blob: f5d7762360a57af88cf53a35b0f1bf1af5a37219 [file] [log] [blame]
/*
* Copyright (c) 2008 Daniel Mueller (daniel@danm.de)
* Copyright (c) 2007 David McCullough (david_mccullough@securecomputing.com)
* Copyright (c) 2000 Jason L. Wright (jason@thought.net)
* Copyright (c) 2000 Theo de Raadt (deraadt@openbsd.org)
* Copyright (c) 2001 Patrik Lindergren (patrik@ipunplugged.com)
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
* IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
* WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
* DISCLAIMED. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT,
* INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
* (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
* SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
* STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
* ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
* POSSIBILITY OF SUCH DAMAGE.
*
* Effort sponsored in part by the Defense Advanced Research Projects
* Agency (DARPA) and Air Force Research Laboratory, Air Force
* Materiel Command, USAF, under agreement number F30602-01-2-0537.
*
*/
#undef UBSEC_DEBUG
#undef UBSEC_VERBOSE_DEBUG
#ifdef UBSEC_VERBOSE_DEBUG
#define UBSEC_DEBUG
#endif
/*
* uBsec BCM5365 hardware crypto accelerator
*/
#include <linux/kernel.h>
#include <linux/module.h>
#include <linux/moduleparam.h>
#include <linux/proc_fs.h>
#include <linux/types.h>
#include <linux/init.h>
#include <linux/delay.h>
#include <linux/interrupt.h>
#include <linux/fs.h>
#include <linux/random.h>
#include <linux/skbuff.h>
#include <linux/stat.h>
#include <asm/io.h>
#include <linux/ssb/ssb.h>
/*
* BSD queue
*/
//#include "bsdqueue.h"
/*
* OCF
*/
#include <cryptodev.h>
#include <uio.h>
#define HMAC_HACK 1
#define HMAC_HACK 1
#ifdef HMAC_HACK
#include <safe/hmachack.h>
#include <safe/md5.h>
#include <safe/md5.c>
#include <safe/sha1.h>
#include <safe/sha1.c>
#endif
#include "bsdqueue.h"
#include "ubsecreg.h"
#include "ubsecvar.h"
#define DRV_MODULE_NAME "ubsec_ssb"
#define PFX DRV_MODULE_NAME ": "
#define DRV_MODULE_VERSION "0.02"
#define DRV_MODULE_RELDATE "Feb 21, 2009"
#if 1
#define DPRINTF(a...) \
if (debug) \
{ \
printk(DRV_MODULE_NAME ": " a); \
}
#else
#define DPRINTF(a...)
#endif
/*
* Prototypes
*/
static irqreturn_t ubsec_ssb_isr(int, void *, struct pt_regs *);
static int __devinit ubsec_ssb_probe(struct ssb_device *sdev,
const struct ssb_device_id *ent);
static void __devexit ubsec_ssb_remove(struct ssb_device *sdev);
int ubsec_attach(struct ssb_device *sdev, const struct ssb_device_id *ent,
struct device *self);
static void ubsec_setup_mackey(struct ubsec_session *ses, int algo,
caddr_t key, int klen);
static int dma_map_skb(struct ubsec_softc *sc,
struct ubsec_dma_alloc* q_map, struct sk_buff *skb, int *mlen);
static int dma_map_uio(struct ubsec_softc *sc,
struct ubsec_dma_alloc *q_map, struct uio *uio, int *mlen);
static void dma_unmap(struct ubsec_softc *sc,
struct ubsec_dma_alloc *q_map, int mlen);
static int ubsec_dmamap_aligned(struct ubsec_softc *sc,
const struct ubsec_dma_alloc *q_map, int mlen);
#ifdef UBSEC_DEBUG
static int proc_read(char *buf, char **start, off_t offset,
int size, int *peof, void *data);
#endif
void ubsec_reset_board(struct ubsec_softc *);
void ubsec_init_board(struct ubsec_softc *);
void ubsec_cleanchip(struct ubsec_softc *);
void ubsec_totalreset(struct ubsec_softc *);
int ubsec_free_q(struct ubsec_softc*, struct ubsec_q *);
static int ubsec_newsession(device_t, u_int32_t *, struct cryptoini *);
static int ubsec_freesession(device_t, u_int64_t);
static int ubsec_process(device_t, struct cryptop *, int);
void ubsec_callback(struct ubsec_softc *, struct ubsec_q *);
void ubsec_feed(struct ubsec_softc *);
void ubsec_mcopy(struct sk_buff *, struct sk_buff *, int, int);
void ubsec_dma_free(struct ubsec_softc *, struct ubsec_dma_alloc *);
int ubsec_dma_malloc(struct ubsec_softc *, struct ubsec_dma_alloc *,
size_t, int);
/* DEBUG crap... */
void ubsec_dump_pb(struct ubsec_pktbuf *);
void ubsec_dump_mcr(struct ubsec_mcr *);
#define READ_REG(sc,r) \
ssb_read32((sc)->sdev, (r));
#define WRITE_REG(sc,r,val) \
ssb_write32((sc)->sdev, (r), (val));
#define READ_REG_SDEV(sdev,r) \
ssb_read32((sdev), (r));
#define WRITE_REG_SDEV(sdev,r,val) \
ssb_write32((sdev), (r), (val));
#define SWAP32(x) (x) = htole32(ntohl((x)))
#define HTOLE32(x) (x) = htole32(x)
#ifdef __LITTLE_ENDIAN
#define letoh16(x) (x)
#define letoh32(x) (x)
#endif
static int debug;
module_param(debug, int, 0644);
MODULE_PARM_DESC(debug, "Enable debug output");
#define UBSEC_SSB_MAX_CHIPS 1
static struct ubsec_softc *ubsec_chip_idx[UBSEC_SSB_MAX_CHIPS];
static struct ubsec_stats ubsecstats;
#ifdef UBSEC_DEBUG
static struct proc_dir_entry *procdebug;
#endif
static struct ssb_device_id ubsec_ssb_tbl[] = {
/* Broadcom BCM5365P IPSec Core */
SSB_DEVICE(SSB_VENDOR_BROADCOM, SSB_DEV_IPSEC, SSB_ANY_REV),
SSB_DEVTABLE_END
};
static struct ssb_driver ubsec_ssb_driver = {
.name = DRV_MODULE_NAME,
.id_table = ubsec_ssb_tbl,
.probe = ubsec_ssb_probe,
.remove = __devexit_p(ubsec_ssb_remove),
/*
.suspend = ubsec_ssb_suspend,
.resume = ubsec_ssb_resume
*/
};
static device_method_t ubsec_ssb_methods = {
/* crypto device methods */
DEVMETHOD(cryptodev_newsession, ubsec_newsession),
DEVMETHOD(cryptodev_freesession,ubsec_freesession),
DEVMETHOD(cryptodev_process, ubsec_process),
};
#ifdef UBSEC_DEBUG
static int
proc_read(char *buf, char **start, off_t offset,
int size, int *peof, void *data)
{
int i = 0, byteswritten = 0, ret;
unsigned int stat, ctrl;
#ifdef UBSEC_VERBOSE_DEBUG
struct ubsec_q *q;
struct ubsec_dma *dmap;
#endif
while ((i < UBSEC_SSB_MAX_CHIPS) && (ubsec_chip_idx[i] != NULL))
{
struct ubsec_softc *sc = ubsec_chip_idx[i];
stat = READ_REG(sc, BS_STAT);
ctrl = READ_REG(sc, BS_CTRL);
ret = snprintf((buf + byteswritten),
(size - byteswritten) ,
"DEV %d, DMASTAT %08x, DMACTRL %08x\n", i, stat, ctrl);
byteswritten += ret;
#ifdef UBSEC_VERBOSE_DEBUG
printf("DEV %d, DMASTAT %08x, DMACTRL %08x\n", i, stat, ctrl);
/* Dump all queues MCRs */
if (!BSD_SIMPLEQ_EMPTY(&sc->sc_qchip)) {
BSD_SIMPLEQ_FOREACH(q, &sc->sc_qchip, q_next)
{
dmap = q->q_dma;
ubsec_dump_mcr(&dmap->d_dma->d_mcr);
}
}
#endif
i++;
}
*peof = 1;
return byteswritten;
}
#endif
/*
* map in a given sk_buff
*/
static int
dma_map_skb(struct ubsec_softc *sc, struct ubsec_dma_alloc* q_map, struct sk_buff *skb, int *mlen)
{
int i = 0;
dma_addr_t tmp;
#ifdef UBSEC_DEBUG
DPRINTF("%s()\n", __FUNCTION__);
#endif
/*
* We support only a limited number of fragments.
