| /* | 
 |  * Copyright (C) 2001 Jens Axboe <axboe@kernel.dk> | 
 |  * | 
 |  * This program is free software; you can redistribute it and/or modify | 
 |  * it under the terms of the GNU General Public License version 2 as | 
 |  * published by the Free Software Foundation. | 
 |  * | 
 |  * This program is distributed in the hope that it will be useful, | 
 |  * but WITHOUT ANY WARRANTY; without even the implied warranty of | 
 |  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the | 
 |  * GNU General Public License for more details. | 
 |  * | 
 |  * You should have received a copy of the GNU General Public Licens | 
 |  * along with this program; if not, write to the Free Software | 
 |  * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111- | 
 |  * | 
 |  */ | 
 | #include <linux/mm.h> | 
 | #include <linux/swap.h> | 
 | #include <linux/bio.h> | 
 | #include <linux/blkdev.h> | 
 | #include <linux/uio.h> | 
 | #include <linux/iocontext.h> | 
 | #include <linux/slab.h> | 
 | #include <linux/init.h> | 
 | #include <linux/kernel.h> | 
 | #include <linux/export.h> | 
 | #include <linux/mempool.h> | 
 | #include <linux/workqueue.h> | 
 | #include <linux/cgroup.h> | 
 |  | 
 | #include <trace/events/block.h> | 
 |  | 
 | /* | 
 |  * Test patch to inline a certain number of bi_io_vec's inside the bio | 
 |  * itself, to shrink a bio data allocation from two mempool calls to one | 
 |  */ | 
 | #define BIO_INLINE_VECS		4 | 
 |  | 
 | /* | 
 |  * if you change this list, also change bvec_alloc or things will | 
 |  * break badly! cannot be bigger than what you can fit into an | 
 |  * unsigned short | 
 |  */ | 
 | #define BV(x) { .nr_vecs = x, .name = "biovec-"__stringify(x) } | 
 | static struct biovec_slab bvec_slabs[BVEC_POOL_NR] __read_mostly = { | 
 | 	BV(1), BV(4), BV(16), BV(64), BV(128), BV(BIO_MAX_PAGES), | 
 | }; | 
 | #undef BV | 
 |  | 
 | /* | 
 |  * fs_bio_set is the bio_set containing bio and iovec memory pools used by | 
 |  * IO code that does not need private memory pools. | 
 |  */ | 
 | struct bio_set *fs_bio_set; | 
 | EXPORT_SYMBOL(fs_bio_set); | 
 |  | 
 | /* | 
 |  * Our slab pool management | 
 |  */ | 
 | struct bio_slab { | 
 | 	struct kmem_cache *slab; | 
 | 	unsigned int slab_ref; | 
 | 	unsigned int slab_size; | 
 | 	char name[8]; | 
 | }; | 
 | static DEFINE_MUTEX(bio_slab_lock); | 
 | static struct bio_slab *bio_slabs; | 
 | static unsigned int bio_slab_nr, bio_slab_max; | 
 |  | 
 | static struct kmem_cache *bio_find_or_create_slab(unsigned int extra_size) | 
 | { | 
 | 	unsigned int sz = sizeof(struct bio) + extra_size; | 
 | 	struct kmem_cache *slab = NULL; | 
 | 	struct bio_slab *bslab, *new_bio_slabs; | 
 | 	unsigned int new_bio_slab_max; | 
 | 	unsigned int i, entry = -1; | 
 |  | 
 | 	mutex_lock(&bio_slab_lock); | 
 |  | 
 | 	i = 0; | 
 | 	while (i < bio_slab_nr) { | 
 | 		bslab = &bio_slabs[i]; | 
 |  | 
 | 		if (!bslab->slab && entry == -1) | 
 | 			entry = i; | 
 | 		else if (bslab->slab_size == sz) { | 
 | 			slab = bslab->slab; | 
 | 			bslab->slab_ref++; | 
 | 			break; | 
 | 		} | 
 | 		i++; | 
 | 	} | 
 |  | 
 | 	if (slab) | 
 | 		goto out_unlock; | 
 |  | 
 | 	if (bio_slab_nr == bio_slab_max && entry == -1) { | 
 | 		new_bio_slab_max = bio_slab_max << 1; | 
 | 		new_bio_slabs = krealloc(bio_slabs, | 
 | 					 new_bio_slab_max * sizeof(struct bio_slab), | 
 | 					 GFP_KERNEL); | 
 | 		if (!new_bio_slabs) | 
 | 			goto out_unlock; | 
 | 		bio_slab_max = new_bio_slab_max; | 
 | 		bio_slabs = new_bio_slabs; | 
 | 	} | 
 | 	if (entry == -1) | 
 | 		entry = bio_slab_nr++; | 
 |  | 
 | 	bslab = &bio_slabs[entry]; | 
 |  | 
 | 	snprintf(bslab->name, sizeof(bslab->name), "bio-%d", entry); | 
 | 	slab = kmem_cache_create(bslab->name, sz, ARCH_KMALLOC_MINALIGN, | 
 | 				 SLAB_HWCACHE_ALIGN, NULL); | 
 | 	if (!slab) | 
 | 		goto out_unlock; | 
 |  | 
 | 	bslab->slab = slab; | 
 | 	bslab->slab_ref = 1; | 
 | 	bslab->slab_size = sz; | 
 | out_unlock: | 
 | 	mutex_unlock(&bio_slab_lock); | 
 | 	return slab; | 
 | } | 
 |  | 
 | static void bio_put_slab(struct bio_set *bs) | 
 | { | 
 | 	struct bio_slab *bslab = NULL; | 
 | 	unsigned int i; | 
 |  | 
 | 	mutex_lock(&bio_slab_lock); | 
 |  | 
 | 	for (i = 0; i < bio_slab_nr; i++) { | 
 | 		if (bs->bio_slab == bio_slabs[i].slab) { | 
 | 			bslab = &bio_slabs[i]; | 
 | 			break; | 
 | 		} | 
 | 	} | 
 |  | 
 | 	if (WARN(!bslab, KERN_ERR "bio: unable to find slab!\n")) | 
 | 		goto out; | 
 |  | 
 | 	WARN_ON(!bslab->slab_ref); | 
 |  | 
 | 	if (--bslab->slab_ref) | 
 | 		goto out; | 
 |  | 
 | 	kmem_cache_destroy(bslab->slab); | 
 | 	bslab->slab = NULL; | 
 |  | 
 | out: | 
 | 	mutex_unlock(&bio_slab_lock); | 
 | } | 
 |  | 
 | unsigned int bvec_nr_vecs(unsigned short idx) | 
 | { | 
 | 	return bvec_slabs[idx].nr_vecs; | 
 | } | 
 |  | 
 | void bvec_free(mempool_t *pool, struct bio_vec *bv, unsigned int idx) | 
 | { | 
 | 	if (!idx) | 
 | 		return; | 
 | 	idx--; | 
 |  | 
 | 	BIO_BUG_ON(idx >= BVEC_POOL_NR); | 
 |  | 
 | 	if (idx == BVEC_POOL_MAX) { | 
 | 		mempool_free(bv, pool); | 
 | 	} else { | 
 | 		struct biovec_slab *bvs = bvec_slabs + idx; | 
 |  | 
 | 		kmem_cache_free(bvs->slab, bv); | 
 | 	} | 
 | } | 
 |  | 
 | struct bio_vec *bvec_alloc(gfp_t gfp_mask, int nr, unsigned long *idx, | 
 | 			   mempool_t *pool) | 
 | { | 
 | 	struct bio_vec *bvl; | 
 |  | 
 | 	/* | 
 | 	 * see comment near bvec_array define! | 
 | 	 */ | 
 | 	switch (nr) { | 
 | 	case 1: | 
 | 		*idx = 0; | 
 | 		break; | 
 | 	case 2 ... 4: | 
 | 		*idx = 1; | 
 | 		break; | 
 | 	case 5 ... 16: | 
 | 		*idx = 2; | 
 | 		break; | 
 | 	case 17 ... 64: | 
 | 		*idx = 3; | 
 | 		break; | 
 | 	case 65 ... 128: | 
 | 		*idx = 4; | 
 | 		break; | 
 | 	case 129 ... BIO_MAX_PAGES: | 
 | 		*idx = 5; | 
 | 		break; | 
 | 	default: | 
 | 		return NULL; | 
 | 	} | 
 |  | 
 | 	/* | 
 | 	 * idx now points to the pool we want to allocate from. only the | 
 | 	 * 1-vec entry pool is mempool backed. | 
 | 	 */ | 
 | 	if (*idx == BVEC_POOL_MAX) { | 
 | fallback: | 
 | 		bvl = mempool_alloc(pool, gfp_mask); | 
 | 	} else { | 
 | 		struct biovec_slab *bvs = bvec_slabs + *idx; | 
 | 		gfp_t __gfp_mask = gfp_mask & ~(__GFP_DIRECT_RECLAIM | __GFP_IO); | 
 |  | 
 | 		/* | 
 | 		 * Make this allocation restricted and don't dump info on | 
 | 		 * allocation failures, since we'll fallback to the mempool | 
 | 		 * in case of failure. | 
 | 		 */ | 
 | 		__gfp_mask |= __GFP_NOMEMALLOC | __GFP_NORETRY | __GFP_NOWARN; | 
 |  | 
 | 		/* | 
 | 		 * Try a slab allocation. If this fails and __GFP_DIRECT_RECLAIM | 
 | 		 * is set, retry with the 1-entry mempool | 
 | 		 */ | 
 | 		bvl = kmem_cache_alloc(bvs->slab, __gfp_mask); | 
 | 		if (unlikely(!bvl && (gfp_mask & __GFP_DIRECT_RECLAIM))) { | 
 | 			*idx = BVEC_POOL_MAX; | 
 | 			goto fallback; | 
 | 		} | 
 | 	} | 
 |  | 
 | 	(*idx)++; | 
 | 	return bvl; | 
 | } | 
 |  | 
 | static void __bio_free(struct bio *bio) | 
 | { | 
 | 	bio_disassociate_task(bio); | 
 |  | 
 | 	if (bio_integrity(bio)) | 
 | 		bio_integrity_free(bio); | 
 | } | 
 |  | 
 | static void bio_free(struct bio *bio) | 
 | { | 
 | 	struct bio_set *bs = bio->bi_pool; | 
 | 	void *p; | 
 |  | 
 | 	__bio_free(bio); | 
 |  | 
 | 	if (bs) { | 
 | 		bvec_free(bs->bvec_pool, bio->bi_io_vec, BVEC_POOL_IDX(bio)); | 
 |  | 
 | 		/* | 
 | 		 * If we have front padding, adjust the bio pointer before freeing | 
 | 		 */ | 
 | 		p = bio; | 
 | 		p -= bs->front_pad; | 
 |  | 
 | 		mempool_free(p, bs->bio_pool); | 
 | 	} else { | 
 | 		/* Bio was allocated by bio_kmalloc() */ | 
 | 		kfree(bio); | 
 | 	} | 
 | } | 
 |  | 
 | void bio_init(struct bio *bio) | 
 | { | 
 | 	memset(bio, 0, sizeof(*bio)); | 
 | 	atomic_set(&bio->__bi_remaining, 1); | 
 | 	atomic_set(&bio->__bi_cnt, 1); | 
 | } | 
 | EXPORT_SYMBOL(bio_init); | 
 |  | 
 | /** | 
