| /* | 
 |  *  linux/arch/arm/mm/nommu.c | 
 |  * | 
 |  * ARM uCLinux supporting functions. | 
 |  */ | 
 | #include <linux/module.h> | 
 | #include <linux/mm.h> | 
 | #include <linux/pagemap.h> | 
 | #include <linux/io.h> | 
 | #include <linux/memblock.h> | 
 | #include <linux/kernel.h> | 
 |  | 
 | #include <asm/cacheflush.h> | 
 | #include <asm/sections.h> | 
 | #include <asm/page.h> | 
 | #include <asm/setup.h> | 
 | #include <asm/traps.h> | 
 | #include <asm/mach/arch.h> | 
 | #include <asm/cputype.h> | 
 | #include <asm/mpu.h> | 
 | #include <asm/procinfo.h> | 
 |  | 
 | #include "mm.h" | 
 |  | 
 | #ifdef CONFIG_ARM_MPU | 
 | struct mpu_rgn_info mpu_rgn_info; | 
 |  | 
 | /* Region number */ | 
 | static void rgnr_write(u32 v) | 
 | { | 
 | 	asm("mcr        p15, 0, %0, c6, c2, 0" : : "r" (v)); | 
 | } | 
 |  | 
 | /* Data-side / unified region attributes */ | 
 |  | 
 | /* Region access control register */ | 
 | static void dracr_write(u32 v) | 
 | { | 
 | 	asm("mcr        p15, 0, %0, c6, c1, 4" : : "r" (v)); | 
 | } | 
 |  | 
 | /* Region size register */ | 
 | static void drsr_write(u32 v) | 
 | { | 
 | 	asm("mcr        p15, 0, %0, c6, c1, 2" : : "r" (v)); | 
 | } | 
 |  | 
 | /* Region base address register */ | 
 | static void drbar_write(u32 v) | 
 | { | 
 | 	asm("mcr        p15, 0, %0, c6, c1, 0" : : "r" (v)); | 
 | } | 
 |  | 
 | static u32 drbar_read(void) | 
 | { | 
 | 	u32 v; | 
 | 	asm("mrc        p15, 0, %0, c6, c1, 0" : "=r" (v)); | 
 | 	return v; | 
 | } | 
 | /* Optional instruction-side region attributes */ | 
 |  | 
 | /* I-side Region access control register */ | 
 | static void iracr_write(u32 v) | 
 | { | 
 | 	asm("mcr        p15, 0, %0, c6, c1, 5" : : "r" (v)); | 
 | } | 
 |  | 
 | /* I-side Region size register */ | 
 | static void irsr_write(u32 v) | 
 | { | 
 | 	asm("mcr        p15, 0, %0, c6, c1, 3" : : "r" (v)); | 
 | } | 
 |  | 
 | /* I-side Region base address register */ | 
 | static void irbar_write(u32 v) | 
 | { | 
 | 	asm("mcr        p15, 0, %0, c6, c1, 1" : : "r" (v)); | 
 | } | 
 |  | 
 | static unsigned long irbar_read(void) | 
 | { | 
 | 	unsigned long v; | 
 | 	asm("mrc        p15, 0, %0, c6, c1, 1" : "=r" (v)); | 
 | 	return v; | 
 | } | 
 |  | 
 | /* MPU initialisation functions */ | 
 | void __init adjust_lowmem_bounds_mpu(void) | 
 | { | 
 | 	phys_addr_t phys_offset = PHYS_OFFSET; | 
 | 	phys_addr_t aligned_region_size, specified_mem_size, rounded_mem_size; | 
 | 	struct memblock_region *reg; | 
 | 	bool first = true; | 
 | 	phys_addr_t mem_start; | 
 | 	phys_addr_t mem_end; | 
 |  | 
 | 	for_each_memblock(memory, reg) { | 
 | 		if (first) { | 
 | 			/* | 
 | 			 * Initially only use memory continuous from | 
 | 			 * PHYS_OFFSET */ | 
 | 			if (reg->base != phys_offset) | 
 | 				panic("First memory bank must be contiguous from PHYS_OFFSET"); | 
 |  | 
 | 			mem_start = reg->base; | 
 | 			mem_end = reg->base + reg->size; | 
 | 			specified_mem_size = reg->size; | 
 | 			first = false; | 
 | 		} else { | 
 | 			/* | 
 | 			 * memblock auto merges contiguous blocks, remove | 
 | 			 * all blocks afterwards in one go (we can't remove | 
 | 			 * blocks separately while iterating) | 
 | 			 */ | 
