| /* | 
 |  * Ram backed block device driver. | 
 |  * | 
 |  * Copyright (C) 2007 Nick Piggin | 
 |  * Copyright (C) 2007 Novell Inc. | 
 |  * | 
 |  * Parts derived from drivers/block/rd.c, and drivers/block/loop.c, copyright | 
 |  * of their respective owners. | 
 |  */ | 
 |  | 
 | #include <linux/init.h> | 
 | #include <linux/module.h> | 
 | #include <linux/moduleparam.h> | 
 | #include <linux/major.h> | 
 | #include <linux/blkdev.h> | 
 | #include <linux/bio.h> | 
 | #include <linux/highmem.h> | 
 | #include <linux/mutex.h> | 
 | #include <linux/radix-tree.h> | 
 | #include <linux/fs.h> | 
 | #include <linux/slab.h> | 
 |  | 
 | #include <asm/uaccess.h> | 
 |  | 
 | #define SECTOR_SHIFT		9 | 
 | #define PAGE_SECTORS_SHIFT	(PAGE_SHIFT - SECTOR_SHIFT) | 
 | #define PAGE_SECTORS		(1 << PAGE_SECTORS_SHIFT) | 
 |  | 
 | /* | 
 |  * Each block ramdisk device has a radix_tree brd_pages of pages that stores | 
 |  * the pages containing the block device's contents. A brd page's ->index is | 
 |  * its offset in PAGE_SIZE units. This is similar to, but in no way connected | 
 |  * with, the kernel's pagecache or buffer cache (which sit above our block | 
 |  * device). | 
 |  */ | 
 | struct brd_device { | 
 | 	int		brd_number; | 
 |  | 
 | 	struct request_queue	*brd_queue; | 
 | 	struct gendisk		*brd_disk; | 
 | 	struct list_head	brd_list; | 
 |  | 
 | 	/* | 
 | 	 * Backing store of pages and lock to protect it. This is the contents | 
 | 	 * of the block device. | 
 | 	 */ | 
 | 	spinlock_t		brd_lock; | 
 | 	struct radix_tree_root	brd_pages; | 
 | }; | 
 |  | 
 | /* | 
 |  * Look up and return a brd's page for a given sector. | 
 |  */ | 
 | static DEFINE_MUTEX(brd_mutex); | 
 | static struct page *brd_lookup_page(struct brd_device *brd, sector_t sector) | 
 | { | 
 | 	pgoff_t idx; | 
 | 	struct page *page; | 
 |  | 
 | 	/* | 
 | 	 * The page lifetime is protected by the fact that we have opened the | 
 | 	 * device node -- brd pages will never be deleted under us, so we | 
 | 	 * don't need any further locking or refcounting. | 
 | 	 * | 
 | 	 * This is strictly true for the radix-tree nodes as well (ie. we | 
 | 	 * don't actually need the rcu_read_lock()), however that is not a | 
 | 	 * documented feature of the radix-tree API so it is better to be | 
 | 	 * safe here (we don't have total exclusion from radix tree updates | 
 | 	 * here, only deletes). | 
 | 	 */ | 
 | 	rcu_read_lock(); | 
 | 	idx = sector >> PAGE_SECTORS_SHIFT; /* sector to page index */ | 
 | 	page = radix_tree_lookup(&brd->brd_pages, idx); | 
 | 	rcu_read_unlock(); | 
 |  | 
 | 	BUG_ON(page && page->index != idx); | 
 |  | 
 | 	return page; | 
 | } | 
 |  | 
 | /* | 
 |  * Look up and return a brd's page for a given sector. | 
 |  * If one does not exist, allocate an empty page, and insert that. Then | 
 |  * return it. | 
 |  */ | 
 | static struct page *brd_insert_page(struct brd_device *brd, sector_t sector) | 
 | { | 
 | 	pgoff_t idx; | 
 | 	struct page *page; | 
 | 	gfp_t gfp_flags; | 
 |  | 
 | 	page = brd_lookup_page(brd, sector); | 
 | 	if (page) | 
 | 		return page; | 
 |  | 
 | 	/* | 
 | 	 * Must use NOIO because we don't want to recurse back into the | 
 | 	 * block or filesystem layers from page reclaim. | 
 | 	 * | 