 |  * bio_reset - reinitialize a bio | 
 |  * @bio:	bio to reset | 
 |  * | 
 |  * Description: | 
 |  *   After calling bio_reset(), @bio will be in the same state as a freshly | 
 |  *   allocated bio returned bio bio_alloc_bioset() - the only fields that are | 
 |  *   preserved are the ones that are initialized by bio_alloc_bioset(). See | 
 |  *   comment in struct bio. | 
 |  */ | 
 | void bio_reset(struct bio *bio) | 
 | { | 
 | 	unsigned long flags = bio->bi_flags & (~0UL << BIO_RESET_BITS); | 
 |  | 
 | 	__bio_free(bio); | 
 |  | 
 | 	memset(bio, 0, BIO_RESET_BYTES); | 
 | 	bio->bi_flags = flags; | 
 | 	atomic_set(&bio->__bi_remaining, 1); | 
 | } | 
 | EXPORT_SYMBOL(bio_reset); | 
 |  | 
 | static struct bio *__bio_chain_endio(struct bio *bio) | 
 | { | 
 | 	struct bio *parent = bio->bi_private; | 
 |  | 
 | 	if (!parent->bi_error) | 
 | 		parent->bi_error = bio->bi_error; | 
 | 	bio_put(bio); | 
 | 	return parent; | 
 | } | 
 |  | 
 | static void bio_chain_endio(struct bio *bio) | 
 | { | 
 | 	bio_endio(__bio_chain_endio(bio)); | 
 | } | 
 |  | 
 | /** | 
 |  * bio_chain - chain bio completions | 
 |  * @bio: the target bio | 
 |  * @parent: the @bio's parent bio | 
 |  * | 
 |  * The caller won't have a bi_end_io called when @bio completes - instead, | 
 |  * @parent's bi_end_io won't be called until both @parent and @bio have | 
 |  * completed; the chained bio will also be freed when it completes. | 
 |  * | 
 |  * The caller must not set bi_private or bi_end_io in @bio. | 
 |  */ | 
 | void bio_chain(struct bio *bio, struct bio *parent) | 
 | { | 
 | 	BUG_ON(bio->bi_private || bio->bi_end_io); | 
 |  | 
 | 	bio->bi_private = parent; | 
 | 	bio->bi_end_io	= bio_chain_endio; | 
 | 	bio_inc_remaining(parent); | 
 | } | 
 | EXPORT_SYMBOL(bio_chain); | 
 |  | 
 | static void bio_alloc_rescue(struct work_struct *work) | 
 | { | 
 | 	struct bio_set *bs = container_of(work, struct bio_set, rescue_work); | 
 | 	struct bio *bio; | 
 |  | 
 | 	while (1) { | 
 | 		spin_lock(&bs->rescue_lock); | 
 | 		bio = bio_list_pop(&bs->rescue_list); | 
 | 		spin_unlock(&bs->rescue_lock); | 
 |  | 
 | 		if (!bio) | 
 | 			break; | 
 |  | 
 | 		generic_make_request(bio); | 
 | 	} | 
 | } | 
 |  | 
 | static void punt_bios_to_rescuer(struct bio_set *bs) | 
 | { | 
 | 	struct bio_list punt, nopunt; | 
 | 	struct bio *bio; | 
 |  | 
 | 	/* | 
 | 	 * In order to guarantee forward progress we must punt only bios that | 
 | 	 * were allocated from this bio_set; otherwise, if there was a bio on | 
 | 	 * there for a stacking driver higher up in the stack, processing it | 
 | 	 * could require allocating bios from this bio_set, and doing that from | 
 | 	 * our own rescuer would be bad. | 
 | 	 * | 
 | 	 * Since bio lists are singly linked, pop them all instead of trying to | 
 | 	 * remove from the middle of the list: | 
 | 	 */ | 
 |  | 
 | 	bio_list_init(&punt); | 
 | 	bio_list_init(&nopunt); | 
 |  | 
 | 	while ((bio = bio_list_pop(¤t->bio_list[0]))) | 
 | 		bio_list_add(bio->bi_pool == bs ? &punt : &nopunt, bio); | 
 | 	current->bio_list[0] = nopunt; | 
 |  | 
 | 	bio_list_init(&nopunt); | 
 | 	while ((bio = bio_list_pop(¤t->bio_list[1]))) | 
 | 		bio_list_add(bio->bi_pool == bs ? &punt : &nopunt, bio); | 
 | 	current->bio_list[1] = nopunt; | 
 |  | 
 | 	spin_lock(&bs->rescue_lock); | 
 | 	bio_list_merge(&bs->rescue_list, &punt); | 
 | 	spin_unlock(&bs->rescue_lock); | 
 |  | 
 | 	queue_work(bs->rescue_workqueue, &bs->rescue_work); | 
 | } | 
 |  | 
 | /** | 
 |  * bio_alloc_bioset - allocate a bio for I/O | 
 |  * @gfp_mask:   the GFP_ mask given to the slab allocator | 
 |  * @nr_iovecs:	number of iovecs to pre-allocate | 
 |  * @bs:		the bio_set to allocate from. | 
 |  * | 
 |  * Description: | 
 |  *   If @bs is NULL, uses kmalloc() to allocate the bio; else the allocation is | 
 |  *   backed by the @bs's mempool. | 
 |  * | 
 |  *   When @bs is not NULL, if %__GFP_DIRECT_RECLAIM is set then bio_alloc will | 
 |  *   always be able to allocate a bio. This is due to the mempool guarantees. | 
 |  *   To make this work, callers must never allocate more than 1 bio at a time | 
 |  *   from this pool. Callers that need to allocate more than 1 bio must always | 
 |  *   submit the previously allocated bio for IO before attempting to allocate | 
 |  *   a new one. Failure to do so can cause deadlocks under memory pressure. | 
 |  * | 
 |  *   Note that when running under generic_make_request() (i.e. any block | 
 |  *   driver), bios are not submitted until after you return - see the code in | 
 |  *   generic_make_request() that converts recursion into iteration, to prevent | 
 |  *   stack overflows. | 
 |  * | 
 |  *   This would normally mean allocating multiple bios under | 
 |  *   generic_make_request() would be susceptible to deadlocks, but we have | 
 |  *   deadlock avoidance code that resubmits any blocked bios from a rescuer | 
 |  *   thread. | 
 |  * | 
 |  *   However, we do not guarantee forward progress for allocations from other | 
 |  *   mempools. Doing multiple allocations from the same mempool under | 
 |  *   generic_make_request() should be avoided - instead, use bio_set's front_pad | 
 |  *   for per bio allocations. | 
 |  * | 
 |  *   RETURNS: | 
 |  *   Pointer to new bio on success, NULL on failure. | 
 |  */ | 
 | struct bio *bio_alloc_bioset(gfp_t gfp_mask, int nr_iovecs, struct bio_set *bs) | 
 | { | 
 | 	gfp_t saved_gfp = gfp_mask; | 
 | 	unsigned front_pad; | 
 | 	unsigned inline_vecs; | 
 | 	struct bio_vec *bvl = NULL; | 
 | 	struct bio *bio; | 
 | 	void *p; | 
 |  | 
 | 	if (!bs) { | 
 | 		if (nr_iovecs > UIO_MAXIOV) | 
 | 			return NULL; | 
 |  | 
 | 		p = kmalloc(sizeof(struct bio) + | 
 | 			    nr_iovecs * sizeof(struct bio_vec), | 
 | 			    gfp_mask); | 
 | 		front_pad = 0; | 
 | 		inline_vecs = nr_iovecs; | 
 | 	} else { | 
 | 		/* should not use nobvec bioset for nr_iovecs > 0 */ | 
 | 		if (WARN_ON_ONCE(!bs->bvec_pool && nr_iovecs > 0)) | 
 | 			return NULL; | 
 | 		/* | 
 | 		 * generic_make_request() converts recursion to iteration; this | 
 | 		 * means if we're running beneath it, any bios we allocate and | 
 | 		 * submit will not be submitted (and thus freed) until after we | 
 | 		 * return. | 
 | 		 * | 
 | 		 * This exposes us to a potential deadlock if we allocate | 
 | 		 * multiple bios from the same bio_set() while running | 
 | 		 * underneath generic_make_request(). If we were to allocate | 
 | 		 * multiple bios (say a stacking block driver that was splitting | 
 | 		 * bios), we would deadlock if we exhausted the mempool's | 
 | 		 * reserve. | 
 | 		 * | 
 | 		 * We solve this, and guarantee forward progress, with a rescuer | 
 | 		 * workqueue per bio_set. If we go to allocate and there are | 
 | 		 * bios on current->bio_list, we first try the allocation | 
 | 		 * without __GFP_DIRECT_RECLAIM; if that fails, we punt those | 
 | 		 * bios we would be blocking to the rescuer workqueue before | 
 | 		 * we retry with the original gfp_flags. | 
 | 		 */ | 
 |  | 
 | 		if (current->bio_list && | 
 | 		    (!bio_list_empty(¤t->bio_list[0]) || | 
 | 		     !bio_list_empty(¤t->bio_list[1]))) | 
 | 			gfp_mask &= ~__GFP_DIRECT_RECLAIM; | 
 |  | 
 | 		p = mempool_alloc(bs->bio_pool, gfp_mask); | 
 | 		if (!p && gfp_mask != saved_gfp) { | 
 | 			punt_bios_to_rescuer(bs); | 
 | 			gfp_mask = saved_gfp; | 
 | 			p = mempool_alloc(bs->bio_pool, gfp_mask); | 
 | 		} | 
 |  | 
 | 		front_pad = bs->front_pad; | 
 | 		inline_vecs = BIO_INLINE_VECS; | 
 | 	} | 
 |  | 
 | 	if (unlikely(!p)) | 
 | 		return NULL; | 
 |  | 
 | 	bio = p + front_pad; | 
 | 	bio_init(bio); | 
 |  | 
 | 	if (nr_iovecs > inline_vecs) { | 
 | 		unsigned long idx = 0; | 
 |  | 
 | 		bvl = bvec_alloc(gfp_mask, nr_iovecs, &idx, bs->bvec_pool); | 
 | 		if (!bvl && gfp_mask != saved_gfp) { | 