 | 			pr_notice("Ignoring RAM after %pa, memory at %pa ignored\n", | 
 | 				  &mem_end, ®->base); | 
 | 			memblock_remove(reg->base, 0 - reg->base); | 
 | 			break; | 
 | 		} | 
 | 	} | 
 |  | 
 | 	/* | 
 | 	 * MPU has curious alignment requirements: Size must be power of 2, and | 
 | 	 * region start must be aligned to the region size | 
 | 	 */ | 
 | 	if (phys_offset != 0) | 
 | 		pr_info("PHYS_OFFSET != 0 => MPU Region size constrained by alignment requirements\n"); | 
 |  | 
 | 	/* | 
 | 	 * Maximum aligned region might overflow phys_addr_t if phys_offset is | 
 | 	 * 0. Hence we keep everything below 4G until we take the smaller of | 
 | 	 * the aligned_region_size and rounded_mem_size, one of which is | 
 | 	 * guaranteed to be smaller than the maximum physical address. | 
 | 	 */ | 
 | 	aligned_region_size = (phys_offset - 1) ^ (phys_offset); | 
 | 	/* Find the max power-of-two sized region that fits inside our bank */ | 
 | 	rounded_mem_size = (1 <<  __fls(specified_mem_size)) - 1; | 
 |  | 
 | 	/* The actual region size is the smaller of the two */ | 
 | 	aligned_region_size = aligned_region_size < rounded_mem_size | 
 | 				? aligned_region_size + 1 | 
 | 				: rounded_mem_size + 1; | 
 |  | 
 | 	if (aligned_region_size != specified_mem_size) { | 
 | 		pr_warn("Truncating memory from %pa to %pa (MPU region constraints)", | 
 | 				&specified_mem_size, &aligned_region_size); | 
 | 		memblock_remove(mem_start + aligned_region_size, | 
 | 				specified_mem_size - aligned_region_size); | 
 |  | 
 | 		mem_end = mem_start + aligned_region_size; | 
 | 	} | 
 |  | 
 | 	pr_debug("MPU Region from %pa size %pa (end %pa))\n", | 
 | 		&phys_offset, &aligned_region_size, &mem_end); | 
 |  | 
 | } | 
 |  | 
 | static int mpu_present(void) | 
 | { | 
 | 	return ((read_cpuid_ext(CPUID_EXT_MMFR0) & MMFR0_PMSA) == MMFR0_PMSAv7); | 
 | } | 
 |  | 
 | static int mpu_max_regions(void) | 
 | { | 
 | 	/* | 
 | 	 * We don't support a different number of I/D side regions so if we | 
 | 	 * have separate instruction and data memory maps then return | 
 | 	 * whichever side has a smaller number of supported regions. | 
 | 	 */ | 
 | 	u32 dregions, iregions, mpuir; | 
 | 	mpuir = read_cpuid(CPUID_MPUIR); | 
 |  | 
 | 	dregions = iregions = (mpuir & MPUIR_DREGION_SZMASK) >> MPUIR_DREGION; | 
 |  | 
 | 	/* Check for separate d-side and i-side memory maps */ | 
 | 	if (mpuir & MPUIR_nU) | 
 | 		iregions = (mpuir & MPUIR_IREGION_SZMASK) >> MPUIR_IREGION; | 
 |  | 
 | 	/* Use the smallest of the two maxima */ | 
 | 	return min(dregions, iregions); | 
 | } | 
 |  | 
 | static int mpu_iside_independent(void) | 
 | { | 
 | 	/* MPUIR.nU specifies whether there is *not* a unified memory map */ | 
 | 	return read_cpuid(CPUID_MPUIR) & MPUIR_nU; | 
 | } | 
 |  | 
 | static int mpu_min_region_order(void) | 
 | { | 
 | 	u32 drbar_result, irbar_result; | 
 | 	/* We've kept a region free for this probing */ | 
 | 	rgnr_write(MPU_PROBE_REGION); | 
 | 	isb(); | 
 | 	/* | 
 | 	 * As per ARM ARM, write 0xFFFFFFFC to DRBAR to find the minimum | 
 | 	 * region order | 
 | 	*/ | 
 | 	drbar_write(0xFFFFFFFC); | 
 | 	drbar_result = irbar_result = drbar_read(); | 
 | 	drbar_write(0x0); | 