*/
if (unlikely((skb_shinfo(skb)->nr_frags + 1) >= UBS_MAX_SCATTER))
{
printk(KERN_ERR "Only %d scatter fragments are supported.\n", UBS_MAX_SCATTER);
return (-ENOMEM);
}
#ifdef UBSEC_VERBOSE_DEBUG
DPRINTF("%s - map %d 0x%x %d\n", __FUNCTION__, 0, (unsigned int)skb->data, skb_headlen(skb));
#endif
/* first data package */
tmp = dma_map_single(sc->sc_dv,
skb->data,
skb_headlen(skb),
DMA_BIDIRECTIONAL);
q_map[i].dma_paddr = tmp;
q_map[i].dma_vaddr = skb->data;
q_map[i].dma_size = skb_headlen(skb);
if (unlikely(tmp == 0))
{
printk(KERN_ERR "Could not map memory region for dma.\n");
return (-EINVAL);
}
#ifdef UBSEC_VERBOSE_DEBUG
DPRINTF("%s - map %d done physical addr 0x%x\n", __FUNCTION__, 0, (unsigned int)tmp);
#endif
/* all other data packages */
for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
#ifdef UBSEC_VERBOSE_DEBUG
DPRINTF("%s - map %d 0x%x %d\n", __FUNCTION__, i + 1,
(unsigned int)page_address(skb_frag_page(&skb_shinfo(skb)->frags[i])) +
skb_shinfo(skb)->frags[i].page_offset, skb_shinfo(skb)->frags[i].size);
#endif
tmp = dma_map_single(sc->sc_dv,
page_address(skb_frag_page(&skb_shinfo(skb)->frags[i])) +
skb_shinfo(skb)->frags[i].page_offset,
skb_shinfo(skb)->frags[i].size,
DMA_BIDIRECTIONAL);
q_map[i + 1].dma_paddr = tmp;
q_map[i + 1].dma_vaddr = (void*)(page_address(skb_frag_page(&skb_shinfo(skb)->frags[i])) +
skb_shinfo(skb)->frags[i].page_offset);
q_map[i + 1].dma_size = skb_shinfo(skb)->frags[i].size;
if (unlikely(tmp == 0))
{
printk(KERN_ERR "Could not map memory region for dma.\n");
return (-EINVAL);
}
#ifdef UBSEC_VERBOSE_DEBUG
DPRINTF("%s - map %d done physical addr 0x%x\n", __FUNCTION__, i + 1, (unsigned int)tmp);
#endif
}
*mlen = i + 1;
return(0);
}
/*
* map in a given uio buffer
*/
static int
dma_map_uio(struct ubsec_softc *sc, struct ubsec_dma_alloc *q_map, struct uio *uio, int *mlen)
{
struct iovec *iov = uio->uio_iov;
int n;
dma_addr_t tmp;
#ifdef UBSEC_DEBUG
DPRINTF("%s()\n", __FUNCTION__);
#endif
/*
* We support only a limited number of fragments.
*/
if (unlikely(uio->uio_iovcnt >= UBS_MAX_SCATTER))
{
printk(KERN_ERR "Only %d scatter fragments are supported.\n", UBS_MAX_SCATTER);
return (-ENOMEM);
}
for (n = 0; n < uio->uio_iovcnt; n++) {
#ifdef UBSEC_VERBOSE_DEBUG
DPRINTF("%s - map %d 0x%x %d\n", __FUNCTION__, n, (unsigned int)iov->iov_base, iov->iov_len);
#endif
tmp = dma_map_single(sc->sc_dv,
iov->iov_base,
iov->iov_len,
DMA_BIDIRECTIONAL);
q_map[n].dma_paddr = tmp;
q_map[n].dma_vaddr = iov->iov_base;
q_map[n].dma_size = iov->iov_len;
if (unlikely(tmp == 0))
{
printk(KERN_ERR "Could not map memory region for dma.\n");
return (-EINVAL);
}
#ifdef UBSEC_VERBOSE_DEBUG
DPRINTF("%s - map %d done physical addr 0x%x\n", __FUNCTION__, n, (unsigned int)tmp);
#endif
iov++;
}
*mlen = n;
return(0);
}
static void
dma_unmap(struct ubsec_softc *sc, struct ubsec_dma_alloc *q_map, int mlen)
{
int i;
#ifdef UBSEC_DEBUG
DPRINTF("%s()\n", __FUNCTION__);
#endif
for(i = 0; i < mlen; i++)
{
#ifdef UBSEC_VERBOSE_DEBUG
DPRINTF("%s - unmap %d 0x%x %d\n", __FUNCTION__, i, (unsigned int)q_map[i].dma_paddr, q_map[i].dma_size);
#endif
dma_unmap_single(sc->sc_dv,
q_map[i].dma_paddr,
q_map[i].dma_size,
DMA_BIDIRECTIONAL);
}
return;
}
/*
* Is the operand suitable aligned for direct DMA. Each
* segment must be aligned on a 32-bit boundary and all
* but the last segment must be a multiple of 4 bytes.
*/
static int
ubsec_dmamap_aligned(struct ubsec_softc *sc, const struct ubsec_dma_alloc *q_map, int mlen)
{
int i;
#ifdef UBSEC_DEBUG
DPRINTF("%s()\n", __FUNCTION__);
#endif
for (i = 0; i < mlen; i++) {
if (q_map[i].dma_paddr & 3)
return (0);
if (i != (mlen - 1) && (q_map[i].dma_size & 3))
return (0);
}
return (1);
}
#define N(a) (sizeof(a) / sizeof (a[0]))
static void
ubsec_setup_mackey(struct ubsec_session *ses, int algo, caddr_t key, int klen)
{
#ifdef HMAC_HACK
MD5_CTX md5ctx;
SHA1_CTX sha1ctx;
int i;
#ifdef UBSEC_DEBUG
DPRINTF("%s()\n", __FUNCTION__);
#endif
for (i = 0; i < klen; i++)
key[i] ^= HMAC_IPAD_VAL;
if (algo == CRYPTO_MD5_HMAC) {
MD5Init(&md5ctx);
MD5Update(&md5ctx, key, klen);
MD5Update(&md5ctx, hmac_ipad_buffer, MD5_HMAC_BLOCK_LEN - klen);
bcopy(md5ctx.md5_st8, ses->ses_hminner, sizeof(md5ctx.md5_st8));
} else {
SHA1Init(&sha1ctx);
SHA1Update(&sha1ctx, key, klen);
SHA1Update(&sha1ctx, hmac_ipad_buffer,
SHA1_HMAC_BLOCK_LEN - klen);
bcopy(sha1ctx.h.b32, ses->ses_hminner, sizeof(sha1ctx.h.b32));
}
for (i = 0; i < klen; i++)
key[i] ^= (HMAC_IPAD_VAL ^ HMAC_OPAD_VAL);
if (algo == CRYPTO_MD5_HMAC) {
MD5Init(&md5ctx);
MD5Update(&md5ctx, key, klen);
MD5Update(&md5ctx, hmac_opad_buffer, MD5_HMAC_BLOCK_LEN - klen);
bcopy(md5ctx.md5_st8, ses->ses_hmouter, sizeof(md5ctx.md5_st8));
} else {
SHA1Init(&sha1ctx);
SHA1Update(&sha1ctx, key, klen);
SHA1Update(&sha1ctx, hmac_opad_buffer,
SHA1_HMAC_BLOCK_LEN - klen);
bcopy(sha1ctx.h.b32, ses->ses_hmouter, sizeof(sha1ctx.h.b32));
}
for (i = 0; i < klen; i++)
key[i] ^= HMAC_OPAD_VAL;
#else /* HMAC_HACK */
DPRINTF("md5/sha not implemented\n");
#endif /* HMAC_HACK */
}
#undef N
static int
__devinit ubsec_ssb_probe(struct ssb_device *sdev,
const struct ssb_device_id *ent)
{
int err;
#ifdef UBSEC_DEBUG
DPRINTF("%s()\n", __FUNCTION__);
#endif
err = ssb_bus_powerup(sdev->bus, 0);
if (err) {
dev_err(sdev->dev, "Failed to powerup the bus\n");
goto err_out;
}
err = request_irq(sdev->irq, (irq_handler_t)ubsec_ssb_isr,
IRQF_DISABLED | IRQF_SHARED, DRV_MODULE_NAME, sdev);
if (err) {
dev_err(sdev->dev, "Could not request irq\n");
goto err_out_powerdown;
}
#if (LINUX_VERSION_CODE >= KERNEL_VERSION(2,6,36))
err = dma_set_mask(sdev->dma_dev, DMA_BIT_MASK(32)) ||
dma_set_coherent_mask(sdev->dma_dev, DMA_BIT_MASK(32));
#else
err = ssb_dma_set_mask(sdev, DMA_32BIT_MASK);
#endif
if (err) {
dev_err(sdev->dev,
"Required 32BIT DMA mask unsupported by the system.\n");
goto err_out_free_irq;
}
printk(KERN_INFO "Sentry5(tm) ROBOGateway(tm) IPSec Core at IRQ %u\n",
sdev->irq);
DPRINTF("Vendor: %x, core id: %x, revision: %x\n",
sdev->id.vendor, sdev->id.coreid, sdev->id.revision);
ssb_device_enable(sdev, 0);
if (ubsec_attach(sdev, ent, sdev->dev) != 0)
goto err_out_disable;
#ifdef UBSEC_DEBUG
procdebug = create_proc_entry(DRV_MODULE_NAME, S_IRUSR, NULL);