 | 			punt_bios_to_rescuer(bs); | 
 | 			gfp_mask = saved_gfp; | 
 | 			bvl = bvec_alloc(gfp_mask, nr_iovecs, &idx, bs->bvec_pool); | 
 | 		} | 
 |  | 
 | 		if (unlikely(!bvl)) | 
 | 			goto err_free; | 
 |  | 
 | 		bio->bi_flags |= idx << BVEC_POOL_OFFSET; | 
 | 	} else if (nr_iovecs) { | 
 | 		bvl = bio->bi_inline_vecs; | 
 | 	} | 
 |  | 
 | 	bio->bi_pool = bs; | 
 | 	bio->bi_max_vecs = nr_iovecs; | 
 | 	bio->bi_io_vec = bvl; | 
 | 	return bio; | 
 |  | 
 | err_free: | 
 | 	mempool_free(p, bs->bio_pool); | 
 | 	return NULL; | 
 | } | 
 | EXPORT_SYMBOL(bio_alloc_bioset); | 
 |  | 
 | void zero_fill_bio(struct bio *bio) | 
 | { | 
 | 	unsigned long flags; | 
 | 	struct bio_vec bv; | 
 | 	struct bvec_iter iter; | 
 |  | 
 | 	bio_for_each_segment(bv, bio, iter) { | 
 | 		char *data = bvec_kmap_irq(&bv, &flags); | 
 | 		memset(data, 0, bv.bv_len); | 
 | 		flush_dcache_page(bv.bv_page); | 
 | 		bvec_kunmap_irq(data, &flags); | 
 | 	} | 
 | } | 
 | EXPORT_SYMBOL(zero_fill_bio); | 
 |  | 
 | /** | 
 |  * bio_put - release a reference to a bio | 
 |  * @bio:   bio to release reference to | 
 |  * | 
 |  * Description: | 
 |  *   Put a reference to a &struct bio, either one you have gotten with | 
 |  *   bio_alloc, bio_get or bio_clone. The last put of a bio will free it. | 
 |  **/ | 
 | void bio_put(struct bio *bio) | 
 | { | 
 | 	if (!bio_flagged(bio, BIO_REFFED)) | 
 | 		bio_free(bio); | 
 | 	else { | 
 | 		BIO_BUG_ON(!atomic_read(&bio->__bi_cnt)); | 
 |  | 
 | 		/* | 
 | 		 * last put frees it | 
 | 		 */ | 
 | 		if (atomic_dec_and_test(&bio->__bi_cnt)) | 
 | 			bio_free(bio); | 
 | 	} | 
 | } | 
 | EXPORT_SYMBOL(bio_put); | 
 |  | 
 | inline int bio_phys_segments(struct request_queue *q, struct bio *bio) | 
 | { | 
 | 	if (unlikely(!bio_flagged(bio, BIO_SEG_VALID))) | 
 | 		blk_recount_segments(q, bio); | 
 |  | 
 | 	return bio->bi_phys_segments; | 
 | } | 
 | EXPORT_SYMBOL(bio_phys_segments); | 
 |  | 
 | /** | 
 |  * 	__bio_clone_fast - clone a bio that shares the original bio's biovec | 
 |  * 	@bio: destination bio | 
 |  * 	@bio_src: bio to clone | 
 |  * | 
 |  *	Clone a &bio. Caller will own the returned bio, but not | 
 |  *	the actual data it points to. Reference count of returned | 
 |  * 	bio will be one. | 
 |  * | 
 |  * 	Caller must ensure that @bio_src is not freed before @bio. | 
 |  */ | 
 | void __bio_clone_fast(struct bio *bio, struct bio *bio_src) | 
 | { | 
 | 	BUG_ON(bio->bi_pool && BVEC_POOL_IDX(bio)); | 
 |  | 
 | 	/* | 
 | 	 * most users will be overriding ->bi_bdev with a new target, | 
 | 	 * so we don't set nor calculate new physical/hw segment counts here | 
 | 	 */ | 
 | 	bio->bi_bdev = bio_src->bi_bdev; | 
 | 	bio_set_flag(bio, BIO_CLONED); | 
 | 	bio->bi_opf = bio_src->bi_opf; | 
 | 	bio->bi_iter = bio_src->bi_iter; | 
 | 	bio->bi_io_vec = bio_src->bi_io_vec; | 
 |  | 
 | 	bio_clone_blkcg_association(bio, bio_src); | 
 | } | 
 | EXPORT_SYMBOL(__bio_clone_fast); | 
 |  | 
 | /** | 
 |  *	bio_clone_fast - clone a bio that shares the original bio's biovec | 
 |  *	@bio: bio to clone | 
 |  *	@gfp_mask: allocation priority | 
 |  *	@bs: bio_set to allocate from | 
 |  * | 
 |  * 	Like __bio_clone_fast, only also allocates the returned bio | 
 |  */ | 
 | struct bio *bio_clone_fast(struct bio *bio, gfp_t gfp_mask, struct bio_set *bs) | 
 | { | 
 | 	struct bio *b; | 
 |  | 
 | 	b = bio_alloc_bioset(gfp_mask, 0, bs); | 
 | 	if (!b) | 
 | 		return NULL; | 
 |  | 
 | 	__bio_clone_fast(b, bio); | 
 |  | 
 | 	if (bio_integrity(bio)) { | 
 | 		int ret; | 
 |  | 
 | 		ret = bio_integrity_clone(b, bio, gfp_mask); | 
 |  | 
 | 		if (ret < 0) { | 
 | 			bio_put(b); | 
 | 			return NULL; | 
 | 		} | 
 | 	} | 
 |  | 
 | 	return b; | 
 | } | 
 | EXPORT_SYMBOL(bio_clone_fast); | 
 |  | 
 | /** | 
 |  * 	bio_clone_bioset - clone a bio | 
 |  * 	@bio_src: bio to clone | 
 |  *	@gfp_mask: allocation priority | 
 |  *	@bs: bio_set to allocate from | 
 |  * | 
 |  *	Clone bio. Caller will own the returned bio, but not the actual data it | 
 |  *	points to. Reference count of returned bio will be one. | 
 |  */ | 
 | struct bio *bio_clone_bioset(struct bio *bio_src, gfp_t gfp_mask, | 
 | 			     struct bio_set *bs) | 
 | { | 
 | 	struct bvec_iter iter; | 
 | 	struct bio_vec bv; | 
 | 	struct bio *bio; | 
 |  | 
 | 	/* | 
 | 	 * Pre immutable biovecs, __bio_clone() used to just do a memcpy from | 
 | 	 * bio_src->bi_io_vec to bio->bi_io_vec. | 
 | 	 * | 
 | 	 * We can't do that anymore, because: | 
 | 	 * | 
 | 	 *  - The point of cloning the biovec is to produce a bio with a biovec | 
 | 	 *    the caller can modify: bi_idx and bi_bvec_done should be 0. | 
 | 	 * | 
 | 	 *  - The original bio could've had more than BIO_MAX_PAGES biovecs; if | 
 | 	 *    we tried to clone the whole thing bio_alloc_bioset() would fail. | 
 | 	 *    But the clone should succeed as long as the number of biovecs we | 
 | 	 *    actually need to allocate is fewer than BIO_MAX_PAGES. | 
 | 	 * | 
 | 	 *  - Lastly, bi_vcnt should not be looked at or relied upon by code | 
 | 	 *    that does not own the bio - reason being drivers don't use it for | 
 | 	 *    iterating over the biovec anymore, so expecting it to be kept up | 
 | 	 *    to date (i.e. for clones that share the parent biovec) is just | 
 | 	 *    asking for trouble and would force extra work on | 
 | 	 *    __bio_clone_fast() anyways. | 
 | 	 */ | 
 |  | 
 | 	bio = bio_alloc_bioset(gfp_mask, bio_segments(bio_src), bs); | 
 | 	if (!bio) | 
 | 		return NULL; | 
 | 	bio->bi_bdev		= bio_src->bi_bdev; | 
 | 	bio->bi_opf		= bio_src->bi_opf; | 
 | 	bio->bi_iter.bi_sector	= bio_src->bi_iter.bi_sector; | 
 | 	bio->bi_iter.bi_size	= bio_src->bi_iter.bi_size; | 
 |  | 
 | 	switch (bio_op(bio)) { | 
 | 	case REQ_OP_DISCARD: | 
 | 	case REQ_OP_SECURE_ERASE: | 
 | 		break; | 
 | 	case REQ_OP_WRITE_SAME: | 
 | 		bio->bi_io_vec[bio->bi_vcnt++] = bio_src->bi_io_vec[0]; | 
 | 		break; | 
 | 	default: | 
 | 		bio_for_each_segment(bv, bio_src, iter) | 
 | 			bio->bi_io_vec[bio->bi_vcnt++] = bv; | 
 | 		break; | 
 | 	} | 
 |  | 
 | 	if (bio_integrity(bio_src)) { | 
 | 		int ret; | 
 |  | 
 | 		ret = bio_integrity_clone(bio, bio_src, gfp_mask); | 
 | 		if (ret < 0) { | 
 | 			bio_put(bio); | 
 | 			return NULL; | 
 | 		} | 
 | 	} | 
 |  | 
 | 	bio_clone_blkcg_association(bio, bio_src); | 
 |  | 
 | 	return bio; | 
 | } | 
 | EXPORT_SYMBOL(bio_clone_bioset); | 
 |  | 
 | /** | 
 |  *	bio_add_pc_page	-	attempt to add page to bio | 
 |  *	@q: the target queue | 
 |  *	@bio: destination bio | 
 |  *	@page: page to add | 
 |  *	@len: vec entry length | 
 |  *	@offset: vec entry offset | 
 |  * | 
 |  *	Attempt to add a page to the bio_vec maplist. This can fail for a | 
 |  *	number of reasons, such as the bio being full or target block device | 
 |  *	limitations. The target block device must allow bio's up to PAGE_SIZE, | 
 |  *	so it is always possible to add a single page to an empty bio. | 
 |  * | 
 |  *	This should only be used by REQ_PC bios. | 
 |  */ | 
 | int bio_add_pc_page(struct request_queue *q, struct bio *bio, struct page | 
 | 		    *page, unsigned int len, unsigned int offset) | 
 | { | 
 | 	int retried_segments = 0; | 
 | 	struct bio_vec *bvec; | 
 |  | 
 | 	/* | 
 | 	 * cloned bio must not modify vec list | 
 | 	 */ | 
 | 	if (unlikely(bio_flagged(bio, BIO_CLONED))) | 
 | 		return 0; | 
 |  | 
 | 	if (((bio->bi_iter.bi_size + len) >> 9) > queue_max_hw_sectors(q)) | 
 | 		return 0; | 
 |  | 
 | 	/* | 
 | 	 * For filesystems with a blocksize smaller than the pagesize | 
 | 	 * we will often be called with the same page as last time and | 
 | 	 * a consecutive offset.  Optimize this special case. | 
 | 	 */ | 
 | 	if (bio->bi_vcnt > 0) { | 
 | 		struct bio_vec *prev = &bio->bi_io_vec[bio->bi_vcnt - 1]; | 
 |  | 
 | 		if (page == prev->bv_page && | 