 | 	/* If the MPU is non-unified, we use the larger of the two minima*/ | 
 | 	if (mpu_iside_independent()) { | 
 | 		irbar_write(0xFFFFFFFC); | 
 | 		irbar_result = irbar_read(); | 
 | 		irbar_write(0x0); | 
 | 	} | 
 | 	isb(); /* Ensure that MPU region operations have completed */ | 
 | 	/* Return whichever result is larger */ | 
 | 	return __ffs(max(drbar_result, irbar_result)); | 
 | } | 
 |  | 
 | static int mpu_setup_region(unsigned int number, phys_addr_t start, | 
 | 			unsigned int size_order, unsigned int properties) | 
 | { | 
 | 	u32 size_data; | 
 |  | 
 | 	/* We kept a region free for probing resolution of MPU regions*/ | 
 | 	if (number > mpu_max_regions() || number == MPU_PROBE_REGION) | 
 | 		return -ENOENT; | 
 |  | 
 | 	if (size_order > 32) | 
 | 		return -ENOMEM; | 
 |  | 
 | 	if (size_order < mpu_min_region_order()) | 
 | 		return -ENOMEM; | 
 |  | 
 | 	/* Writing N to bits 5:1 (RSR_SZ)  specifies region size 2^N+1 */ | 
 | 	size_data = ((size_order - 1) << MPU_RSR_SZ) | 1 << MPU_RSR_EN; | 
 |  | 
 | 	dsb(); /* Ensure all previous data accesses occur with old mappings */ | 
 | 	rgnr_write(number); | 
 | 	isb(); | 
 | 	drbar_write(start); | 
 | 	dracr_write(properties); | 
 | 	isb(); /* Propagate properties before enabling region */ | 
 | 	drsr_write(size_data); | 
 |  | 
 | 	/* Check for independent I-side registers */ | 
 | 	if (mpu_iside_independent()) { | 
 | 		irbar_write(start); | 
 | 		iracr_write(properties); | 
 | 		isb(); | 
 | 		irsr_write(size_data); | 
 | 	} | 
 | 	isb(); | 
 |  | 
 | 	/* Store region info (we treat i/d side the same, so only store d) */ | 
 | 	mpu_rgn_info.rgns[number].dracr = properties; | 
 | 	mpu_rgn_info.rgns[number].drbar = start; | 
 | 	mpu_rgn_info.rgns[number].drsr = size_data; | 
 | 	return 0; | 
 | } | 
 |  | 
 | /* | 
 | * Set up default MPU regions, doing nothing if there is no MPU | 
 | */ | 
 | void __init mpu_setup(void) | 
 | { | 
 | 	int region_err; | 
 | 	if (!mpu_present()) | 
 | 		return; | 
 |  | 
 | 	region_err = mpu_setup_region(MPU_RAM_REGION, PHYS_OFFSET, | 
 | 					ilog2(memblock.memory.regions[0].size), | 
 | 					MPU_AP_PL1RW_PL0RW | MPU_RGN_NORMAL); | 
 | 	if (region_err) { | 
 | 		panic("MPU region initialization failure! %d", region_err); | 
 | 	} else { | 
 | 		pr_info("Using ARMv7 PMSA Compliant MPU. " | 
 | 			 "Region independence: %s, Max regions: %d\n", | 
 | 			mpu_iside_independent() ? "Yes" : "No", | 
 | 			mpu_max_regions()); | 
 | 	} | 
 | } | 
 | #else | 
 | static void adjust_lowmem_bounds_mpu(void) {} | 
 | static void __init mpu_setup(void) {} | 
 | #endif /* CONFIG_ARM_MPU */ | 
 |  | 
 | void __init arm_mm_memblock_reserve(void) | 
 | { | 
 | #ifndef CONFIG_CPU_V7M | 
 | 	/* | 
 | 	 * Register the exception vector page. | 
 | 	 * some architectures which the DRAM is the exception vector to trap, | 
 | 	 * alloc_page breaks with error, although it is not NULL, but "0." | 
 | 	 */ | 
 | 	memblock_reserve(CONFIG_VECTORS_BASE, 2 * PAGE_SIZE); | 
 | #else /* ifndef CONFIG_CPU_V7M */ | 
 | 	/* | 
 | 	 * There is no dedicated vector page on V7-M. So nothing needs to be | 
 | 	 * reserved here. | 
 | 	 */ | 
 | #endif | 
 | } | 
 |  | 
 | void __init adjust_lowmem_bounds(void) | 
 | { | 