if (procdebug)
{
procdebug->read_proc = proc_read;
procdebug->data = NULL;
} else
DPRINTF("Unable to create proc file.\n");
#endif
return 0;
err_out_disable:
ssb_device_disable(sdev, 0);
err_out_free_irq:
free_irq(sdev->irq, sdev);
err_out_powerdown:
ssb_bus_may_powerdown(sdev->bus);
err_out:
return err;
}
static void __devexit ubsec_ssb_remove(struct ssb_device *sdev) {
struct ubsec_softc *sc;
unsigned int ctrlflgs;
struct ubsec_dma *dmap;
u_int32_t i;
#ifdef UBSEC_DEBUG
DPRINTF("%s()\n", __FUNCTION__);
#endif
ctrlflgs = READ_REG_SDEV(sdev, BS_CTRL);
/* disable all IPSec Core interrupts globally */
ctrlflgs ^= (BS_CTRL_MCR1INT | BS_CTRL_MCR2INT |
BS_CTRL_DMAERR);
WRITE_REG_SDEV(sdev, BS_CTRL, ctrlflgs);
free_irq(sdev->irq, sdev);
sc = (struct ubsec_softc *)ssb_get_drvdata(sdev);
/* unregister all crypto algorithms */
crypto_unregister_all(sc->sc_cid);
/* Free queue / dma memory */
for (i = 0; i < UBS_MAX_NQUEUE; i++) {
struct ubsec_q *q;
q = sc->sc_queuea[i];
if (q != NULL)
{
dmap = q->q_dma;
if (dmap != NULL)
{
ubsec_dma_free(sc, &dmap->d_alloc);
q->q_dma = NULL;
}
kfree(q);
}
sc->sc_queuea[i] = NULL;
}
ssb_device_disable(sdev, 0);
ssb_bus_may_powerdown(sdev->bus);
ssb_set_drvdata(sdev, NULL);
#ifdef UBSEC_DEBUG
if (procdebug)
remove_proc_entry(DRV_MODULE_NAME, NULL);
#endif
}
int
ubsec_attach(struct ssb_device *sdev, const struct ssb_device_id *ent,
struct device *self)
{
struct ubsec_softc *sc = NULL;
struct ubsec_dma *dmap;
u_int32_t i;
static int num_chips = 0;
#ifdef UBSEC_DEBUG
DPRINTF("%s()\n", __FUNCTION__);
#endif
sc = (struct ubsec_softc *) kmalloc(sizeof(*sc), GFP_KERNEL);
if (!sc)
return(-ENOMEM);
memset(sc, 0, sizeof(*sc));
sc->sc_dv = sdev->dev;
sc->sdev = sdev;
spin_lock_init(&sc->sc_ringmtx);
softc_device_init(sc, "ubsec_ssb", num_chips, ubsec_ssb_methods);
/* Maybe someday there are boards with more than one chip available */
if (num_chips < UBSEC_SSB_MAX_CHIPS) {
ubsec_chip_idx[device_get_unit(sc->sc_dev)] = sc;
num_chips++;
}
ssb_set_drvdata(sdev, sc);
BSD_SIMPLEQ_INIT(&sc->sc_queue);
BSD_SIMPLEQ_INIT(&sc->sc_qchip);
BSD_SIMPLEQ_INIT(&sc->sc_queue2);
BSD_SIMPLEQ_INIT(&sc->sc_qchip2);
BSD_SIMPLEQ_INIT(&sc->sc_q2free);
sc->sc_statmask = BS_STAT_MCR1_DONE | BS_STAT_DMAERR;
sc->sc_cid = crypto_get_driverid(softc_get_device(sc), CRYPTOCAP_F_HARDWARE);
if (sc->sc_cid < 0) {
device_printf(sc->sc_dev, "could not get crypto driver id\n");
return -1;
}
BSD_SIMPLEQ_INIT(&sc->sc_freequeue);
dmap = sc->sc_dmaa;
for (i = 0; i < UBS_MAX_NQUEUE; i++, dmap++) {
struct ubsec_q *q;
q = (struct ubsec_q *)kmalloc(sizeof(struct ubsec_q), GFP_KERNEL);
if (q == NULL) {
printf(": can't allocate queue buffers\n");
break;
}
if (ubsec_dma_malloc(sc, &dmap->d_alloc, sizeof(struct ubsec_dmachunk),0)) {
printf(": can't allocate dma buffers\n");
kfree(q);
break;
}
dmap->d_dma = (struct ubsec_dmachunk *)dmap->d_alloc.dma_vaddr;
q->q_dma = dmap;
sc->sc_queuea[i] = q;
BSD_SIMPLEQ_INSERT_TAIL(&sc->sc_freequeue, q, q_next);
}
/*
* Reset Broadcom chip
*/
ubsec_reset_board(sc);
/*
* Init Broadcom chip
*/
ubsec_init_board(sc);
/* supported crypto algorithms */
crypto_register(sc->sc_cid, CRYPTO_3DES_CBC, 0, 0);
crypto_register(sc->sc_cid, CRYPTO_DES_CBC, 0, 0);
if (sc->sc_flags & UBS_FLAGS_AES) {
crypto_register(sc->sc_cid, CRYPTO_AES_CBC, 0, 0);
printf(KERN_INFO DRV_MODULE_NAME ": DES 3DES AES128 AES192 AES256 MD5_HMAC SHA1_HMAC\n");
}
else
printf(KERN_INFO DRV_MODULE_NAME ": DES 3DES MD5_HMAC SHA1_HMAC\n");
crypto_register(sc->sc_cid, CRYPTO_MD5_HMAC, 0, 0);
crypto_register(sc->sc_cid, CRYPTO_SHA1_HMAC, 0, 0);
return 0;
}
/*
* UBSEC Interrupt routine
*/
static irqreturn_t
ubsec_ssb_isr(int irq, void *arg, struct pt_regs *regs)
{
struct ubsec_softc *sc = NULL;
volatile u_int32_t stat;
struct ubsec_q *q;
struct ubsec_dma *dmap;
int npkts = 0, i;
#ifdef UBSEC_VERBOSE_DEBUG
DPRINTF("%s()\n", __FUNCTION__);
#endif
sc = (struct ubsec_softc *)ssb_get_drvdata(arg);
stat = READ_REG(sc, BS_STAT);
stat &= sc->sc_statmask;
if (stat == 0)
return IRQ_NONE;
WRITE_REG(sc, BS_STAT, stat); /* IACK */
/*
* Check to see if we have any packets waiting for us
*/
if ((stat & BS_STAT_MCR1_DONE)) {
while (!BSD_SIMPLEQ_EMPTY(&sc->sc_qchip)) {
q = BSD_SIMPLEQ_FIRST(&sc->sc_qchip);
dmap = q->q_dma;
if ((dmap->d_dma->d_mcr.mcr_flags & htole16(UBS_MCR_DONE)) == 0)
{
DPRINTF("error while processing MCR. Flags = %x\n", dmap->d_dma->d_mcr.mcr_flags);
break;
}
BSD_SIMPLEQ_REMOVE_HEAD(&sc->sc_qchip, q_next);
npkts = q->q_nstacked_mcrs;
/*
* search for further sc_qchip ubsec_q's that share
* the same MCR, and complete them too, they must be
* at the top.
*/
for (i = 0; i < npkts; i++) {
if(q->q_stacked_mcr[i])
ubsec_callback(sc, q->q_stacked_mcr[i]);
else
break;
}
ubsec_callback(sc, q);
}
/*
* Don't send any more packet to chip if there has been
* a DMAERR.
*/
if (likely(!(stat & BS_STAT_DMAERR)))
ubsec_feed(sc);
else
DPRINTF("DMA error occurred. Stop feeding crypto chip.\n");
}
/*
* Check to see if we got any DMA Error
*/
if (stat & BS_STAT_DMAERR) {
volatile u_int32_t a = READ_REG(sc, BS_ERR);
printf(KERN_ERR "%s: dmaerr %s@%08x\n", DRV_MODULE_NAME,
(a & BS_ERR_READ) ? "read" : "write", a & BS_ERR_ADDR);
ubsecstats.hst_dmaerr++;
ubsec_totalreset(sc);
ubsec_feed(sc);
}
return IRQ_HANDLED;
}
/*
* ubsec_feed() - aggregate and post requests to chip
* It is assumed that the caller set splnet()
*/
void
ubsec_feed(struct ubsec_softc *sc)
{
#ifdef UBSEC_VERBOSE_DEBUG
static int max;
#endif
struct ubsec_q *q, *q2;
int npkts, i;
void *v;
u_int32_t stat;
npkts = sc->sc_nqueue;
if (npkts > UBS_MAX_AGGR)
npkts = UBS_MAX_AGGR;
if (npkts < 2)
goto feed1;
stat = READ_REG(sc, BS_STAT);
if (stat & (BS_STAT_MCR1_FULL | BS_STAT_DMAERR)) {
if(stat & BS_STAT_DMAERR) {
ubsec_totalreset(sc);
ubsecstats.hst_dmaerr++;
}
return;
}
#ifdef UBSEC_VERBOSE_DEBUG
DPRINTF("merging %d records\n", npkts);
/* XXX temporary aggregation statistics reporting code */
if (max < npkts) {
max = npkts;
DPRINTF("%s: new max aggregate %d\n", DRV_MODULE_NAME, max);
}
#endif /* UBSEC_VERBOSE_DEBUG */
q = BSD_SIMPLEQ_FIRST(&sc->sc_queue);
BSD_SIMPLEQ_REMOVE_HEAD(&sc->sc_queue, q_next);
--sc->sc_nqueue;
#if 0
/*
* XXX
* We use dma_map_single() - no sync required!