 | 		    offset == prev->bv_offset + prev->bv_len) { | 
 | 			prev->bv_len += len; | 
 | 			bio->bi_iter.bi_size += len; | 
 | 			goto done; | 
 | 		} | 
 |  | 
 | 		/* | 
 | 		 * If the queue doesn't support SG gaps and adding this | 
 | 		 * offset would create a gap, disallow it. | 
 | 		 */ | 
 | 		if (bvec_gap_to_prev(q, prev, offset)) | 
 | 			return 0; | 
 | 	} | 
 |  | 
 | 	if (bio->bi_vcnt >= bio->bi_max_vecs) | 
 | 		return 0; | 
 |  | 
 | 	/* | 
 | 	 * setup the new entry, we might clear it again later if we | 
 | 	 * cannot add the page | 
 | 	 */ | 
 | 	bvec = &bio->bi_io_vec[bio->bi_vcnt]; | 
 | 	bvec->bv_page = page; | 
 | 	bvec->bv_len = len; | 
 | 	bvec->bv_offset = offset; | 
 | 	bio->bi_vcnt++; | 
 | 	bio->bi_phys_segments++; | 
 | 	bio->bi_iter.bi_size += len; | 
 |  | 
 | 	/* | 
 | 	 * Perform a recount if the number of segments is greater | 
 | 	 * than queue_max_segments(q). | 
 | 	 */ | 
 |  | 
 | 	while (bio->bi_phys_segments > queue_max_segments(q)) { | 
 |  | 
 | 		if (retried_segments) | 
 | 			goto failed; | 
 |  | 
 | 		retried_segments = 1; | 
 | 		blk_recount_segments(q, bio); | 
 | 	} | 
 |  | 
 | 	/* If we may be able to merge these biovecs, force a recount */ | 
 | 	if (bio->bi_vcnt > 1 && (BIOVEC_PHYS_MERGEABLE(bvec-1, bvec))) | 
 | 		bio_clear_flag(bio, BIO_SEG_VALID); | 
 |  | 
 |  done: | 
 | 	return len; | 
 |  | 
 |  failed: | 
 | 	bvec->bv_page = NULL; | 
 | 	bvec->bv_len = 0; | 
 | 	bvec->bv_offset = 0; | 
 | 	bio->bi_vcnt--; | 
 | 	bio->bi_iter.bi_size -= len; | 
 | 	blk_recount_segments(q, bio); | 
 | 	return 0; | 
 | } | 
 | EXPORT_SYMBOL(bio_add_pc_page); | 
 |  | 
 | /** | 
 |  *	bio_add_page	-	attempt to add page to bio | 
 |  *	@bio: destination bio | 
 |  *	@page: page to add | 
 |  *	@len: vec entry length | 
 |  *	@offset: vec entry offset | 
 |  * | 
 |  *	Attempt to add a page to the bio_vec maplist. This will only fail | 
 |  *	if either bio->bi_vcnt == bio->bi_max_vecs or it's a cloned bio. | 
 |  */ | 
 | int bio_add_page(struct bio *bio, struct page *page, | 
 | 		 unsigned int len, unsigned int offset) | 
 | { | 
 | 	struct bio_vec *bv; | 
 |  | 
 | 	/* | 
 | 	 * cloned bio must not modify vec list | 
 | 	 */ | 
 | 	if (WARN_ON_ONCE(bio_flagged(bio, BIO_CLONED))) | 
 | 		return 0; | 
 |  | 
 | 	/* | 
 | 	 * For filesystems with a blocksize smaller than the pagesize | 
 | 	 * we will often be called with the same page as last time and | 
 | 	 * a consecutive offset.  Optimize this special case. | 
 | 	 */ | 
 | 	if (bio->bi_vcnt > 0) { | 
 | 		bv = &bio->bi_io_vec[bio->bi_vcnt - 1]; | 
 |  | 
 | 		if (page == bv->bv_page && | 
 | 		    offset == bv->bv_offset + bv->bv_len) { | 
 | 			bv->bv_len += len; | 
 | 			goto done; | 
 | 		} | 
 | 	} | 
 |  | 
 | 	if (bio->bi_vcnt >= bio->bi_max_vecs) | 
 | 		return 0; | 
 |  | 
 | 	bv		= &bio->bi_io_vec[bio->bi_vcnt]; | 
 | 	bv->bv_page	= page; | 
 | 	bv->bv_len	= len; | 
 | 	bv->bv_offset	= offset; | 
 |  | 
 | 	bio->bi_vcnt++; | 
 | done: | 
 | 	bio->bi_iter.bi_size += len; | 
 | 	return len; | 
 | } | 
 | EXPORT_SYMBOL(bio_add_page); | 
 |  | 
 | struct submit_bio_ret { | 
 | 	struct completion event; | 
 | 	int error; | 
 | }; | 
 |  | 
 | static void submit_bio_wait_endio(struct bio *bio) | 
 | { | 
 | 	struct submit_bio_ret *ret = bio->bi_private; | 
 |  | 
 | 	ret->error = bio->bi_error; | 
 | 	complete(&ret->event); | 
 | } | 
 |  | 
 | /** | 
 |  * submit_bio_wait - submit a bio, and wait until it completes | 
 |  * @bio: The &struct bio which describes the I/O | 
 |  * | 
 |  * Simple wrapper around submit_bio(). Returns 0 on success, or the error from | 
 |  * bio_endio() on failure. | 
 |  */ | 
 | int submit_bio_wait(struct bio *bio) | 
 | { | 
 | 	struct submit_bio_ret ret; | 
 |  | 
 | 	init_completion(&ret.event); | 
 | 	bio->bi_private = &ret; | 
 | 	bio->bi_end_io = submit_bio_wait_endio; | 
 | 	bio->bi_opf |= REQ_SYNC; | 
 | 	submit_bio(bio); | 
 | 	wait_for_completion_io(&ret.event); | 
 |  | 
 | 	return ret.error; | 
 | } | 
 | EXPORT_SYMBOL(submit_bio_wait); | 
 |  | 
 | /** | 
 |  * bio_advance - increment/complete a bio by some number of bytes | 
 |  * @bio:	bio to advance | 
 |  * @bytes:	number of bytes to complete | 
 |  * | 
 |  * This updates bi_sector, bi_size and bi_idx; if the number of bytes to | 
 |  * complete doesn't align with a bvec boundary, then bv_len and bv_offset will | 
 |  * be updated on the last bvec as well. | 
 |  * | 
 |  * @bio will then represent the remaining, uncompleted portion of the io. | 
 |  */ | 
 | void bio_advance(struct bio *bio, unsigned bytes) | 
 | { | 
 | 	if (bio_integrity(bio)) | 
 | 		bio_integrity_advance(bio, bytes); | 
 |  | 
 | 	bio_advance_iter(bio, &bio->bi_iter, bytes); | 
 | } | 
 | EXPORT_SYMBOL(bio_advance); | 
 |  | 
 | /** | 
 |  * bio_alloc_pages - allocates a single page for each bvec in a bio | 
 |  * @bio: bio to allocate pages for | 
 |  * @gfp_mask: flags for allocation | 
 |  * | 
 |  * Allocates pages up to @bio->bi_vcnt. | 
 |  * | 
 |  * Returns 0 on success, -ENOMEM on failure. On failure, any allocated pages are | 
 |  * freed. | 
 |  */ | 
 | int bio_alloc_pages(struct bio *bio, gfp_t gfp_mask) | 
 | { | 
 | 	int i; | 
 | 	struct bio_vec *bv; | 
 |  | 
 | 	bio_for_each_segment_all(bv, bio, i) { | 
 | 		bv->bv_page = alloc_page(gfp_mask); | 
 | 		if (!bv->bv_page) { | 
 | 			while (--bv >= bio->bi_io_vec) | 
 | 				__free_page(bv->bv_page); | 
 | 			return -ENOMEM; | 
 | 		} | 
 | 	} | 
 |  | 
 | 	return 0; | 
 | } | 
 | EXPORT_SYMBOL(bio_alloc_pages); | 
 |  | 
 | /** | 
 |  * bio_copy_data - copy contents of data buffers from one chain of bios to | 
 |  * another | 
 |  * @src: source bio list | 
 |  * @dst: destination bio list | 
 |  * | 
 |  * If @src and @dst are single bios, bi_next must be NULL - otherwise, treats | 
 |  * @src and @dst as linked lists of bios. | 
 |  * | 
 |  * Stops when it reaches the end of either @src or @dst - that is, copies | 
 |  * min(src->bi_size, dst->bi_size) bytes (or the equivalent for lists of bios). | 
 |  */ | 
 | void bio_copy_data(struct bio *dst, struct bio *src) | 
 | { | 
 | 	struct bvec_iter src_iter, dst_iter; | 
 | 	struct bio_vec src_bv, dst_bv; | 
 | 	void *src_p, *dst_p; | 
 | 	unsigned bytes; | 
 |  | 
 | 	src_iter = src->bi_iter; | 
 | 	dst_iter = dst->bi_iter; | 
 |  | 
 | 	while (1) { | 
 | 		if (!src_iter.bi_size) { | 
 | 			src = src->bi_next; | 
 | 			if (!src) | 
 | 				break; | 
 |  | 
 | 			src_iter = src->bi_iter; | 
 | 		} | 
 |  | 
 | 		if (!dst_iter.bi_size) { | 
 | 			dst = dst->bi_next; | 
 | 			if (!dst) | 
 | 				break; | 
 |  | 
 | 			dst_iter = dst->bi_iter; | 
 | 		} | 
 |  | 
 | 		src_bv = bio_iter_iovec(src, src_iter); | 
 | 		dst_bv = bio_iter_iovec(dst, dst_iter); | 
 |  | 
 | 		bytes = min(src_bv.bv_len, dst_bv.bv_len); | 
 |  | 
 | 		src_p = kmap_atomic(src_bv.bv_page); | 
 | 		dst_p = kmap_atomic(dst_bv.bv_page); | 
 |  | 
 | 		memcpy(dst_p + dst_bv.bv_offset, | 
 | 		       src_p + src_bv.bv_offset, | 
 | 		       bytes); | 
 |  | 
 | 		kunmap_atomic(dst_p); | 
 | 		kunmap_atomic(src_p); | 
 |  | 
 | 		bio_advance_iter(src, &src_iter, bytes); | 
 | 		bio_advance_iter(dst, &dst_iter, bytes); | 
 | 	} | 
 | } | 
 | EXPORT_SYMBOL(bio_copy_data); | 
 |  | 
 | struct bio_map_data { | 
 | 	int is_our_pages; | 
 | 	struct iov_iter iter; | 
 | 	struct iovec iov[]; | 
 | }; | 
 |  | 
 | static struct bio_map_data *bio_alloc_map_data(unsigned int iov_count, | 
 | 					       gfp_t gfp_mask) | 
 | { | 
 | 	if (iov_count > UIO_MAXIOV) | 
 | 		return NULL; | 
 |  | 
 | 	return kmalloc(sizeof(struct bio_map_data) + | 
 | 		       sizeof(struct iovec) * iov_count, gfp_mask); | 
 | } | 
 |  | 
 | /** | 
 |  * bio_copy_from_iter - copy all pages from iov_iter to bio | 
 |  * @bio: The &struct bio which describes the I/O as destination | 