 | 	 * Cannot support XIP and highmem, because our ->direct_access | 
 | 	 * routine for XIP must return memory that is always addressable. | 
 | 	 * If XIP was reworked to use pfns and kmap throughout, this | 
 | 	 * restriction might be able to be lifted. | 
 | 	 */ | 
 | 	gfp_flags = GFP_NOIO | __GFP_ZERO; | 
 | #ifndef CONFIG_BLK_DEV_XIP | 
 | 	gfp_flags |= __GFP_HIGHMEM; | 
 | #endif | 
 | 	page = alloc_page(gfp_flags); | 
 | 	if (!page) | 
 | 		return NULL; | 
 |  | 
 | 	if (radix_tree_preload(GFP_NOIO)) { | 
 | 		__free_page(page); | 
 | 		return NULL; | 
 | 	} | 
 |  | 
 | 	spin_lock(&brd->brd_lock); | 
 | 	idx = sector >> PAGE_SECTORS_SHIFT; | 
 | 	page->index = idx; | 
 | 	if (radix_tree_insert(&brd->brd_pages, idx, page)) { | 
 | 		__free_page(page); | 
 | 		page = radix_tree_lookup(&brd->brd_pages, idx); | 
 | 		BUG_ON(!page); | 
 | 		BUG_ON(page->index != idx); | 
 | 	} | 
 | 	spin_unlock(&brd->brd_lock); | 
 |  | 
 | 	radix_tree_preload_end(); | 
 |  | 
 | 	return page; | 
 | } | 
 |  | 
 | static void brd_free_page(struct brd_device *brd, sector_t sector) | 
 | { | 
 | 	struct page *page; | 
 | 	pgoff_t idx; | 
 |  | 
 | 	spin_lock(&brd->brd_lock); | 
 | 	idx = sector >> PAGE_SECTORS_SHIFT; | 
 | 	page = radix_tree_delete(&brd->brd_pages, idx); | 
 | 	spin_unlock(&brd->brd_lock); | 
 | 	if (page) | 
 | 		__free_page(page); | 
 | } | 
 |  | 
 | static void brd_zero_page(struct brd_device *brd, sector_t sector) | 
 | { | 
 | 	struct page *page; | 
 |  | 
 | 	page = brd_lookup_page(brd, sector); | 
 | 	if (page) | 
 | 		clear_highpage(page); | 
 | } | 
 |  | 
 | /* | 
 |  * Free all backing store pages and radix tree. This must only be called when | 
 |  * there are no other users of the device. | 
 |  */ | 
 | #define FREE_BATCH 16 | 
 | static void brd_free_pages(struct brd_device *brd) | 
 | { | 
 | 	unsigned long pos = 0; | 
 | 	struct page *pages[FREE_BATCH]; | 
 | 	int nr_pages; | 
 |  | 
 | 	do { | 
 | 		int i; | 
 |  | 
 | 		nr_pages = radix_tree_gang_lookup(&brd->brd_pages, | 
 | 				(void **)pages, pos, FREE_BATCH); | 
 |  | 
 | 		for (i = 0; i < nr_pages; i++) { | 
 | 			void *ret; | 
 |  | 
 | 			BUG_ON(pages[i]->index < pos); | 
 | 			pos = pages[i]->index; | 
 | 			ret = radix_tree_delete(&brd->brd_pages, pos); | 
 | 			BUG_ON(!ret || ret != pages[i]); | 
 | 			__free_page(pages[i]); | 
 | 		} | 
 |  | 
 | 		pos++; | 
 |  | 
 | 		/* | 
 | 		 * This assumes radix_tree_gang_lookup always returns as | 
 | 		 * many pages as possible. If the radix-tree code changes, | 
 | 		 * so will this have to. | 
 | 		 */ | 
 | 	} while (nr_pages == FREE_BATCH); | 
 | } | 
 |  | 
 | /* | 
 |  * copy_to_brd_setup must be called before copy_to_brd. It may sleep. | 
 |  */ | 
 | static int copy_to_brd_setup(struct brd_device *brd, sector_t sector, size_t n) | 
 | { | 
 | 	unsigned int offset = (sector & (PAGE_SECTORS-1)) << SECTOR_SHIFT; | 
 | 	size_t copy; | 
 |  | 
 | 	copy = min_t(size_t, n, PAGE_SIZE - offset); | 
 | 	if (!brd_insert_page(brd, sector)) | 
 | 		return -ENOMEM; | 
 | 	if (copy < n) { | 
 | 		sector += copy >> SECTOR_SHIFT; | 
 | 		if (!brd_insert_page(brd, sector)) | 
 | 			return -ENOMEM; | 
 | 	} | 
 | 	return 0; | 
 | } | 
 |  | 
 | static void discard_from_brd(struct brd_device *brd, | 