*/
bus_dmamap_sync(sc->sc_dmat, q->q_src_map,
0, q->q_src_map->dm_mapsize, BUS_DMASYNC_PREWRITE);
if (q->q_dst_map != NULL)
bus_dmamap_sync(sc->sc_dmat, q->q_dst_map,
0, q->q_dst_map->dm_mapsize, BUS_DMASYNC_PREREAD);
#endif
q->q_nstacked_mcrs = npkts - 1; /* Number of packets stacked */
for (i = 0; i < q->q_nstacked_mcrs; i++) {
q2 = BSD_SIMPLEQ_FIRST(&sc->sc_queue);
#if 0
bus_dmamap_sync(sc->sc_dmat, q2->q_src_map,
0, q2->q_src_map->dm_mapsize, BUS_DMASYNC_PREWRITE);
if (q2->q_dst_map != NULL)
bus_dmamap_sync(sc->sc_dmat, q2->q_dst_map,
0, q2->q_dst_map->dm_mapsize, BUS_DMASYNC_PREREAD);
#endif
BSD_SIMPLEQ_REMOVE_HEAD(&sc->sc_queue, q_next);
--sc->sc_nqueue;
v = ((char *)&q2->q_dma->d_dma->d_mcr) + sizeof(struct ubsec_mcr) -
sizeof(struct ubsec_mcr_add);
bcopy(v, &q->q_dma->d_dma->d_mcradd[i], sizeof(struct ubsec_mcr_add));
q->q_stacked_mcr[i] = q2;
}
q->q_dma->d_dma->d_mcr.mcr_pkts = htole16(npkts);
BSD_SIMPLEQ_INSERT_TAIL(&sc->sc_qchip, q, q_next);
#if 0
bus_dmamap_sync(sc->sc_dmat, q->q_dma->d_alloc.dma_map,
0, q->q_dma->d_alloc.dma_map->dm_mapsize,
BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
#endif
WRITE_REG(sc, BS_MCR1, q->q_dma->d_alloc.dma_paddr +
offsetof(struct ubsec_dmachunk, d_mcr));
#ifdef UBSEC_VERBOSE_DEBUG
DPRINTF("feed (1): q->chip %p %08x %08x\n", q,
(u_int32_t)q->q_dma->d_alloc.dma_paddr,
(u_int32_t)(q->q_dma->d_alloc.dma_paddr +
offsetof(struct ubsec_dmachunk, d_mcr)));
#endif /* UBSEC_DEBUG */
return;
feed1:
while (!BSD_SIMPLEQ_EMPTY(&sc->sc_queue)) {
stat = READ_REG(sc, BS_STAT);
if (stat & (BS_STAT_MCR1_FULL | BS_STAT_DMAERR)) {
if(stat & BS_STAT_DMAERR) {
ubsec_totalreset(sc);
ubsecstats.hst_dmaerr++;
}
break;
}
q = BSD_SIMPLEQ_FIRST(&sc->sc_queue);
#if 0
bus_dmamap_sync(sc->sc_dmat, q->q_src_map,
0, q->q_src_map->dm_mapsize, BUS_DMASYNC_PREWRITE);
if (q->q_dst_map != NULL)
bus_dmamap_sync(sc->sc_dmat, q->q_dst_map,
0, q->q_dst_map->dm_mapsize, BUS_DMASYNC_PREREAD);
bus_dmamap_sync(sc->sc_dmat, q->q_dma->d_alloc.dma_map,
0, q->q_dma->d_alloc.dma_map->dm_mapsize,
BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
#endif
WRITE_REG(sc, BS_MCR1, q->q_dma->d_alloc.dma_paddr +
offsetof(struct ubsec_dmachunk, d_mcr));
#ifdef UBSEC_VERBOSE_DEBUG
DPRINTF("feed (2): q->chip %p %08x %08x\n", q,
(u_int32_t)q->q_dma->d_alloc.dma_paddr,
(u_int32_t)(q->q_dma->d_alloc.dma_paddr +
offsetof(struct ubsec_dmachunk, d_mcr)));
#endif /* UBSEC_DEBUG */
BSD_SIMPLEQ_REMOVE_HEAD(&sc->sc_queue, q_next);
--sc->sc_nqueue;
BSD_SIMPLEQ_INSERT_TAIL(&sc->sc_qchip, q, q_next);
}
}
/*
* Allocate a new 'session' and return an encoded session id. 'sidp'
* contains our registration id, and should contain an encoded session
* id on successful allocation.
*/
static int
ubsec_newsession(device_t dev, u_int32_t *sidp, struct cryptoini *cri)
{
struct cryptoini *c, *encini = NULL, *macini = NULL;
struct ubsec_softc *sc = NULL;
struct ubsec_session *ses = NULL;
int sesn, i;
#ifdef UBSEC_DEBUG
DPRINTF("%s()\n", __FUNCTION__);
#endif
if (sidp == NULL || cri == NULL)
return (EINVAL);
sc = device_get_softc(dev);
if (sc == NULL)
return (EINVAL);
for (c = cri; c != NULL; c = c->cri_next) {
if (c->cri_alg == CRYPTO_MD5_HMAC ||
c->cri_alg == CRYPTO_SHA1_HMAC) {
if (macini)
return (EINVAL);
macini = c;
} else if (c->cri_alg == CRYPTO_DES_CBC ||
c->cri_alg == CRYPTO_3DES_CBC ||
c->cri_alg == CRYPTO_AES_CBC) {
if (encini)
return (EINVAL);
encini = c;
} else
return (EINVAL);
}
if (encini == NULL && macini == NULL)
return (EINVAL);
if (sc->sc_sessions == NULL) {
ses = sc->sc_sessions = (struct ubsec_session *)kmalloc(
sizeof(struct ubsec_session), SLAB_ATOMIC);
if (ses == NULL)
return (ENOMEM);
memset(ses, 0, sizeof(struct ubsec_session));
sesn = 0;
sc->sc_nsessions = 1;
} else {
for (sesn = 0; sesn < sc->sc_nsessions; sesn++) {
if (sc->sc_sessions[sesn].ses_used == 0) {
ses = &sc->sc_sessions[sesn];
break;
}
}
if (ses == NULL) {
sesn = sc->sc_nsessions;
ses = (struct ubsec_session *)kmalloc((sesn + 1) *
sizeof(struct ubsec_session), SLAB_ATOMIC);
if (ses == NULL)
return (ENOMEM);
memset(ses, 0, (sesn + 1) * sizeof(struct ubsec_session));
bcopy(sc->sc_sessions, ses, sesn *
sizeof(struct ubsec_session));
bzero(sc->sc_sessions, sesn *
sizeof(struct ubsec_session));
kfree(sc->sc_sessions);
sc->sc_sessions = ses;
ses = &sc->sc_sessions[sesn];
sc->sc_nsessions++;
}
}
bzero(ses, sizeof(struct ubsec_session));
ses->ses_used = 1;
if (encini) {
/* get an IV */
/* XXX may read fewer than requested */
read_random(ses->ses_iv, sizeof(ses->ses_iv));
/* Go ahead and compute key in ubsec's byte order */
if (encini->cri_alg == CRYPTO_DES_CBC) {
/* DES uses the same key three times:
* 1st encrypt -> 2nd decrypt -> 3nd encrypt */
bcopy(encini->cri_key, &ses->ses_key[0], 8);
bcopy(encini->cri_key, &ses->ses_key[2], 8);
bcopy(encini->cri_key, &ses->ses_key[4], 8);
ses->ses_keysize = 192; /* Fake! Actually its only 64bits ..
oh no it is even less: 54bits. */
} else if(encini->cri_alg == CRYPTO_3DES_CBC) {
bcopy(encini->cri_key, ses->ses_key, 24);
ses->ses_keysize = 192;
} else if(encini->cri_alg == CRYPTO_AES_CBC) {
ses->ses_keysize = encini->cri_klen;
if (ses->ses_keysize != 128 &&
ses->ses_keysize != 192 &&
ses->ses_keysize != 256)
{
DPRINTF("unsupported AES key size: %d\n", ses->ses_keysize);
return (EINVAL);
}
bcopy(encini->cri_key, ses->ses_key, (ses->ses_keysize / 8));
}
/* Hardware requires the keys in little endian byte order */
for (i=0; i < (ses->ses_keysize / 32); i++)
SWAP32(ses->ses_key[i]);
}
if (macini) {
ses->ses_mlen = macini->cri_mlen;
if (ses->ses_mlen == 0 ||
ses->ses_mlen > SHA1_HASH_LEN) {
if (macini->cri_alg == CRYPTO_MD5_HMAC ||
macini->cri_alg == CRYPTO_SHA1_HMAC)
{
ses->ses_mlen = DEFAULT_HMAC_LEN;
} else
{
/*
* Reserved for future usage. MD5/SHA1 calculations have
* different hash sizes.
*/
printk(KERN_ERR DRV_MODULE_NAME ": unsupported hash operation with mac/hash len: %d\n", ses->ses_mlen);
return (EINVAL);
}
}
if (macini->cri_key != NULL) {
ubsec_setup_mackey(ses, macini->cri_alg, macini->cri_key,
macini->cri_klen / 8);
}
}
*sidp = UBSEC_SID(device_get_unit(sc->sc_dev), sesn);
return (0);
}
/*
* Deallocate a session.