 |  * @iter: iov_iter as source | 
 |  * | 
 |  * Copy all pages from iov_iter to bio. | 
 |  * Returns 0 on success, or error on failure. | 
 |  */ | 
 | static int bio_copy_from_iter(struct bio *bio, struct iov_iter iter) | 
 | { | 
 | 	int i; | 
 | 	struct bio_vec *bvec; | 
 |  | 
 | 	bio_for_each_segment_all(bvec, bio, i) { | 
 | 		ssize_t ret; | 
 |  | 
 | 		ret = copy_page_from_iter(bvec->bv_page, | 
 | 					  bvec->bv_offset, | 
 | 					  bvec->bv_len, | 
 | 					  &iter); | 
 |  | 
 | 		if (!iov_iter_count(&iter)) | 
 | 			break; | 
 |  | 
 | 		if (ret < bvec->bv_len) | 
 | 			return -EFAULT; | 
 | 	} | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | /** | 
 |  * bio_copy_to_iter - copy all pages from bio to iov_iter | 
 |  * @bio: The &struct bio which describes the I/O as source | 
 |  * @iter: iov_iter as destination | 
 |  * | 
 |  * Copy all pages from bio to iov_iter. | 
 |  * Returns 0 on success, or error on failure. | 
 |  */ | 
 | static int bio_copy_to_iter(struct bio *bio, struct iov_iter iter) | 
 | { | 
 | 	int i; | 
 | 	struct bio_vec *bvec; | 
 |  | 
 | 	bio_for_each_segment_all(bvec, bio, i) { | 
 | 		ssize_t ret; | 
 |  | 
 | 		ret = copy_page_to_iter(bvec->bv_page, | 
 | 					bvec->bv_offset, | 
 | 					bvec->bv_len, | 
 | 					&iter); | 
 |  | 
 | 		if (!iov_iter_count(&iter)) | 
 | 			break; | 
 |  | 
 | 		if (ret < bvec->bv_len) | 
 | 			return -EFAULT; | 
 | 	} | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | void bio_free_pages(struct bio *bio) | 
 | { | 
 | 	struct bio_vec *bvec; | 
 | 	int i; | 
 |  | 
 | 	bio_for_each_segment_all(bvec, bio, i) | 
 | 		__free_page(bvec->bv_page); | 
 | } | 
 | EXPORT_SYMBOL(bio_free_pages); | 
 |  | 
 | /** | 
 |  *	bio_uncopy_user	-	finish previously mapped bio | 
 |  *	@bio: bio being terminated | 
 |  * | 
 |  *	Free pages allocated from bio_copy_user_iov() and write back data | 
 |  *	to user space in case of a read. | 
 |  */ | 
 | int bio_uncopy_user(struct bio *bio) | 
 | { | 
 | 	struct bio_map_data *bmd = bio->bi_private; | 
 | 	int ret = 0; | 
 |  | 
 | 	if (!bio_flagged(bio, BIO_NULL_MAPPED)) { | 
 | 		/* | 
 | 		 * if we're in a workqueue, the request is orphaned, so | 
 | 		 * don't copy into a random user address space, just free | 
 | 		 * and return -EINTR so user space doesn't expect any data. | 
 | 		 */ | 
 | 		if (!current->mm) | 
 | 			ret = -EINTR; | 
 | 		else if (bio_data_dir(bio) == READ) | 
 | 			ret = bio_copy_to_iter(bio, bmd->iter); | 
 | 		if (bmd->is_our_pages) | 
 | 			bio_free_pages(bio); | 
 | 	} | 
 | 	kfree(bmd); | 
 | 	bio_put(bio); | 
 | 	return ret; | 
 | } | 
 |  | 
 | /** | 
 |  *	bio_copy_user_iov	-	copy user data to bio | 
 |  *	@q:		destination block queue | 
 |  *	@map_data:	pointer to the rq_map_data holding pages (if necessary) | 
 |  *	@iter:		iovec iterator | 
 |  *	@gfp_mask:	memory allocation flags | 
 |  * | 
 |  *	Prepares and returns a bio for indirect user io, bouncing data | 
 |  *	to/from kernel pages as necessary. Must be paired with | 
 |  *	call bio_uncopy_user() on io completion. | 
 |  */ | 
 | struct bio *bio_copy_user_iov(struct request_queue *q, | 
 | 			      struct rq_map_data *map_data, | 
 | 			      const struct iov_iter *iter, | 
 | 			      gfp_t gfp_mask) | 
 | { | 
 | 	struct bio_map_data *bmd; | 
 | 	struct page *page; | 
 | 	struct bio *bio; | 
 | 	int i, ret; | 
 | 	int nr_pages = 0; | 
 | 	unsigned int len = iter->count; | 
 | 	unsigned int offset = map_data ? offset_in_page(map_data->offset) : 0; | 
 |  | 
 | 	for (i = 0; i < iter->nr_segs; i++) { | 
 | 		unsigned long uaddr; | 
 | 		unsigned long end; | 
 | 		unsigned long start; | 
 |  | 
 | 		uaddr = (unsigned long) iter->iov[i].iov_base; | 
 | 		end = (uaddr + iter->iov[i].iov_len + PAGE_SIZE - 1) | 
 | 			>> PAGE_SHIFT; | 
 | 		start = uaddr >> PAGE_SHIFT; | 
 |  | 
 | 		/* | 
 | 		 * Overflow, abort | 
 | 		 */ | 
 | 		if (end < start) | 
 | 			return ERR_PTR(-EINVAL); | 
 |  | 
 | 		nr_pages += end - start; | 
 | 	} | 
 |  | 
 | 	if (offset) | 
 | 		nr_pages++; | 
 |  | 
 | 	bmd = bio_alloc_map_data(iter->nr_segs, gfp_mask); | 
 | 	if (!bmd) | 
 | 		return ERR_PTR(-ENOMEM); | 
 |  | 
 | 	/* | 
 | 	 * We need to do a deep copy of the iov_iter including the iovecs. | 
 | 	 * The caller provided iov might point to an on-stack or otherwise | 
 | 	 * shortlived one. | 
 | 	 */ | 
 | 	bmd->is_our_pages = map_data ? 0 : 1; | 
 | 	memcpy(bmd->iov, iter->iov, sizeof(struct iovec) * iter->nr_segs); | 
 | 	bmd->iter = *iter; | 
 | 	bmd->iter.iov = bmd->iov; | 
 |  | 
 | 	ret = -ENOMEM; | 
 | 	bio = bio_kmalloc(gfp_mask, nr_pages); | 
 | 	if (!bio) | 
 | 		goto out_bmd; | 
 |  | 
 | 	if (iter->type & WRITE) | 
 | 		bio_set_op_attrs(bio, REQ_OP_WRITE, 0); | 
 |  | 
 | 	ret = 0; | 
 |  | 
 | 	if (map_data) { | 
 | 		nr_pages = 1 << map_data->page_order; | 
 | 		i = map_data->offset / PAGE_SIZE; | 
 | 	} | 
 | 	while (len) { | 
 | 		unsigned int bytes = PAGE_SIZE; | 
 |  | 
 | 		bytes -= offset; | 
 |  | 
 | 		if (bytes > len) | 
 | 			bytes = len; | 
 |  | 
 | 		if (map_data) { | 
 | 			if (i == map_data->nr_entries * nr_pages) { | 
 | 				ret = -ENOMEM; | 
 | 				break; | 
 | 			} | 
 |  | 
 | 			page = map_data->pages[i / nr_pages]; | 
 | 			page += (i % nr_pages); | 
 |  | 
 | 			i++; | 
 | 		} else { | 
 | 			page = alloc_page(q->bounce_gfp | gfp_mask); | 
 | 			if (!page) { | 
 | 				ret = -ENOMEM; | 
 | 				break; | 
 | 			} | 
 | 		} | 
 |  | 
 | 		if (bio_add_pc_page(q, bio, page, bytes, offset) < bytes) | 
 | 			break; | 
 |  | 
 | 		len -= bytes; | 
 | 		offset = 0; | 
 | 	} | 
 |  | 
 | 	if (ret) | 
 | 		goto cleanup; | 
 |  | 
 | 	/* | 
 | 	 * success | 
 | 	 */ | 
 | 	if (((iter->type & WRITE) && (!map_data || !map_data->null_mapped)) || | 
 | 	    (map_data && map_data->from_user)) { | 
 | 		ret = bio_copy_from_iter(bio, *iter); | 
 | 		if (ret) | 
 | 			goto cleanup; | 
 | 	} | 
 |  | 
 | 	bio->bi_private = bmd; | 
 | 	return bio; | 
 | cleanup: | 
 | 	if (!map_data) | 
 | 		bio_free_pages(bio); | 
 | 	bio_put(bio); | 
 | out_bmd: | 
 | 	kfree(bmd); | 
 | 	return ERR_PTR(ret); | 
 | } | 
 |  | 
 | /** | 
 |  *	bio_map_user_iov - map user iovec into bio | 
 |  *	@q:		the struct request_queue for the bio | 
 |  *	@iter:		iovec iterator | 
 |  *	@gfp_mask:	memory allocation flags | 
 |  * | 
 |  *	Map the user space address into a bio suitable for io to a block | 
 |  *	device. Returns an error pointer in case of error. | 
 |  */ | 
 | struct bio *bio_map_user_iov(struct request_queue *q, | 
 | 			     const struct iov_iter *iter, | 
 | 			     gfp_t gfp_mask) | 
 | { | 
 | 	int j; | 
 | 	int nr_pages = 0; | 
 | 	struct page **pages; | 
 | 	struct bio *bio; | 
 | 	int cur_page = 0; | 
 | 	int ret, offset; | 
 | 	struct iov_iter i; | 
 | 	struct iovec iov; | 
 | 	struct bio_vec *bvec; | 
 |  | 
 | 	iov_for_each(iov, i, *iter) { | 
 | 		unsigned long uaddr = (unsigned long) iov.iov_base; | 
 | 		unsigned long len = iov.iov_len; | 
 | 		unsigned long end = (uaddr + len + PAGE_SIZE - 1) >> PAGE_SHIFT; | 
 | 		unsigned long start = uaddr >> PAGE_SHIFT; | 
 |  | 
 | 		/* | 
 | 		 * Overflow, abort | 
 | 		 */ | 
 | 		if (end < start) | 
 | 			return ERR_PTR(-EINVAL); | 
 |  | 
 | 		nr_pages += end - start; | 
 | 		/* | 
 | 		 * buffer must be aligned to at least logical block size for now | 
 | 		 */ | 
 | 		if (uaddr & queue_dma_alignment(q)) | 
 | 			return ERR_PTR(-EINVAL); | 
 | 	} | 
 |  | 
 | 	if (!nr_pages) | 
 | 		return ERR_PTR(-EINVAL); | 
 |  | 
 | 	bio = bio_kmalloc(gfp_mask, nr_pages); | 
 | 	if (!bio) | 
 | 		return ERR_PTR(-ENOMEM); | 
 |  | 
 | 	ret = -ENOMEM; | 
 | 	pages = kcalloc(nr_pages, sizeof(struct page *), gfp_mask); | 
 | 	if (!pages) | 
 | 		goto out; | 
 |  | 
 | 	iov_for_each(iov, i, *iter) { | 
 | 		unsigned long uaddr = (unsigned long) iov.iov_base; | 
