_set_crypt() - set data buffers |
| * @req: request handle |
| * @src: source scatter / gather list |
| * @dst: destination scatter / gather list |
| * @cryptlen: number of bytes to process from @src |
| * @iv: IV for the cipher operation which must comply with the IV size defined |
| * by crypto_skcipher_ivsize |
| * |
| * This function allows setting of the source data and destination data |
| * scatter / gather lists. |
| * |
| * For encryption, the source is treated as the plaintext and the |
| * destination is the ciphertext. For a decryption operation, the use is |
| * reversed - the source is the ciphertext and the destination is the plaintext. |
| */ |
| #define skcipher_request_set_crypt LINUX_BACKPORT(skcipher_request_set_crypt) |
| static inline void skcipher_request_set_crypt( |
| struct skcipher_request *req, |
| struct scatterlist *src, struct scatterlist *dst, |
| unsigned int cryptlen, void *iv) |
| { |
| req->src = src; |
| req->dst = dst; |
| req->cryptlen = cryptlen; |
| req->iv = iv; |
| } |
| #endif /* < 4.3 */ |
| |
| #if LINUX_VERSION_IS_LESS(4,6,0) |
| #define skcipher_request_zero LINUX_BACKPORT(skcipher_request_zero) |
| static inline void skcipher_request_zero(struct skcipher_request *req) |
| { |
| struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(req); |
| |
| memzero_explicit(req, sizeof(*req) + crypto_skcipher_reqsize(tfm)); |
| } |
| #endif /* < 4.6 */ |
| |
| #endif /* _BACKPORT_CRYPTO_SKCIPHER_H */ |