*/
static int
ubsec_freesession(device_t dev, u_int64_t tid)
{
struct ubsec_softc *sc = device_get_softc(dev);
int session;
u_int32_t sid = ((u_int32_t)tid) & 0xffffffff;
#ifdef UBSEC_DEBUG
DPRINTF("%s()\n", __FUNCTION__);
#endif
if (sc == NULL)
return (EINVAL);
session = UBSEC_SESSION(sid);
if (session < sc->sc_nsessions) {
bzero(&sc->sc_sessions[session], sizeof(sc->sc_sessions[session]));
return (0);
} else
return (EINVAL);
}
static int
ubsec_process(device_t dev, struct cryptop *crp, int hint)
{
struct ubsec_q *q = NULL;
int err = 0, i, j, nicealign;
struct ubsec_softc *sc = device_get_softc(dev);
struct cryptodesc *crd1, *crd2, *maccrd, *enccrd;
int encoffset = 0, macoffset = 0, cpskip, cpoffset;
int sskip, dskip, stheend, dtheend, ivsize = 8;
int16_t coffset;
struct ubsec_session *ses;
struct ubsec_generic_ctx ctx;
struct ubsec_dma *dmap = NULL;
unsigned long flags;
#ifdef UBSEC_DEBUG
DPRINTF("%s()\n", __FUNCTION__);
#endif
if (unlikely(crp == NULL || crp->crp_callback == NULL)) {
ubsecstats.hst_invalid++;
return (EINVAL);
}
if (unlikely(sc == NULL))
return (EINVAL);
#ifdef UBSEC_VERBOSE_DEBUG
DPRINTF("spin_lock_irqsave\n");
#endif
spin_lock_irqsave(&sc->sc_ringmtx, flags);
//spin_lock_irq(&sc->sc_ringmtx);
if (BSD_SIMPLEQ_EMPTY(&sc->sc_freequeue)) {
ubsecstats.hst_queuefull++;
#ifdef UBSEC_VERBOSE_DEBUG
DPRINTF("spin_unlock_irqrestore\n");
#endif
spin_unlock_irqrestore(&sc->sc_ringmtx, flags);
//spin_unlock_irq(&sc->sc_ringmtx);
err = ENOMEM;
goto errout2;
}
q = BSD_SIMPLEQ_FIRST(&sc->sc_freequeue);
BSD_SIMPLEQ_REMOVE_HEAD(&sc->sc_freequeue, q_next);
#ifdef UBSEC_VERBOSE_DEBUG
DPRINTF("spin_unlock_irqrestore\n");
#endif
spin_unlock_irqrestore(&sc->sc_ringmtx, flags);
//spin_unlock_irq(&sc->sc_ringmtx);
dmap = q->q_dma; /* Save dma pointer */
bzero(q, sizeof(struct ubsec_q));
bzero(&ctx, sizeof(ctx));
q->q_sesn = UBSEC_SESSION(crp->crp_sid);
q->q_dma = dmap;
ses = &sc->sc_sessions[q->q_sesn];
if (crp->crp_flags & CRYPTO_F_SKBUF) {
q->q_src_m = (struct sk_buff *)crp->crp_buf;
q->q_dst_m = (struct sk_buff *)crp->crp_buf;
} else if (crp->crp_flags & CRYPTO_F_IOV) {
q->q_src_io = (struct uio *)crp->crp_buf;
q->q_dst_io = (struct uio *)crp->crp_buf;
} else {
err = EINVAL;
goto errout; /* XXX we don't handle contiguous blocks! */
}
bzero(&dmap->d_dma->d_mcr, sizeof(struct ubsec_mcr));
dmap->d_dma->d_mcr.mcr_pkts = htole16(1);
dmap->d_dma->d_mcr.mcr_flags = 0;
q->q_crp = crp;
crd1 = crp->crp_desc;
if (crd1 == NULL) {
err = EINVAL;
goto errout;
}
crd2 = crd1->crd_next;
if (crd2 == NULL) {
if (crd1->crd_alg == CRYPTO_MD5_HMAC ||
crd1->crd_alg == CRYPTO_SHA1_HMAC) {
maccrd = crd1;
enccrd = NULL;
} else if (crd1->crd_alg == CRYPTO_DES_CBC ||
crd1->crd_alg == CRYPTO_3DES_CBC ||
crd1->crd_alg == CRYPTO_AES_CBC) {
maccrd = NULL;
enccrd = crd1;
} else {
err = EINVAL;
goto errout;
}
} else {
if ((crd1->crd_alg == CRYPTO_MD5_HMAC ||
crd1->crd_alg == CRYPTO_SHA1_HMAC) &&
(crd2->crd_alg == CRYPTO_DES_CBC ||
crd2->crd_alg == CRYPTO_3DES_CBC ||
crd2->crd_alg == CRYPTO_AES_CBC) &&
((crd2->crd_flags & CRD_F_ENCRYPT) == 0)) {
maccrd = crd1;
enccrd = crd2;
} else if ((crd1->crd_alg == CRYPTO_DES_CBC ||
crd1->crd_alg == CRYPTO_3DES_CBC ||
crd1->crd_alg == CRYPTO_AES_CBC) &&
(crd2->crd_alg == CRYPTO_MD5_HMAC ||
crd2->crd_alg == CRYPTO_SHA1_HMAC) &&
(crd1->crd_flags & CRD_F_ENCRYPT)) {
enccrd = crd1;
maccrd = crd2;
} else {
/*
* We cannot order the ubsec as requested
*/
printk(KERN_ERR DRV_MODULE_NAME ": got wrong algorithm/signature order.\n");
err = EINVAL;
goto errout;
}
}
/* Encryption/Decryption requested */
if (enccrd) {
encoffset = enccrd->crd_skip;
if (enccrd->crd_alg == CRYPTO_DES_CBC ||
enccrd->crd_alg == CRYPTO_3DES_CBC)
{
ctx.pc_flags |= htole16(UBS_PKTCTX_ENC_3DES);
ctx.pc_type = htole16(UBS_PKTCTX_TYPE_IPSEC_DES);
ivsize = 8; /* [3]DES uses 64bit IVs */
} else {
ctx.pc_flags |= htole16(UBS_PKTCTX_ENC_AES);
ctx.pc_type = htole16(UBS_PKTCTX_TYPE_IPSEC_AES);
ivsize = 16; /* AES uses 128bit IVs / [3]DES 64bit IVs */
switch(ses->ses_keysize)
{
case 128:
ctx.pc_flags |= htole16(UBS_PKTCTX_AES128);
break;
case 192:
ctx.pc_flags |= htole16(UBS_PKTCTX_AES192);
break;
case 256:
ctx.pc_flags |= htole16(UBS_PKTCTX_AES256);
break;
default:
DPRINTF("invalid AES key size: %d\n", ses->ses_keysize);
err = EINVAL;
goto errout;
}
}
if (enccrd->crd_flags & CRD_F_ENCRYPT) {
/* Direction: Outbound */
q->q_flags |= UBSEC_QFLAGS_COPYOUTIV;
if (enccrd->crd_flags & CRD_F_IV_EXPLICIT) {
bcopy(enccrd->crd_iv, ctx.pc_iv, ivsize);
} else {
for(i=0; i < (ivsize / 4); i++)
ctx.pc_iv[i] = ses->ses_iv[i];
}
/* If there is no IV in the buffer -> copy it here */
if ((enccrd->crd_flags & CRD_F_IV_PRESENT) == 0) {
if (crp->crp_flags & CRYPTO_F_SKBUF)
/*
m_copyback(q->q_src_m,
enccrd->crd_inject,
8, ctx.pc_iv);
*/
crypto_copyback(crp->crp_flags, (caddr_t)q->q_src_m,
enccrd->crd_inject, ivsize, (caddr_t)ctx.pc_iv);
else if (crp->crp_flags & CRYPTO_F_IOV)
/*
cuio_copyback(q->q_src_io,
enccrd->crd_inject,
8, ctx.pc_iv);
*/
crypto_copyback(crp->crp_flags, (caddr_t)q->q_src_io,
enccrd->crd_inject, ivsize, (caddr_t)ctx.pc_iv);
}
} else {
/* Direction: Inbound */
ctx.pc_flags |= htole16(UBS_PKTCTX_INBOUND);
if (enccrd->crd_flags & CRD_F_IV_EXPLICIT)
bcopy(enccrd->crd_iv, ctx.pc_iv, ivsize);
else if (crp->crp_flags & CRYPTO_F_SKBUF)
/*
m_copydata(q->q_src_m, enccrd->crd_inject,
8, (caddr_t)ctx.pc_iv);
*/
crypto_copydata(crp->crp_flags, (caddr_t)q->q_src_m,
enccrd->crd_inject, ivsize,
(caddr_t)ctx.pc_iv);
else if (crp->crp_flags & CRYPTO_F_IOV)
/*
cuio_copydata(q->q_src_io,
enccrd->crd_inject, 8,
(caddr_t)ctx.pc_iv);
*/
crypto_copydata(crp->crp_flags, (caddr_t)q->q_src_io,
enccrd->crd_inject, ivsize,
(caddr_t)ctx.pc_iv);
}
/* Even though key & IV sizes differ from cipher to cipher
* copy / swap the full array lengths. Let the compiler unroll
* the loop to increase the cpu pipeline performance... */
for(i=0; i < 8; i++)
ctx.pc_key[i] = ses->ses_key[i];
for(i=0; i < 4; i++)
SWAP32(ctx.pc_iv[i]);
}
/* Authentication requested */
if (maccrd) {
macoffset = maccrd->crd_skip;
if (maccrd->crd_alg == CRYPTO_MD5_HMAC)
ctx.pc_flags |= htole16(UBS_PKTCTX_AUTH_MD5);
else
ctx.pc_flags |= htole16(UBS_PKTCTX_AUTH_SHA1);
for (i = 0; i < 5; i++) {
ctx.pc_hminner[i] = ses->ses_hminner[i];
ctx.pc_hmouter[i] = ses->ses_hmouter[i];
HTOLE32(ctx.pc_hminner[i]);
HTOLE32(ctx.pc_hmouter[i]);
}
}
if (enccrd && maccrd) {
/*
* ubsec cannot handle packets where the end of encryption
* and authentication are not the same, or where the
* encrypted part begins before the authenticated part.