 | 		unsigned long len = iov.iov_len; | 
 | 		unsigned long end = (uaddr + len + PAGE_SIZE - 1) >> PAGE_SHIFT; | 
 | 		unsigned long start = uaddr >> PAGE_SHIFT; | 
 | 		const int local_nr_pages = end - start; | 
 | 		const int page_limit = cur_page + local_nr_pages; | 
 |  | 
 | 		ret = get_user_pages_fast(uaddr, local_nr_pages, | 
 | 				(iter->type & WRITE) != WRITE, | 
 | 				&pages[cur_page]); | 
 | 		if (unlikely(ret < local_nr_pages)) { | 
 | 			for (j = cur_page; j < page_limit; j++) { | 
 | 				if (!pages[j]) | 
 | 					break; | 
 | 				put_page(pages[j]); | 
 | 			} | 
 | 			ret = -EFAULT; | 
 | 			goto out_unmap; | 
 | 		} | 
 |  | 
 | 		offset = offset_in_page(uaddr); | 
 | 		for (j = cur_page; j < page_limit; j++) { | 
 | 			unsigned int bytes = PAGE_SIZE - offset; | 
 | 			unsigned short prev_bi_vcnt = bio->bi_vcnt; | 
 |  | 
 | 			if (len <= 0) | 
 | 				break; | 
 | 			 | 
 | 			if (bytes > len) | 
 | 				bytes = len; | 
 |  | 
 | 			/* | 
 | 			 * sorry... | 
 | 			 */ | 
 | 			if (bio_add_pc_page(q, bio, pages[j], bytes, offset) < | 
 | 					    bytes) | 
 | 				break; | 
 |  | 
 | 			/* | 
 | 			 * check if vector was merged with previous | 
 | 			 * drop page reference if needed | 
 | 			 */ | 
 | 			if (bio->bi_vcnt == prev_bi_vcnt) | 
 | 				put_page(pages[j]); | 
 |  | 
 | 			len -= bytes; | 
 | 			offset = 0; | 
 | 		} | 
 |  | 
 | 		cur_page = j; | 
 | 		/* | 
 | 		 * release the pages we didn't map into the bio, if any | 
 | 		 */ | 
 | 		while (j < page_limit) | 
 | 			put_page(pages[j++]); | 
 | 	} | 
 |  | 
 | 	kfree(pages); | 
 |  | 
 | 	/* | 
 | 	 * set data direction, and check if mapped pages need bouncing | 
 | 	 */ | 
 | 	if (iter->type & WRITE) | 
 | 		bio_set_op_attrs(bio, REQ_OP_WRITE, 0); | 
 |  | 
 | 	bio_set_flag(bio, BIO_USER_MAPPED); | 
 |  | 
 | 	/* | 
 | 	 * subtle -- if __bio_map_user() ended up bouncing a bio, | 
 | 	 * it would normally disappear when its bi_end_io is run. | 
 | 	 * however, we need it for the unmap, so grab an extra | 
 | 	 * reference to it | 
 | 	 */ | 
 | 	bio_get(bio); | 
 | 	return bio; | 
 |  | 
 |  out_unmap: | 
 | 	bio_for_each_segment_all(bvec, bio, j) { | 
 | 		put_page(bvec->bv_page); | 
 | 	} | 
 |  out: | 
 | 	kfree(pages); | 
 | 	bio_put(bio); | 
 | 	return ERR_PTR(ret); | 
 | } | 
 |  | 
 | static void __bio_unmap_user(struct bio *bio) | 
 | { | 
 | 	struct bio_vec *bvec; | 
 | 	int i; | 
 |  | 
 | 	/* | 
 | 	 * make sure we dirty pages we wrote to | 
 | 	 */ | 
 | 	bio_for_each_segment_all(bvec, bio, i) { | 
 | 		if (bio_data_dir(bio) == READ) | 
 | 			set_page_dirty_lock(bvec->bv_page); | 
 |  | 
 | 		put_page(bvec->bv_page); | 
 | 	} | 
 |  | 
 | 	bio_put(bio); | 
 | } | 
 |  | 
 | /** | 
 |  *	bio_unmap_user	-	unmap a bio | 
 |  *	@bio:		the bio being unmapped | 
 |  * | 
 |  *	Unmap a bio previously mapped by bio_map_user(). Must be called with | 
 |  *	a process context. | 
 |  * | 
 |  *	bio_unmap_user() may sleep. | 
 |  */ | 
 | void bio_unmap_user(struct bio *bio) | 
 | { | 
 | 	__bio_unmap_user(bio); | 
 | 	bio_put(bio); | 
 | } | 
 |  | 
 | static void bio_map_kern_endio(struct bio *bio) | 
 | { | 
 | 	bio_put(bio); | 
 | } | 
 |  | 
 | /** | 
 |  *	bio_map_kern	-	map kernel address into bio | 
 |  *	@q: the struct request_queue for the bio | 
 |  *	@data: pointer to buffer to map | 
 |  *	@len: length in bytes | 
 |  *	@gfp_mask: allocation flags for bio allocation | 
 |  * | 
 |  *	Map the kernel address into a bio suitable for io to a block | 
 |  *	device. Returns an error pointer in case of error. | 
 |  */ | 
 | struct bio *bio_map_kern(struct request_queue *q, void *data, unsigned int len, | 
 | 			 gfp_t gfp_mask) | 
 | { | 
 | 	unsigned long kaddr = (unsigned long)data; | 
 | 	unsigned long end = (kaddr + len + PAGE_SIZE - 1) >> PAGE_SHIFT; | 
 | 	unsigned long start = kaddr >> PAGE_SHIFT; | 
 | 	const int nr_pages = end - start; | 
 | 	int offset, i; | 
 | 	struct bio *bio; | 
 |  | 
 | 	bio = bio_kmalloc(gfp_mask, nr_pages); | 
 | 	if (!bio) | 
 | 		return ERR_PTR(-ENOMEM); | 
 |  | 
 | 	offset = offset_in_page(kaddr); | 
 | 	for (i = 0; i < nr_pages; i++) { | 
 | 		unsigned int bytes = PAGE_SIZE - offset; | 
 |  | 
 | 		if (len <= 0) | 
 | 			break; | 
 |  | 
 | 		if (bytes > len) | 
 | 			bytes = len; | 
 |  | 
 | 		if (bio_add_pc_page(q, bio, virt_to_page(data), bytes, | 
 | 				    offset) < bytes) { | 
 | 			/* we don't support partial mappings */ | 
 | 			bio_put(bio); | 
 | 			return ERR_PTR(-EINVAL); | 
 | 		} | 
 |  | 
 | 		data += bytes; | 
 | 		len -= bytes; | 
 | 		offset = 0; | 
 | 	} | 
 |  | 
 | 	bio->bi_end_io = bio_map_kern_endio; | 
 | 	return bio; | 
 | } | 
 | EXPORT_SYMBOL(bio_map_kern); | 
 |  | 
 | static void bio_copy_kern_endio(struct bio *bio) | 
 | { | 
 | 	bio_free_pages(bio); | 
 | 	bio_put(bio); | 
 | } | 
 |  | 
 | static void bio_copy_kern_endio_read(struct bio *bio) | 
 | { | 
 | 	char *p = bio->bi_private; | 
 | 	struct bio_vec *bvec; | 
 | 	int i; | 
 |  | 
 | 	bio_for_each_segment_all(bvec, bio, i) { | 
 | 		memcpy(p, page_address(bvec->bv_page), bvec->bv_len); | 
 | 		p += bvec->bv_len; | 
 | 	} | 
 |  | 
 | 	bio_copy_kern_endio(bio); | 
 | } | 
 |  | 
 | /** | 
 |  *	bio_copy_kern	-	copy kernel address into bio | 
 |  *	@q: the struct request_queue for the bio | 
 |  *	@data: pointer to buffer to copy | 
 |  *	@len: length in bytes | 
 |  *	@gfp_mask: allocation flags for bio and page allocation | 
 |  *	@reading: data direction is READ | 
 |  * | 
 |  *	copy the kernel address into a bio suitable for io to a block | 
 |  *	device. Returns an error pointer in case of error. | 
 |  */ | 
 | struct bio *bio_copy_kern(struct request_queue *q, void *data, unsigned int len, | 
 | 			  gfp_t gfp_mask, int reading) | 
 | { | 
 | 	unsigned long kaddr = (unsigned long)data; | 
 | 	unsigned long end = (kaddr + len + PAGE_SIZE - 1) >> PAGE_SHIFT; | 
 | 	unsigned long start = kaddr >> PAGE_SHIFT; | 
 | 	struct bio *bio; | 
 | 	void *p = data; | 
 | 	int nr_pages = 0; | 
 |  | 
 | 	/* | 
 | 	 * Overflow, abort | 
 | 	 */ | 
 | 	if (end < start) | 
 | 		return ERR_PTR(-EINVAL); | 
 |  | 
 | 	nr_pages = end - start; | 
 | 	bio = bio_kmalloc(gfp_mask, nr_pages); | 
 | 	if (!bio) | 
 | 		return ERR_PTR(-ENOMEM); | 
 |  | 
 | 	while (len) { | 
 | 		struct page *page; | 
 | 		unsigned int bytes = PAGE_SIZE; | 
 |  | 
 | 		if (bytes > len) | 
 | 			bytes = len; | 
 |  | 
 | 		page = alloc_page(q->bounce_gfp | gfp_mask); | 
 | 		if (!page) | 
 | 			goto cleanup; | 
 |  | 
 | 		if (!reading) | 
 | 			memcpy(page_address(page), p, bytes); | 
 |  | 
 | 		if (bio_add_pc_page(q, bio, page, bytes, 0) < bytes) | 
 | 			break; | 
 |  | 
 | 		len -= bytes; | 
 | 		p += bytes; | 
 | 	} | 
 |  | 
 | 	if (reading) { | 
 | 		bio->bi_end_io = bio_copy_kern_endio_read; | 
 | 		bio->bi_private = data; | 
 | 	} else { | 
 | 		bio->bi_end_io = bio_copy_kern_endio; | 
 | 		bio_set_op_attrs(bio, REQ_OP_WRITE, 0); | 
 | 	} | 
 |  | 
 | 	return bio; | 
 |  | 
 | cleanup: | 
 | 	bio_free_pages(bio); | 
 | 	bio_put(bio); | 
 | 	return ERR_PTR(-ENOMEM); | 
 | } | 
 |  | 
 | /* | 
 |  * bio_set_pages_dirty() and bio_check_pages_dirty() are support functions | 
 |  * for performing direct-IO in BIOs. | 
 |  * | 
 |  * The problem is that we cannot run set_page_dirty() from interrupt context | 
 |  * because the required locks are not interrupt-safe.  So what we can do is to | 
 |  * mark the pages dirty _before_ performing IO.  And in interrupt context, | 
 |  * check that the pages are still dirty.   If so, fine.  If not, redirty them | 
 |  * in process context. | 
 |  * | 
 |  * We special-case compound pages here: normally this means reads into hugetlb | 
 |  * pages.  The logic in here doesn't really work right for compound pages | 
 |  * because the VM does not uniformly chase down the head page in all cases. | 