 | 	phys_addr_t end; | 
 | 	adjust_lowmem_bounds_mpu(); | 
 | 	end = memblock_end_of_DRAM(); | 
 | 	high_memory = __va(end - 1) + 1; | 
 | 	memblock_set_current_limit(end); | 
 | } | 
 |  | 
 | /* | 
 |  * paging_init() sets up the page tables, initialises the zone memory | 
 |  * maps, and sets up the zero page, bad page and bad page tables. | 
 |  */ | 
 | void __init paging_init(const struct machine_desc *mdesc) | 
 | { | 
 | 	early_trap_init((void *)CONFIG_VECTORS_BASE); | 
 | 	mpu_setup(); | 
 | 	bootmem_init(); | 
 | } | 
 |  | 
 | /* | 
 |  * We don't need to do anything here for nommu machines. | 
 |  */ | 
 | void setup_mm_for_reboot(void) | 
 | { | 
 | } | 
 |  | 
 | void flush_dcache_page(struct page *page) | 
 | { | 
 | 	__cpuc_flush_dcache_area(page_address(page), PAGE_SIZE); | 
 | } | 
 | EXPORT_SYMBOL(flush_dcache_page); | 
 |  | 
 | void flush_kernel_dcache_page(struct page *page) | 
 | { | 
 | 	__cpuc_flush_dcache_area(page_address(page), PAGE_SIZE); | 
 | } | 
 | EXPORT_SYMBOL(flush_kernel_dcache_page); | 
 |  | 
 | void copy_to_user_page(struct vm_area_struct *vma, struct page *page, | 
 | 		       unsigned long uaddr, void *dst, const void *src, | 
 | 		       unsigned long len) | 
 | { | 
 | 	memcpy(dst, src, len); | 
 | 	if (vma->vm_flags & VM_EXEC) | 
 | 		__cpuc_coherent_user_range(uaddr, uaddr + len); | 
 | } | 
 |  | 
 | void __iomem *__arm_ioremap_pfn(unsigned long pfn, unsigned long offset, | 
 | 				size_t size, unsigned int mtype) | 
 | { | 
 | 	if (pfn >= (0x100000000ULL >> PAGE_SHIFT)) | 
 | 		return NULL; | 
 | 	return (void __iomem *) (offset + (pfn << PAGE_SHIFT)); | 
 | } | 
 | EXPORT_SYMBOL(__arm_ioremap_pfn); | 
 |  | 
 | void __iomem *__arm_ioremap_caller(phys_addr_t phys_addr, size_t size, | 
 | 				   unsigned int mtype, void *caller) | 
 | { | 
 | 	return (void __iomem *)phys_addr; | 
 | } | 
 |  | 
 | void __iomem * (*arch_ioremap_caller)(phys_addr_t, size_t, unsigned int, void *); | 
 |  | 
 | void __iomem *ioremap(resource_size_t res_cookie, size_t size) | 
 | { | 
 | 	return __arm_ioremap_caller(res_cookie, size, MT_DEVICE, | 
 | 				    __builtin_return_address(0)); | 
 | } | 
 | EXPORT_SYMBOL(ioremap); | 
 |  | 
 | void __iomem *ioremap_cache(resource_size_t res_cookie, size_t size) | 
 | 	__alias(ioremap_cached); | 
 |  | 
 | void __iomem *ioremap_cached(resource_size_t res_cookie, size_t size) | 
 | { | 
 | 	return __arm_ioremap_caller(res_cookie, size, MT_DEVICE_CACHED, | 
 | 				    __builtin_return_address(0)); | 
 | } | 
 | EXPORT_SYMBOL(ioremap_cache); | 
 | EXPORT_SYMBOL(ioremap_cached); | 
 |  | 
 | void __iomem *ioremap_wc(resource_size_t res_cookie, size_t size) | 
 | { | 
 | 	return __arm_ioremap_caller(res_cookie, size, MT_DEVICE_WC, | 
 | 				    __builtin_return_address(0)); | 
 | } | 
 | EXPORT_SYMBOL(ioremap_wc); | 
 |  | 
 | void *arch_memremap_wb(phys_addr_t phys_addr, size_t size) | 
 | { | 
 | 	return (void *)phys_addr; | 
 | } | 
 |  | 
 | void __iounmap(volatile void __iomem *addr) | 
 | { | 
 | } | 
 | EXPORT_SYMBOL(__iounmap); | 
 |  | 
 | void (*arch_iounmap)(volatile void __iomem *); | 
 |  | 
 | void iounmap(volatile void __iomem *addr) | 
 | { | 
 | } | 
 | EXPORT_SYMBOL(iounmap); |