*/
if (((encoffset + enccrd->crd_len) !=
(macoffset + maccrd->crd_len)) ||
(enccrd->crd_skip < maccrd->crd_skip)) {
err = EINVAL;
goto errout;
}
sskip = maccrd->crd_skip;
cpskip = dskip = enccrd->crd_skip;
stheend = maccrd->crd_len;
dtheend = enccrd->crd_len;
coffset = enccrd->crd_skip - maccrd->crd_skip;
cpoffset = cpskip + dtheend;
#ifdef UBSEC_DEBUG
DPRINTF("mac: skip %d, len %d, inject %d\n",
maccrd->crd_skip, maccrd->crd_len, maccrd->crd_inject);
DPRINTF("enc: skip %d, len %d, inject %d\n",
enccrd->crd_skip, enccrd->crd_len, enccrd->crd_inject);
DPRINTF("src: skip %d, len %d\n", sskip, stheend);
DPRINTF("dst: skip %d, len %d\n", dskip, dtheend);
DPRINTF("ubs: coffset %d, pktlen %d, cpskip %d, cpoffset %d\n",
coffset, stheend, cpskip, cpoffset);
#endif
} else {
cpskip = dskip = sskip = macoffset + encoffset;
dtheend = stheend = (enccrd)?enccrd->crd_len:maccrd->crd_len;
cpoffset = cpskip + dtheend;
coffset = 0;
}
ctx.pc_offset = htole16(coffset >> 2);
#if 0
if (bus_dmamap_create(sc->sc_dmat, 0xfff0, UBS_MAX_SCATTER,
0xfff0, 0, BUS_DMA_NOWAIT, &q->q_src_map) != 0) {
err = ENOMEM;
goto errout;
}
#endif
if (crp->crp_flags & CRYPTO_F_SKBUF) {
#if 0
if (bus_dmamap_load_mbuf(sc->sc_dmat, q->q_src_map,
q->q_src_m, BUS_DMA_NOWAIT) != 0) {
bus_dmamap_destroy(sc->sc_dmat, q->q_src_map);
q->q_src_map = NULL;
err = ENOMEM;
goto errout;
}
#endif
err = dma_map_skb(sc, q->q_src_map, q->q_src_m, &q->q_src_len);
if (unlikely(err != 0))
goto errout;
} else if (crp->crp_flags & CRYPTO_F_IOV) {
#if 0
if (bus_dmamap_load_uio(sc->sc_dmat, q->q_src_map,
q->q_src_io, BUS_DMA_NOWAIT) != 0) {
bus_dmamap_destroy(sc->sc_dmat, q->q_src_map);
q->q_src_map = NULL;
err = ENOMEM;
goto errout;
}
#endif
err = dma_map_uio(sc, q->q_src_map, q->q_src_io, &q->q_src_len);
if (unlikely(err != 0))
goto errout;
}
/*
* Check alignment
*/
nicealign = ubsec_dmamap_aligned(sc, q->q_src_map, q->q_src_len);
dmap->d_dma->d_mcr.mcr_pktlen = htole16(stheend);
#ifdef UBSEC_DEBUG
DPRINTF("src skip: %d\n", sskip);
#endif
for (i = j = 0; i < q->q_src_len; i++) {
struct ubsec_pktbuf *pb;
size_t packl = q->q_src_map[i].dma_size;
dma_addr_t packp = q->q_src_map[i].dma_paddr;
if (sskip >= packl) {
sskip -= packl;
continue;
}
packl -= sskip;
packp += sskip;
sskip = 0;
/* maximum fragment size is 0xfffc */
if (packl > 0xfffc) {
DPRINTF("Error: fragment size is bigger than 0xfffc.\n");
err = EIO;
goto errout;
}
if (j == 0)
pb = &dmap->d_dma->d_mcr.mcr_ipktbuf;
else
pb = &dmap->d_dma->d_sbuf[j - 1];
pb->pb_addr = htole32(packp);
if (stheend) {
if (packl > stheend) {
pb->pb_len = htole32(stheend);
stheend = 0;
} else {
pb->pb_len = htole32(packl);
stheend -= packl;
}
} else
pb->pb_len = htole32(packl);
if ((i + 1) == q->q_src_len)
pb->pb_next = 0;
else
pb->pb_next = htole32(dmap->d_alloc.dma_paddr +
offsetof(struct ubsec_dmachunk, d_sbuf[j]));
j++;
}
if (enccrd == NULL && maccrd != NULL) {
/* Authentication only */
dmap->d_dma->d_mcr.mcr_opktbuf.pb_addr = 0;
dmap->d_dma->d_mcr.mcr_opktbuf.pb_len = 0;
dmap->d_dma->d_mcr.mcr_opktbuf.pb_next =
htole32(dmap->d_alloc.dma_paddr +
offsetof(struct ubsec_dmachunk, d_macbuf[0]));
#ifdef UBSEC_DEBUG
DPRINTF("opkt: %x %x %x\n",
dmap->d_dma->d_mcr.mcr_opktbuf.pb_addr,
dmap->d_dma->d_mcr.mcr_opktbuf.pb_len,
dmap->d_dma->d_mcr.mcr_opktbuf.pb_next);
#endif
} else {
if (crp->crp_flags & CRYPTO_F_IOV) {
if (!nicealign) {
err = EINVAL;
goto errout;
}
#if 0
if (bus_dmamap_create(sc->sc_dmat, 0xfff0,
UBS_MAX_SCATTER, 0xfff0, 0, BUS_DMA_NOWAIT,
&q->q_dst_map) != 0) {
err = ENOMEM;
goto errout;
}
if (bus_dmamap_load_uio(sc->sc_dmat, q->q_dst_map,
q->q_dst_io, BUS_DMA_NOWAIT) != 0) {
bus_dmamap_destroy(sc->sc_dmat, q->q_dst_map);
q->q_dst_map = NULL;
goto errout;
}
#endif
/* HW shall copy the result into the source memory */
for(i = 0; i < q->q_src_len; i++)
q->q_dst_map[i] = q->q_src_map[i];
q->q_dst_len = q->q_src_len;
q->q_has_dst = 0;
} else if (crp->crp_flags & CRYPTO_F_SKBUF) {
if (nicealign) {
/* HW shall copy the result into the source memory */
q->q_dst_m = q->q_src_m;
for(i = 0; i < q->q_src_len; i++)
q->q_dst_map[i] = q->q_src_map[i];
q->q_dst_len = q->q_src_len;
q->q_has_dst = 0;
} else {
#ifdef NOTYET
int totlen, len;
struct sk_buff *m, *top, **mp;
totlen = q->q_src_map->dm_mapsize;
if (q->q_src_m->m_flags & M_PKTHDR) {
len = MHLEN;
MGETHDR(m, M_DONTWAIT, MT_DATA);
} else {
len = MLEN;
MGET(m, M_DONTWAIT, MT_DATA);
}
if (m == NULL) {
err = ENOMEM;
goto errout;
}
if (len == MHLEN)
M_DUP_PKTHDR(m, q->q_src_m);
if (totlen >= MINCLSIZE) {
MCLGET(m, M_DONTWAIT);
if (m->m_flags & M_EXT)
len = MCLBYTES;
}
m->m_len = len;
top = NULL;
mp = &top;
while (totlen > 0) {
if (top) {
MGET(m, M_DONTWAIT, MT_DATA);
if (m == NULL) {
m_freem(top);
err = ENOMEM;
goto errout;
}
len = MLEN;
}
if (top && totlen >= MINCLSIZE) {
MCLGET(m, M_DONTWAIT);
if (m->m_flags & M_EXT)
len = MCLBYTES;
}
m->m_len = len = min(totlen, len);
totlen -= len;
*mp = m;
mp = &m->m_next;
}
q->q_dst_m = top;
ubsec_mcopy(q->q_src_m, q->q_dst_m,
cpskip, cpoffset);
if (bus_dmamap_create(sc->sc_dmat, 0xfff0,
UBS_MAX_SCATTER, 0xfff0, 0, BUS_DMA_NOWAIT,
&q->q_dst_map) != 0) {
err = ENOMEM;
goto errout;
}
if (bus_dmamap_load_mbuf(sc->sc_dmat,
q->q_dst_map, q->q_dst_m,
BUS_DMA_NOWAIT) != 0) {
bus_dmamap_destroy(sc->sc_dmat,
q->q_dst_map);
q->q_dst_map = NULL;
err = ENOMEM;
goto errout;
}
#else
device_printf(sc->sc_dev,
"%s,%d: CRYPTO_F_SKBUF unaligned not implemented\n",
__FILE__, __LINE__);
err = EINVAL;
goto errout;
#endif
}
} else {
err = EINVAL;
goto errout;
}
#ifdef UBSEC_DEBUG
DPRINTF("dst skip: %d\n", dskip);
#endif
for (i = j = 0; i < q->q_dst_len; i++) {
struct ubsec_pktbuf *pb;
size_t packl = q->q_dst_map[i].dma_size;
dma_addr_t packp = q->q_dst_map[i].dma_paddr;
if (dskip >= packl) {
dskip -= packl;
continue;
}
packl -= dskip;
packp += dskip;
dskip = 0;
if (packl > 0xfffc) {
DPRINTF("Error: fragment size is bigger than 0xfffc.\n");
err = EIO;
goto errout;
}
if (j == 0)
pb = &dmap->d_dma->d_mcr.mcr_opktbuf;
else
pb = &dmap->d_dma->d_dbuf[j - 1];
pb->pb_addr = htole32(packp);
if (dtheend) {
if (packl > dtheend) {
pb->pb_len = htole32(dtheend);
dtheend = 0;
} else {
pb->pb_len = htole32(packl);
dtheend -= packl;
}
} else
pb->pb_len = htole32(packl);
if ((i + 1) == q->q_dst_len) {
if (maccrd)
/* Authentication:
* The last fragment of the output buffer
* contains the HMAC. */
pb->pb_next = htole32(dmap->d_alloc.dma_paddr +
offsetof(struct ubsec_dmachunk, d_macbuf[0]));
else
pb->pb_next = 0;
} else
pb->pb_next = htole32(dmap->d_alloc.dma_paddr +
offsetof(struct ubsec_dmachunk, d_dbuf[j]));
j++;
}
}
dmap->d_dma->d_mcr.mcr_cmdctxp = htole32(dmap->d_alloc.dma_paddr +
offsetof(struct ubsec_dmachunk, d_ctx));
if (sc->sc_flags & UBS_FLAGS_LONGCTX) {
/* new Broadcom cards with dynamic long command context structure */
if (enccrd != NULL &&
enccrd->crd_alg == CRYPTO_AES_CBC)
{
struct ubsec_pktctx_aes128 *ctxaes128;
struct ubsec_pktctx_aes192 *ctxaes192;
struct ubsec_pktctx_aes256 *ctxaes256;
switch(ses->ses_keysize)
{
/* AES 128bit */
case 128:
ctxaes128 = (struct ubsec_pktctx_aes128 *)
(dmap->d_alloc.dma_vaddr +
offsetof(struct ubsec_dmachunk, d_ctx));
ctxaes128->pc_len = htole16(sizeof(struct ubsec_pktctx_aes128));
ctxaes128->pc_type = ctx.pc_type;
ctxaes128->pc_flags = ctx.pc_flags;
ctxaes128->pc_offset = ctx.pc_offset;
for (i = 0; i < 4; i++)
ctxaes128->pc_aeskey[i] = ctx.pc_key[i];
for (i = 0; i < 5; i++)
ctxaes128->pc_hminner[i] = ctx.pc_hminner[i];
for (i = 0; i < 5; i++)
ctxaes128->pc_hmouter[i] = ctx.pc_hmouter[i];
for (i = 0; i < 4; i++)
ctxaes128->pc_iv[i] = ctx.pc_iv[i];
break;
/* AES 192bit */
case 192:
ctxaes192 = (struct ubsec_pktctx_aes192 *)
(dmap->d_alloc.dma_vaddr +
offsetof(struct ubsec_dmachunk, d_ctx));
ctxaes192->pc_len = htole16(sizeof(struct ubsec_pktctx_aes192));
ctxaes192->pc_type = ctx.pc_type;
ctxaes192->pc_flags = ctx.pc_flags;
ctxaes192->pc_offset = ctx.pc_offset;
for (i = 0; i < 6; i++)
ctxaes192->pc_aeskey[i] = ctx.pc_key[i];
for (i = 0; i < 5; i++)
ctxaes192->pc_hminner[i] = ctx.pc_hminner[i];
for (i = 0; i < 5; i++)
ctxaes192->pc_hmouter[i] = ctx.pc_hmouter[i];
for (i = 0; i < 4; i++)
ctxaes192->pc_iv[i] = ctx.pc_iv[i];
break;
/* AES 256bit */
case 256:
ctxaes256 = (struct ubsec_pktctx_aes256 *)
(dmap->d_alloc.dma_vaddr +
offsetof(struct ubsec_dmachunk, d_ctx));
ctxaes256->pc_len = htole16(sizeof(struct ubsec_pktctx_aes256));
ctxaes256->pc_type = ctx.pc_type;
ctxaes256->pc_flags = ctx.pc_flags;
ctxaes256->pc_offset = ctx.pc_offset;
for (i = 0; i < 8; i++)
ctxaes256->pc_aeskey[i] = ctx.pc_key[i];
for (i = 0; i < 5; i++)
ctxaes256->pc_hminner[i] = ctx.pc_hminner[i];
for (i = 0; i < 5; i++)
ctxaes256->pc_hmouter[i] = ctx.pc_hmouter[i];
for (i = 0; i < 4; i++)
ctxaes256->pc_iv[i] = ctx.pc_iv[i];
break;
}
} else {
/*
* [3]DES / MD5_HMAC / SHA1_HMAC
*
* MD5_HMAC / SHA1_HMAC can use the IPSEC 3DES operation without
* encryption.