 |  * But dirtiness of compound pages is pretty meaningless anyway: the VM doesn't | 
 |  * handle them at all.  So we skip compound pages here at an early stage. | 
 |  * | 
 |  * Note that this code is very hard to test under normal circumstances because | 
 |  * direct-io pins the pages with get_user_pages().  This makes | 
 |  * is_page_cache_freeable return false, and the VM will not clean the pages. | 
 |  * But other code (eg, flusher threads) could clean the pages if they are mapped | 
 |  * pagecache. | 
 |  * | 
 |  * Simply disabling the call to bio_set_pages_dirty() is a good way to test the | 
 |  * deferred bio dirtying paths. | 
 |  */ | 
 |  | 
 | /* | 
 |  * bio_set_pages_dirty() will mark all the bio's pages as dirty. | 
 |  */ | 
 | void bio_set_pages_dirty(struct bio *bio) | 
 | { | 
 | 	struct bio_vec *bvec; | 
 | 	int i; | 
 |  | 
 | 	bio_for_each_segment_all(bvec, bio, i) { | 
 | 		struct page *page = bvec->bv_page; | 
 |  | 
 | 		if (page && !PageCompound(page)) | 
 | 			set_page_dirty_lock(page); | 
 | 	} | 
 | } | 
 |  | 
 | static void bio_release_pages(struct bio *bio) | 
 | { | 
 | 	struct bio_vec *bvec; | 
 | 	int i; | 
 |  | 
 | 	bio_for_each_segment_all(bvec, bio, i) { | 
 | 		struct page *page = bvec->bv_page; | 
 |  | 
 | 		if (page) | 
 | 			put_page(page); | 
 | 	} | 
 | } | 
 |  | 
 | /* | 
 |  * bio_check_pages_dirty() will check that all the BIO's pages are still dirty. | 
 |  * If they are, then fine.  If, however, some pages are clean then they must | 
 |  * have been written out during the direct-IO read.  So we take another ref on | 
 |  * the BIO and the offending pages and re-dirty the pages in process context. | 
 |  * | 
 |  * It is expected that bio_check_pages_dirty() will wholly own the BIO from | 
 |  * here on.  It will run one put_page() against each page and will run one | 
 |  * bio_put() against the BIO. | 
 |  */ | 
 |  | 
 | static void bio_dirty_fn(struct work_struct *work); | 
 |  | 
 | static DECLARE_WORK(bio_dirty_work, bio_dirty_fn); | 
 | static DEFINE_SPINLOCK(bio_dirty_lock); | 
 | static struct bio *bio_dirty_list; | 
 |  | 
 | /* | 
 |  * This runs in process context | 
 |  */ | 
 | static void bio_dirty_fn(struct work_struct *work) | 
 | { | 
 | 	unsigned long flags; | 
 | 	struct bio *bio; | 
 |  | 
 | 	spin_lock_irqsave(&bio_dirty_lock, flags); | 
 | 	bio = bio_dirty_list; | 
 | 	bio_dirty_list = NULL; | 
 | 	spin_unlock_irqrestore(&bio_dirty_lock, flags); | 
 |  | 
 | 	while (bio) { | 
 | 		struct bio *next = bio->bi_private; | 
 |  | 
 | 		bio_set_pages_dirty(bio); | 
 | 		bio_release_pages(bio); | 
 | 		bio_put(bio); | 
 | 		bio = next; | 
 | 	} | 
 | } | 
 |  | 
 | void bio_check_pages_dirty(struct bio *bio) | 
 | { | 
 | 	struct bio_vec *bvec; | 
 | 	int nr_clean_pages = 0; | 
 | 	int i; | 
 |  | 
 | 	bio_for_each_segment_all(bvec, bio, i) { | 
 | 		struct page *page = bvec->bv_page; | 
 |  | 
 | 		if (PageDirty(page) || PageCompound(page)) { | 
 | 			put_page(page); | 
 | 			bvec->bv_page = NULL; | 
 | 		} else { | 
 | 			nr_clean_pages++; | 
 | 		} | 
 | 	} | 
 |  | 
 | 	if (nr_clean_pages) { | 
 | 		unsigned long flags; | 
 |  | 
 | 		spin_lock_irqsave(&bio_dirty_lock, flags); | 
 | 		bio->bi_private = bio_dirty_list; | 
 | 		bio_dirty_list = bio; | 
 | 		spin_unlock_irqrestore(&bio_dirty_lock, flags); | 
 | 		schedule_work(&bio_dirty_work); | 
 | 	} else { | 
 | 		bio_put(bio); | 
 | 	} | 
 | } | 
 |  | 
 | void generic_start_io_acct(int rw, unsigned long sectors, | 
 | 			   struct hd_struct *part) | 
 | { | 
 | 	int cpu = part_stat_lock(); | 
 |  | 
 | 	part_round_stats(cpu, part); | 
 | 	part_stat_inc(cpu, part, ios[rw]); | 
 | 	part_stat_add(cpu, part, sectors[rw], sectors); | 
 | 	part_inc_in_flight(part, rw); | 
 |  | 
 | 	part_stat_unlock(); | 
 | } | 
 | EXPORT_SYMBOL(generic_start_io_acct); | 
 |  | 
 | void generic_end_io_acct(int rw, struct hd_struct *part, | 
 | 			 unsigned long start_time) | 
 | { | 
 | 	unsigned long duration = jiffies - start_time; | 
 | 	int cpu = part_stat_lock(); | 
 |  | 
 | 	part_stat_add(cpu, part, ticks[rw], duration); | 
 | 	part_round_stats(cpu, part); | 
 | 	part_dec_in_flight(part, rw); | 
 |  | 
 | 	part_stat_unlock(); | 
 | } | 
 | EXPORT_SYMBOL(generic_end_io_acct); | 
 |  | 
 | #if ARCH_IMPLEMENTS_FLUSH_DCACHE_PAGE | 
 | void bio_flush_dcache_pages(struct bio *bi) | 
 | { | 
 | 	struct bio_vec bvec; | 
 | 	struct bvec_iter iter; | 
 |  | 
 | 	bio_for_each_segment(bvec, bi, iter) | 
 | 		flush_dcache_page(bvec.bv_page); | 
 | } | 
 | EXPORT_SYMBOL(bio_flush_dcache_pages); | 
 | #endif | 
 |  | 
 | static inline bool bio_remaining_done(struct bio *bio) | 
 | { | 
 | 	/* | 
 | 	 * If we're not chaining, then ->__bi_remaining is always 1 and | 
 | 	 * we always end io on the first invocation. | 
 | 	 */ | 
 | 	if (!bio_flagged(bio, BIO_CHAIN)) | 
 | 		return true; | 
 |  | 
 | 	BUG_ON(atomic_read(&bio->__bi_remaining) <= 0); | 
 |  | 
 | 	if (atomic_dec_and_test(&bio->__bi_remaining)) { | 
 | 		bio_clear_flag(bio, BIO_CHAIN); | 
 | 		return true; | 
 | 	} | 
 |  | 
 | 	return false; | 
 | } | 
 |  | 
 | /** | 
 |  * bio_endio - end I/O on a bio | 
 |  * @bio:	bio | 
 |  * | 
 |  * Description: | 
 |  *   bio_endio() will end I/O on the whole bio. bio_endio() is the preferred | 
 |  *   way to end I/O on a bio. No one should call bi_end_io() directly on a | 
 |  *   bio unless they own it and thus know that it has an end_io function. | 
 |  **/ | 
 | void bio_endio(struct bio *bio) | 
 | { | 
 | again: | 
 | 	if (!bio_remaining_done(bio)) | 
 | 		return; | 
 |  | 
 | 	/* | 
 | 	 * Need to have a real endio function for chained bios, otherwise | 
 | 	 * various corner cases will break (like stacking block devices that | 
 | 	 * save/restore bi_end_io) - however, we want to avoid unbounded | 
 | 	 * recursion and blowing the stack. Tail call optimization would | 
 | 	 * handle this, but compiling with frame pointers also disables | 
 | 	 * gcc's sibling call optimization. | 
 | 	 */ | 
 | 	if (bio->bi_end_io == bio_chain_endio) { | 
 | 		bio = __bio_chain_endio(bio); | 
 | 		goto again; | 
 | 	} | 
 |  | 
 | 	if (bio->bi_end_io) | 
 | 		bio->bi_end_io(bio); | 
 | } | 
 | EXPORT_SYMBOL(bio_endio); | 
 |  | 
 | /** | 
 |  * bio_split - split a bio | 
 |  * @bio:	bio to split | 
 |  * @sectors:	number of sectors to split from the front of @bio | 
 |  * @gfp:	gfp mask | 
 |  * @bs:		bio set to allocate from | 
 |  * | 
 |  * Allocates and returns a new bio which represents @sectors from the start of | 
 |  * @bio, and updates @bio to represent the remaining sectors. | 
 |  * | 
 |  * Unless this is a discard request the newly allocated bio will point | 
 |  * to @bio's bi_io_vec; it is the caller's responsibility to ensure that | 
 |  * @bio is not freed before the split. | 
 |  */ | 
 | struct bio *bio_split(struct bio *bio, int sectors, | 
 | 		      gfp_t gfp, struct bio_set *bs) | 
 | { | 
 | 	struct bio *split = NULL; | 
 |  | 
 | 	BUG_ON(sectors <= 0); | 
 | 	BUG_ON(sectors >= bio_sectors(bio)); | 
 |  | 
 | 	/* | 
 | 	 * Discards need a mutable bio_vec to accommodate the payload | 
 | 	 * required by the DSM TRIM and UNMAP commands. | 
 | 	 */ | 
 | 	if (bio_op(bio) == REQ_OP_DISCARD || bio_op(bio) == REQ_OP_SECURE_ERASE) | 
 | 		split = bio_clone_bioset(bio, gfp, bs); | 
 | 	else | 
 | 		split = bio_clone_fast(bio, gfp, bs); | 
 |  | 
 | 	if (!split) | 
 | 		return NULL; | 
 |  | 
 | 	split->bi_iter.bi_size = sectors << 9; | 
 |  | 
 | 	if (bio_integrity(split)) | 
 | 		bio_integrity_trim(split, 0, sectors); | 
 |  | 
 | 	bio_advance(bio, split->bi_iter.bi_size); | 
 |  | 
 | 	return split; | 
 | } | 
 | EXPORT_SYMBOL(bio_split); | 
 |  | 
 | /** | 
 |  * bio_trim - trim a bio | 
 |  * @bio:	bio to trim | 
