|  | #ifndef __H8300_UACCESS_H | 
|  | #define __H8300_UACCESS_H | 
|  |  | 
|  | /* | 
|  | * User space memory access functions | 
|  | */ | 
|  | #include <linux/sched.h> | 
|  | #include <linux/mm.h> | 
|  | #include <linux/string.h> | 
|  |  | 
|  | #include <asm/segment.h> | 
|  |  | 
|  | #define VERIFY_READ	0 | 
|  | #define VERIFY_WRITE	1 | 
|  |  | 
|  | /* We let the MMU do all checking */ | 
|  | #define access_ok(type, addr, size) __access_ok((unsigned long)addr,size) | 
|  | static inline int __access_ok(unsigned long addr, unsigned long size) | 
|  | { | 
|  | #define	RANGE_CHECK_OK(addr, size, lower, upper) \ | 
|  | (((addr) >= (lower)) && (((addr) + (size)) < (upper))) | 
|  |  | 
|  | extern unsigned long _ramend; | 
|  | return(RANGE_CHECK_OK(addr, size, 0L, (unsigned long)&_ramend)); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * The exception table consists of pairs of addresses: the first is the | 
|  | * address of an instruction that is allowed to fault, and the second is | 
|  | * the address at which the program should continue.  No registers are | 
|  | * modified, so it is entirely up to the continuation code to figure out | 
|  | * what to do. | 
|  | * | 
|  | * All the routines below use bits of fixup code that are out of line | 
|  | * with the main instruction path.  This means when everything is well, | 
|  | * we don't even have to jump over them.  Further, they do not intrude | 
|  | * on our cache or tlb entries. | 
|  | */ | 
|  |  | 
|  | struct exception_table_entry | 
|  | { | 
|  | unsigned long insn, fixup; | 
|  | }; | 
|  |  | 
|  | /* Returns 0 if exception not found and fixup otherwise.  */ | 
|  | extern unsigned long search_exception_table(unsigned long); | 
|  |  | 
|  |  | 
|  | /* | 
|  | * These are the main single-value transfer routines.  They automatically | 
|  | * use the right size if we just have the right pointer type. | 
|  | */ | 
|  |  | 
|  | #define put_user(x, ptr)				\ | 
|  | ({							\ | 
|  | int __pu_err = 0;					\ | 
|  | typeof(*(ptr)) __pu_val = (x);			\ | 
|  | switch (sizeof (*(ptr))) {				\ | 
|  | case 1:						\ | 
|  | case 2:						\ | 
|  | case 4:						\ | 
|  | *(ptr) = (__pu_val);   	        		\ | 
|  | break;						\ | 
|  | case 8:						\ | 
|  | memcpy(ptr, &__pu_val, sizeof (*(ptr)));        \ | 
|  | break;						\ | 
|  | default:						\ | 
|  | __pu_err = __put_user_bad();			\ | 
|  | break;						\ | 
|  | }							\ | 
|  | __pu_err;						\ | 
|  | }) | 
|  | #define __put_user(x, ptr) put_user(x, ptr) | 
|  |  | 
|  | extern int __put_user_bad(void); | 
|  |  | 
|  | /* | 
|  | * Tell gcc we read from memory instead of writing: this is because | 
|  | * we do not write to any memory gcc knows about, so there are no | 
|  | * aliasing issues. | 
|  | */ | 
|  |  | 
|  | #define __ptr(x) ((unsigned long *)(x)) | 
|  |  | 
|  | /* | 
|  | * Tell gcc we read from memory instead of writing: this is because | 
|  | * we do not write to any memory gcc knows about, so there are no | 
|  | * aliasing issues. | 
|  | */ | 
|  |  | 
|  | #define get_user(x, ptr)					\ | 
|  | ({								\ | 
|  | int __gu_err = 0;						\ | 
|  | typeof(*(ptr)) __gu_val = *ptr;				\ | 
|  | switch (sizeof(*(ptr))) {					\ | 
|  | case 1:							\ | 
|  | case 2:							\ | 
|  | case 4:							\ | 
|  | case 8: 							\ | 
|  | break;							\ | 
|  | default:							\ | 
|  | __gu_err = __get_user_bad();				\ | 
|  | break;							\ | 
|  | }								\ | 
|  | (x) = __gu_val;						\ | 
|  | __gu_err;							\ | 
|  | }) | 
|  | #define __get_user(x, ptr) get_user(x, ptr) | 
|  |  | 
|  | extern int __get_user_bad(void); | 
|  |  | 
|  | #define copy_from_user(to, from, n)		(memcpy(to, from, n), 0) | 
|  | #define copy_to_user(to, from, n)		(memcpy(to, from, n), 0) | 
|  |  | 
|  | #define __copy_from_user(to, from, n) copy_from_user(to, from, n) | 
|  | #define __copy_to_user(to, from, n) copy_to_user(to, from, n) | 
|  | #define __copy_to_user_inatomic __copy_to_user | 
|  | #define __copy_from_user_inatomic __copy_from_user | 
|  |  | 
|  | #define copy_to_user_ret(to,from,n,retval) ({ if (copy_to_user(to,from,n)) return retval; }) | 
|  |  | 
|  | #define copy_from_user_ret(to,from,n,retval) ({ if (copy_from_user(to,from,n)) return retval; }) | 
|  |  | 
|  | /* | 
|  | * Copy a null terminated string from userspace. | 
|  | */ | 
|  |  | 
|  | static inline long | 
|  | strncpy_from_user(char *dst, const char *src, long count) | 
|  | { | 
|  | char *tmp; | 
|  | strncpy(dst, src, count); | 
|  | for (tmp = dst; *tmp && count > 0; tmp++, count--) | 
|  | ; | 
|  | return(tmp - dst); /* DAVIDM should we count a NUL ?  check getname */ | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Return the size of a string (including the ending 0) | 
|  | * | 
|  | * Return 0 on exception, a value greater than N if too long | 
|  | */ | 
|  | static inline long strnlen_user(const char *src, long n) | 
|  | { | 
|  | return(strlen(src) + 1); /* DAVIDM make safer */ | 
|  | } | 
|  |  | 
|  | #define strlen_user(str) strnlen_user(str, 32767) | 
|  |  | 
|  | /* | 
|  | * Zero Userspace | 
|  | */ | 
|  |  | 
|  | static inline unsigned long | 
|  | clear_user(void *to, unsigned long n) | 
|  | { | 
|  | memset(to, 0, n); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | #define __clear_user	clear_user | 
|  |  | 
|  | #endif /* _H8300_UACCESS_H */ |