*/
struct ubsec_pktctx_des *ctxdes;
ctxdes = (struct ubsec_pktctx_des *)(dmap->d_alloc.dma_vaddr +
offsetof(struct ubsec_dmachunk, d_ctx));
ctxdes->pc_len = htole16(sizeof(struct ubsec_pktctx_des));
ctxdes->pc_type = ctx.pc_type;
ctxdes->pc_flags = ctx.pc_flags;
ctxdes->pc_offset = ctx.pc_offset;
for (i = 0; i < 6; i++)
ctxdes->pc_deskey[i] = ctx.pc_key[i];
for (i = 0; i < 5; i++)
ctxdes->pc_hminner[i] = ctx.pc_hminner[i];
for (i = 0; i < 5; i++)
ctxdes->pc_hmouter[i] = ctx.pc_hmouter[i];
ctxdes->pc_iv[0] = ctx.pc_iv[0];
ctxdes->pc_iv[1] = ctx.pc_iv[1];
}
} else
{
/* old Broadcom card with fixed small command context structure */
/*
* [3]DES / MD5_HMAC / SHA1_HMAC
*/
struct ubsec_pktctx *ctxs;
ctxs = (struct ubsec_pktctx *)(dmap->d_alloc.dma_vaddr +
offsetof(struct ubsec_dmachunk, d_ctx));
/* transform generic context into small context */
for (i = 0; i < 6; i++)
ctxs->pc_deskey[i] = ctx.pc_key[i];
for (i = 0; i < 5; i++)
ctxs->pc_hminner[i] = ctx.pc_hminner[i];
for (i = 0; i < 5; i++)
ctxs->pc_hmouter[i] = ctx.pc_hmouter[i];
ctxs->pc_iv[0] = ctx.pc_iv[0];
ctxs->pc_iv[1] = ctx.pc_iv[1];
ctxs->pc_flags = ctx.pc_flags;
ctxs->pc_offset = ctx.pc_offset;
}
#ifdef UBSEC_VERBOSE_DEBUG
DPRINTF("spin_lock_irqsave\n");
#endif
spin_lock_irqsave(&sc->sc_ringmtx, flags);
//spin_lock_irq(&sc->sc_ringmtx);
BSD_SIMPLEQ_INSERT_TAIL(&sc->sc_queue, q, q_next);
sc->sc_nqueue++;
ubsecstats.hst_ipackets++;
ubsecstats.hst_ibytes += stheend;
ubsec_feed(sc);
#ifdef UBSEC_VERBOSE_DEBUG
DPRINTF("spin_unlock_irqrestore\n");
#endif
spin_unlock_irqrestore(&sc->sc_ringmtx, flags);
//spin_unlock_irq(&sc->sc_ringmtx);
return (0);
errout:
if (q != NULL) {
#ifdef NOTYET
if ((q->q_dst_m != NULL) && (q->q_src_m != q->q_dst_m))
m_freem(q->q_dst_m);
#endif
if ((q->q_has_dst == 1) && q->q_dst_len > 0) {
#if 0
bus_dmamap_unload(sc->sc_dmat, q->q_dst_map);
bus_dmamap_destroy(sc->sc_dmat, q->q_dst_map);
#endif
dma_unmap(sc, q->q_dst_map, q->q_dst_len);
}
if (q->q_src_len > 0) {
#if 0
bus_dmamap_unload(sc->sc_dmat, q->q_src_map);
bus_dmamap_destroy(sc->sc_dmat, q->q_src_map);
#endif
dma_unmap(sc, q->q_src_map, q->q_src_len);
}
#ifdef UBSEC_VERBOSE_DEBUG
DPRINTF("spin_lock_irqsave\n");
#endif
spin_lock_irqsave(&sc->sc_ringmtx, flags);
//spin_lock_irq(&sc->sc_ringmtx);
BSD_SIMPLEQ_INSERT_TAIL(&sc->sc_freequeue, q, q_next);
#ifdef UBSEC_VERBOSE_DEBUG
DPRINTF("spin_unlock_irqrestore\n");
#endif
spin_unlock_irqrestore(&sc->sc_ringmtx, flags);
//spin_unlock_irq(&sc->sc_ringmtx);
}
if (err == EINVAL)
ubsecstats.hst_invalid++;
else
ubsecstats.hst_nomem++;
errout2:
crp->crp_etype = err;
crypto_done(crp);
#ifdef UBSEC_DEBUG
DPRINTF("%s() err = %x\n", __FUNCTION__, err);
#endif
return (0);
}
void
ubsec_callback(struct ubsec_softc *sc, struct ubsec_q *q)
{
struct cryptop *crp = (struct cryptop *)q->q_crp;
struct cryptodesc *crd;
struct ubsec_dma *dmap = q->q_dma;
int ivsize = 8;
#ifdef UBSEC_DEBUG
DPRINTF("%s()\n", __FUNCTION__);
#endif
ubsecstats.hst_opackets++;
ubsecstats.hst_obytes += dmap->d_alloc.dma_size;
#if 0
bus_dmamap_sync(sc->sc_dmat, dmap->d_alloc.dma_map, 0,
dmap->d_alloc.dma_map->dm_mapsize,
BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
if (q->q_dst_map != NULL && q->q_dst_map != q->q_src_map) {
bus_dmamap_sync(sc->sc_dmat, q->q_dst_map,
0, q->q_dst_map->dm_mapsize, BUS_DMASYNC_POSTREAD);
bus_dmamap_unload(sc->sc_dmat, q->q_dst_map);
bus_dmamap_destroy(sc->sc_dmat, q->q_dst_map);
}
bus_dmamap_sync(sc->sc_dmat, q->q_src_map,
0, q->q_src_map->dm_mapsize, BUS_DMASYNC_POSTWRITE);
bus_dmamap_unload(sc->sc_dmat, q->q_src_map);
bus_dmamap_destroy(sc->sc_dmat, q->q_src_map);
#endif
if ((q->q_has_dst == 1) && q->q_dst_len > 0)
dma_unmap(sc, q->q_dst_map, q->q_dst_len);
dma_unmap(sc, q->q_src_map, q->q_src_len);
#ifdef NOTYET
if ((crp->crp_flags & CRYPTO_F_SKBUF) && (q->q_src_m != q->q_dst_m)) {
m_freem(q->q_src_m);
crp->crp_buf = (caddr_t)q->q_dst_m;
}
#endif
/* copy out IV for future use */
if (q->q_flags & UBSEC_QFLAGS_COPYOUTIV) {
for (crd = crp->crp_desc; crd; crd = crd->crd_next) {
if (crd->crd_alg != CRYPTO_DES_CBC &&
crd->crd_alg != CRYPTO_3DES_CBC &&
crd->crd_alg != CRYPTO_AES_CBC)
continue;
if (crd->crd_alg == CRYPTO_AES_CBC)
ivsize = 16;
else
ivsize = 8;
if (crp->crp_flags & CRYPTO_F_SKBUF)
#if 0
m_copydata((struct sk_buff *)crp->crp_buf,
crd->crd_skip + crd->crd_len - 8, 8,
(caddr_t)sc->sc_sessions[q->q_sesn].ses_iv);
#endif
crypto_copydata(crp->crp_flags, (caddr_t)crp->crp_buf,
crd->crd_skip + crd->crd_len - ivsize, ivsize,
(caddr_t)sc->sc_sessions[q->q_sesn].ses_iv);
else if (crp->crp_flags & CRYPTO_F_IOV) {
#if 0
cuio_copydata((struct uio *)crp->crp_buf,
crd->crd_skip + crd->crd_len - 8, 8,
(caddr_t)sc->sc_sessions[q->q_sesn].ses_iv);
#endif
crypto_copydata(crp->crp_flags, (caddr_t)crp->crp_buf,
crd->crd_skip + crd->crd_len - ivsize, ivsize,
(caddr_t)sc->sc_sessions[q->q_sesn].ses_iv);
}
break;
}
}
for (crd = crp->crp_desc; crd; crd = crd->crd_next) {
if (crd->crd_alg != CRYPTO_MD5_HMAC &&
crd->crd_alg != CRYPTO_SHA1_HMAC)
continue;
#if 0
if (crp->crp_flags & CRYPTO_F_SKBUF)
m_copyback((struct sk_buff *)crp->crp_buf,
crd->crd_inject, 12,
dmap->d_dma->d_macbuf);
#endif
#if 0
/* BUG? it does not honor the mac len.. */
crypto_copyback(crp->crp_flags, crp->crp_buf,