 |  * @offset:	number of sectors to trim from the front of @bio | 
 |  * @size:	size we want to trim @bio to, in sectors | 
 |  */ | 
 | void bio_trim(struct bio *bio, int offset, int size) | 
 | { | 
 | 	/* 'bio' is a cloned bio which we need to trim to match | 
 | 	 * the given offset and size. | 
 | 	 */ | 
 |  | 
 | 	size <<= 9; | 
 | 	if (offset == 0 && size == bio->bi_iter.bi_size) | 
 | 		return; | 
 |  | 
 | 	bio_clear_flag(bio, BIO_SEG_VALID); | 
 |  | 
 | 	bio_advance(bio, offset << 9); | 
 |  | 
 | 	bio->bi_iter.bi_size = size; | 
 | } | 
 | EXPORT_SYMBOL_GPL(bio_trim); | 
 |  | 
 | /* | 
 |  * create memory pools for biovec's in a bio_set. | 
 |  * use the global biovec slabs created for general use. | 
 |  */ | 
 | mempool_t *biovec_create_pool(int pool_entries) | 
 | { | 
 | 	struct biovec_slab *bp = bvec_slabs + BVEC_POOL_MAX; | 
 |  | 
 | 	return mempool_create_slab_pool(pool_entries, bp->slab); | 
 | } | 
 |  | 
 | void bioset_free(struct bio_set *bs) | 
 | { | 
 | 	if (bs->rescue_workqueue) | 
 | 		destroy_workqueue(bs->rescue_workqueue); | 
 |  | 
 | 	if (bs->bio_pool) | 
 | 		mempool_destroy(bs->bio_pool); | 
 |  | 
 | 	if (bs->bvec_pool) | 
 | 		mempool_destroy(bs->bvec_pool); | 
 |  | 
 | 	bioset_integrity_free(bs); | 
 | 	bio_put_slab(bs); | 
 |  | 
 | 	kfree(bs); | 
 | } | 
 | EXPORT_SYMBOL(bioset_free); | 
 |  | 
 | static struct bio_set *__bioset_create(unsigned int pool_size, | 
 | 				       unsigned int front_pad, | 
 | 				       bool create_bvec_pool) | 
 | { | 
 | 	unsigned int back_pad = BIO_INLINE_VECS * sizeof(struct bio_vec); | 
 | 	struct bio_set *bs; | 
 |  | 
 | 	bs = kzalloc(sizeof(*bs), GFP_KERNEL); | 
 | 	if (!bs) | 
 | 		return NULL; | 
 |  | 
 | 	bs->front_pad = front_pad; | 
 |  | 
 | 	spin_lock_init(&bs->rescue_lock); | 
 | 	bio_list_init(&bs->rescue_list); | 
 | 	INIT_WORK(&bs->rescue_work, bio_alloc_rescue); | 
 |  | 
 | 	bs->bio_slab = bio_find_or_create_slab(front_pad + back_pad); | 
 | 	if (!bs->bio_slab) { | 
 | 		kfree(bs); | 
 | 		return NULL; | 
 | 	} | 
 |  | 
 | 	bs->bio_pool = mempool_create_slab_pool(pool_size, bs->bio_slab); | 
 | 	if (!bs->bio_pool) | 
 | 		goto bad; | 
 |  | 
 | 	if (create_bvec_pool) { | 
 | 		bs->bvec_pool = biovec_create_pool(pool_size); | 
 | 		if (!bs->bvec_pool) | 
 | 			goto bad; | 
 | 	} | 
 |  | 
 | 	bs->rescue_workqueue = alloc_workqueue("bioset", WQ_MEM_RECLAIM, 0); | 
 | 	if (!bs->rescue_workqueue) | 
 | 		goto bad; | 
 |  | 
 | 	return bs; | 
 | bad: | 
 | 	bioset_free(bs); | 
 | 	return NULL; | 
 | } | 
 |  | 
 | /** | 
 |  * bioset_create  - Create a bio_set | 
 |  * @pool_size:	Number of bio and bio_vecs to cache in the mempool | 
 |  * @front_pad:	Number of bytes to allocate in front of the returned bio | 
 |  * | 
 |  * Description: | 
 |  *    Set up a bio_set to be used with @bio_alloc_bioset. Allows the caller | 
 |  *    to ask for a number of bytes to be allocated in front of the bio. | 
 |  *    Front pad allocation is useful for embedding the bio inside | 
 |  *    another structure, to avoid allocating extra data to go with the bio. | 
 |  *    Note that the bio must be embedded at the END of that structure always, | 
 |  *    or things will break badly. | 
 |  */ | 
 | struct bio_set *bioset_create(unsigned int pool_size, unsigned int front_pad) | 
 | { | 
 | 	return __bioset_create(pool_size, front_pad, true); | 
 | } | 
 | EXPORT_SYMBOL(bioset_create); | 
 |  | 
 | /** | 
 |  * bioset_create_nobvec  - Create a bio_set without bio_vec mempool | 
 |  * @pool_size:	Number of bio to cache in the mempool | 
 |  * @front_pad:	Number of bytes to allocate in front of the returned bio | 
 |  * | 
 |  * Description: | 
 |  *    Same functionality as bioset_create() except that mempool is not | 
 |  *    created for bio_vecs. Saving some memory for bio_clone_fast() users. | 
 |  */ | 
 | struct bio_set *bioset_create_nobvec(unsigned int pool_size, unsigned int front_pad) | 
 | { | 
 | 	return __bioset_create(pool_size, front_pad, false); | 
 | } | 
 | EXPORT_SYMBOL(bioset_create_nobvec); | 
 |  | 
 | #ifdef CONFIG_BLK_CGROUP | 
 |  | 
 | /** | 
 |  * bio_associate_blkcg - associate a bio with the specified blkcg | 
 |  * @bio: target bio | 
 |  * @blkcg_css: css of the blkcg to associate | 
 |  * | 
 |  * Associate @bio with the blkcg specified by @blkcg_css.  Block layer will | 
 |  * treat @bio as if it were issued by a task which belongs to the blkcg. | 
 |  * | 
 |  * This function takes an extra reference of @blkcg_css which will be put | 
 |  * when @bio is released.  The caller must own @bio and is responsible for | 
 |  * synchronizing calls to this function. | 
 |  */ | 
 | int bio_associate_blkcg(struct bio *bio, struct cgroup_subsys_state *blkcg_css) | 
 | { | 
 | 	if (unlikely(bio->bi_css)) | 
 | 		return -EBUSY; | 
 | 	css_get(blkcg_css); | 
 | 	bio->bi_css = blkcg_css; | 
 | 	return 0; | 
 | } | 
 | EXPORT_SYMBOL_GPL(bio_associate_blkcg); | 
 |  | 
 | /** | 
 |  * bio_associate_current - associate a bio with %current | 
 |  * @bio: target bio | 
 |  * | 
 |  * Associate @bio with %current if it hasn't been associated yet.  Block | 
 |  * layer will treat @bio as if it were issued by %current no matter which | 
 |  * task actually issues it. | 
 |  * | 
 |  * This function takes an extra reference of @task's io_context and blkcg | 
 |  * which will be put when @bio is released.  The caller must own @bio, | 
 |  * ensure %current->io_context exists, and is responsible for synchronizing | 
 |  * calls to this function. | 
 |  */ | 
 | int bio_associate_current(struct bio *bio) | 
 | { | 
 | 	struct io_context *ioc; | 
 |  | 
 | 	if (bio->bi_css) | 
 | 		return -EBUSY; | 
 |  | 
 | 	ioc = current->io_context; | 
 | 	if (!ioc) | 
 | 		return -ENOENT; | 
 |  | 
 | 	get_io_context_active(ioc); | 
 | 	bio->bi_ioc = ioc; | 
 | 	bio->bi_css = task_get_css(current, io_cgrp_id); | 
 | 	return 0; | 
 | } | 
 | EXPORT_SYMBOL_GPL(bio_associate_current); | 
 |  | 
 | /** | 
 |  * bio_disassociate_task - undo bio_associate_current() | 
 |  * @bio: target bio | 
 |  */ | 
 | void bio_disassociate_task(struct bio *bio) | 
 | { | 
 | 	if (bio->bi_ioc) { | 
 | 		put_io_context(bio->bi_ioc); | 
 | 		bio->bi_ioc = NULL; | 
 | 	} | 
 | 	if (bio->bi_css) { | 
 | 		css_put(bio->bi_css); | 
 | 		bio->bi_css = NULL; | 
 | 	} | 
 | } | 
 |  | 
 | /** | 
 |  * bio_clone_blkcg_association - clone blkcg association from src to dst bio | 
 |  * @dst: destination bio | 
 |  * @src: source bio | 
 |  */ | 
 | void bio_clone_blkcg_association(struct bio *dst, struct bio *src) | 
 | { | 
 | 	if (src->bi_css) | 
 | 		WARN_ON(bio_associate_blkcg(dst, src->bi_css)); | 
 | } | 
 |  | 
 | #endif /* CONFIG_BLK_CGROUP */ | 
 |  | 
 | static void __init biovec_init_slabs(void) | 
 | { | 
 | 	int i; | 
 |  | 
 | 	for (i = 0; i < BVEC_POOL_NR; i++) { | 
 | 		int size; | 
 | 		struct biovec_slab *bvs = bvec_slabs + i; | 
 |  | 
 | 		if (bvs->nr_vecs <= BIO_INLINE_VECS) { | 
 | 			bvs->slab = NULL; | 
 | 			continue; | 
 | 		} | 
 |  | 
 | 		size = bvs->nr_vecs * sizeof(struct bio_vec); | 
 | 		bvs->slab = kmem_cache_create(bvs->name, size, 0, | 
 |                                 SLAB_HWCACHE_ALIGN|SLAB_PANIC, NULL); | 
 | 	} | 
 | } | 
 |  | 
 | static int __init init_bio(void) | 
 | { | 
 | 	bio_slab_max = 2; | 
 | 	bio_slab_nr = 0; | 
 | 	bio_slabs = kzalloc(bio_slab_max * sizeof(struct bio_slab), GFP_KERNEL); | 
 | 	if (!bio_slabs) | 
 | 		panic("bio: can't allocate bios\n"); | 
 |  | 
 | 	bio_integrity_init(); | 
 | 	biovec_init_slabs(); | 
 |  | 
 | 	fs_bio_set = bioset_create(BIO_POOL_SIZE, 0); | 
 | 	if (!fs_bio_set) | 
 | 		panic("bio: can't allocate bios\n"); | 
 |  | 
 | 	if (bioset_integrity_create(fs_bio_set, BIO_POOL_SIZE)) | 
 | 		panic("bio: can't create integrity pool\n"); | 
 |  | 
 | 	return 0; | 
 | } | 
 | subsys_initcall(init_bio); |