crd->crd_inject, 12,
(caddr_t)dmap->d_dma->d_macbuf);
#endif
crypto_copyback(crp->crp_flags, crp->crp_buf,
crd->crd_inject,
sc->sc_sessions[q->q_sesn].ses_mlen,
(caddr_t)dmap->d_dma->d_macbuf);
#if 0
else if (crp->crp_flags & CRYPTO_F_IOV && crp->crp_mac)
bcopy((caddr_t)dmap->d_dma->d_macbuf,
crp->crp_mac, 12);
#endif
break;
}
BSD_SIMPLEQ_INSERT_TAIL(&sc->sc_freequeue, q, q_next);
crypto_done(crp);
}
void
ubsec_mcopy(struct sk_buff *srcm, struct sk_buff *dstm, int hoffset, int toffset)
{
int i, j, dlen, slen;
caddr_t dptr, sptr;
j = 0;
sptr = srcm->data;
slen = srcm->len;
dptr = dstm->data;
dlen = dstm->len;
while (1) {
for (i = 0; i < min(slen, dlen); i++) {
if (j < hoffset || j >= toffset)
*dptr++ = *sptr++;
slen--;
dlen--;
j++;
}
if (slen == 0) {
srcm = srcm->next;
if (srcm == NULL)
return;
sptr = srcm->data;
slen = srcm->len;
}
if (dlen == 0) {
dstm = dstm->next;
if (dstm == NULL)
return;
dptr = dstm->data;
dlen = dstm->len;
}
}
}
int
ubsec_dma_malloc(struct ubsec_softc *sc, struct ubsec_dma_alloc *dma,
size_t size, int mapflags)
{
dma->dma_vaddr = dma_alloc_coherent(sc->sc_dv,
size, &dma->dma_paddr, GFP_KERNEL);
if (likely(dma->dma_vaddr))
{
dma->dma_size = size;
return (0);
}
DPRINTF("could not allocate %d bytes of coherent memory.\n", size);
return (1);
}
void
ubsec_dma_free(struct ubsec_softc *sc, struct ubsec_dma_alloc *dma)
{
dma_free_coherent(sc->sc_dv, dma->dma_size, dma->dma_vaddr,
dma->dma_paddr);
}
/*
* Resets the board. Values in the regesters are left as is
* from the reset (i.e. initial values are assigned elsewhere).
*/
void
ubsec_reset_board(struct ubsec_softc *sc)
{
volatile u_int32_t ctrl;
#ifdef UBSEC_DEBUG
DPRINTF("%s()\n", __FUNCTION__);
#endif
DPRINTF("Send reset signal to chip.\n");
ctrl = READ_REG(sc, BS_CTRL);
ctrl |= BS_CTRL_RESET;
WRITE_REG(sc, BS_CTRL, ctrl);
/*
* Wait aprox. 30 PCI clocks = 900 ns = 0.9 us
*/
DELAY(10);
}
/*
* Init Broadcom registers
*/
void
ubsec_init_board(struct ubsec_softc *sc)
{
u_int32_t ctrl;
#ifdef UBSEC_DEBUG
DPRINTF("%s()\n", __FUNCTION__);
#endif
DPRINTF("Initialize chip.\n");
ctrl = READ_REG(sc, BS_CTRL);
ctrl &= ~(BS_CTRL_BE32 | BS_CTRL_BE64);
ctrl |= BS_CTRL_LITTLE_ENDIAN | BS_CTRL_MCR1INT | BS_CTRL_DMAERR;
WRITE_REG(sc, BS_CTRL, ctrl);
/* Set chip capabilities (BCM5365P) */
sc->sc_flags |= UBS_FLAGS_LONGCTX | UBS_FLAGS_AES;
}
/*
* Clean up after a chip crash.
* It is assumed that the caller has spin_lock_irq(sc_ringmtx).
*/
void
ubsec_cleanchip(struct ubsec_softc *sc)
{
struct ubsec_q *q;
#ifdef UBSEC_DEBUG
DPRINTF("%s()\n", __FUNCTION__);
#endif
DPRINTF("Clean up queues after chip crash.\n");
while (!BSD_SIMPLEQ_EMPTY(&sc->sc_qchip)) {
q = BSD_SIMPLEQ_FIRST(&sc->sc_qchip);
BSD_SIMPLEQ_REMOVE_HEAD(&sc->sc_qchip, q_next);
ubsec_free_q(sc, q);
}
}
/*
* free a ubsec_q
* It is assumed that the caller has spin_lock_irq(sc_ringmtx).
*/
int
ubsec_free_q(struct ubsec_softc *sc, struct ubsec_q *q)
{
struct ubsec_q *q2;
struct cryptop *crp;
int npkts;
int i;
#ifdef UBSEC_DEBUG
DPRINTF("%s()\n", __FUNCTION__);
#endif
npkts = q->q_nstacked_mcrs;
for (i = 0; i < npkts; i++) {
if(q->q_stacked_mcr[i]) {
q2 = q->q_stacked_mcr[i];
if ((q2->q_dst_m != NULL) && (q2->q_src_m != q2->q_dst_m))
#ifdef NOTYET
m_freem(q2->q_dst_m);
#else
printk(KERN_ERR "%s,%d: SKB not supported\n", __FILE__, __LINE__);
#endif
crp = (struct cryptop *)q2->q_crp;
BSD_SIMPLEQ_INSERT_TAIL(&sc->sc_freequeue, q2, q_next);
crp->crp_etype = EFAULT;
crypto_done(crp);
} else {
break;
}
}
/*
* Free header MCR
*/
if ((q->q_dst_m != NULL) && (q->q_src_m != q->q_dst_m))
#ifdef NOTYET
m_freem(q->q_dst_m);
#else
printk(KERN_ERR "%s,%d: SKB not supported\n", __FILE__, __LINE__);
#endif
crp = (struct cryptop *)q->q_crp;
BSD_SIMPLEQ_INSERT_TAIL(&sc->sc_freequeue, q, q_next);
crp->crp_etype = EFAULT;
crypto_done(crp);
return(0);
}
/*
* Routine to reset the chip and clean up.
* It is assumed that the caller has spin_lock_irq(sc_ringmtx).
*/
void
ubsec_totalreset(struct ubsec_softc *sc)
{
#ifdef UBSEC_DEBUG
DPRINTF("%s()\n", __FUNCTION__);
#endif
DPRINTF("initiate total chip reset.. \n");
ubsec_reset_board(sc);
ubsec_init_board(sc);
ubsec_cleanchip(sc);
}
void
ubsec_dump_pb(struct ubsec_pktbuf *pb)
{
printf("addr 0x%x (0x%x) next 0x%x\n",
pb->pb_addr, pb->pb_len, pb->pb_next);
}
void
ubsec_dump_mcr(struct ubsec_mcr *mcr)
{
struct ubsec_mcr_add *ma;
int i;
printf("MCR:\n");
printf(" pkts: %u, flags 0x%x\n",
letoh16(mcr->mcr_pkts), letoh16(mcr->mcr_flags));
ma = (struct ubsec_mcr_add *)&mcr->mcr_cmdctxp;
for (i = 0; i < letoh16(mcr->mcr_pkts); i++) {
printf(" %d: ctx 0x%x len 0x%x rsvd 0x%x\n", i,
letoh32(ma->mcr_cmdctxp), letoh16(ma->mcr_pktlen),
letoh16(ma->mcr_reserved));
printf(" %d: ipkt ", i);
ubsec_dump_pb(&ma->mcr_ipktbuf);
printf(" %d: opkt ", i);
ubsec_dump_pb(&ma->mcr_opktbuf);
ma++;
}
printf("END MCR\n");
}
static int __init mod_init(void) {
return ssb_driver_register(&ubsec_ssb_driver);
}
static void __exit mod_exit(void) {
ssb_driver_unregister(&ubsec_ssb_driver);
}
module_init(mod_init);
module_exit(mod_exit);
// Meta information
MODULE_AUTHOR("Daniel Mueller <daniel@danm.de>");
MODULE_LICENSE("BSD");
MODULE_DESCRIPTION("OCF driver for BCM5365P IPSec Core");
MODULE_VERSION(DRV_MODULE_VERSION);