 | 			sector_t sector, size_t n) | 
 | { | 
 | 	while (n >= PAGE_SIZE) { | 
 | 		/* | 
 | 		 * Don't want to actually discard pages here because | 
 | 		 * re-allocating the pages can result in writeback | 
 | 		 * deadlocks under heavy load. | 
 | 		 */ | 
 | 		if (0) | 
 | 			brd_free_page(brd, sector); | 
 | 		else | 
 | 			brd_zero_page(brd, sector); | 
 | 		sector += PAGE_SIZE >> SECTOR_SHIFT; | 
 | 		n -= PAGE_SIZE; | 
 | 	} | 
 | } | 
 |  | 
 | /* | 
 |  * Copy n bytes from src to the brd starting at sector. Does not sleep. | 
 |  */ | 
 | static void copy_to_brd(struct brd_device *brd, const void *src, | 
 | 			sector_t sector, size_t n) | 
 | { | 
 | 	struct page *page; | 
 | 	void *dst; | 
 | 	unsigned int offset = (sector & (PAGE_SECTORS-1)) << SECTOR_SHIFT; | 
 | 	size_t copy; | 
 |  | 
 | 	copy = min_t(size_t, n, PAGE_SIZE - offset); | 
 | 	page = brd_lookup_page(brd, sector); | 
 | 	BUG_ON(!page); | 
 |  | 
 | 	dst = kmap_atomic(page); | 
 | 	memcpy(dst + offset, src, copy); | 
 | 	kunmap_atomic(dst); | 
 |  | 
 | 	if (copy < n) { | 
 | 		src += copy; | 
 | 		sector += copy >> SECTOR_SHIFT; | 
 | 		copy = n - copy; | 
 | 		page = brd_lookup_page(brd, sector); | 
 | 		BUG_ON(!page); | 
 |  | 
 | 		dst = kmap_atomic(page); | 
 | 		memcpy(dst, src, copy); | 
 | 		kunmap_atomic(dst); | 
 | 	} | 
 | } | 
 |  | 
 | /* | 
 |  * Copy n bytes to dst from the brd starting at sector. Does not sleep. | 
 |  */ | 
 | static void copy_from_brd(void *dst, struct brd_device *brd, | 
 | 			sector_t sector, size_t n) | 
 | { | 
 | 	struct page *page; | 
 | 	void *src; | 
 | 	unsigned int offset = (sector & (PAGE_SECTORS-1)) << SECTOR_SHIFT; | 
 | 	size_t copy; | 
 |  | 
 | 	copy = min_t(size_t, n, PAGE_SIZE - offset); | 
 | 	page = brd_lookup_page(brd, sector); | 
 | 	if (page) { | 
 | 		src = kmap_atomic(page); | 
 | 		memcpy(dst, src + offset, copy); | 
 | 		kunmap_atomic(src); | 
 | 	} else | 
 | 		memset(dst, 0, copy); | 
 |  | 
 | 	if (copy < n) { | 
 | 		dst += copy; | 
 | 		sector += copy >> SECTOR_SHIFT; | 
 | 		copy = n - copy; | 
 | 		page = brd_lookup_page(brd, sector); | 
 | 		if (page) { | 
 | 			src = kmap_atomic(page); | 
 | 			memcpy(dst, src, copy); | 
 | 			kunmap_atomic(src); | 
 | 		} else | 
 | 			memset(dst, 0, copy); | 
 | 	} | 
 | } | 
 |  | 
 | /* | 
 |  * Process a single bvec of a bio. | 
 |  */ | 
 | static int brd_do_bvec(struct brd_device *brd, struct page *page, | 
 | 			unsigned int len, unsigned int off, int rw, | 
 | 			sector_t sector) | 
 | { | 
 | 	void *mem; | 
 | 	int err = 0; | 
 |  | 
 | 	if (rw != READ) { | 
 | 		err = copy_to_brd_setup(brd, sector, len); | 
 | 		if (err) | 
 | 			goto out; | 
 | 	} | 
 |  | 
 | 	mem = kmap_atomic(page); | 
 | 	if (rw == READ) { | 
 | 		copy_from_brd(mem + off, brd, sector, len); | 
 | 		flush_dcache_page(page); | 
 | 	} else { | 
 | 		flush_dcache_page(page); | 
 | 		copy_to_brd(brd, mem + off, sector, len); | 
 | 	} | 
 | 	kunmap_atomic(mem); | 
 |  | 
 | out: | 
 | 	return err; | 
 | } | 
 |  | 
 | static void brd_make_request(struct request_queue *q, struct bio *bio) | 
 | { | 
 | 	struct block_device *bdev = bio->bi_bdev; | 
 | 	struct brd_device *brd = bdev->bd_disk->private_data; | 
 | 	int rw; | 
 | 	struct bio_vec *bvec; | 
 | 	sector_t sector; | 
 | 	int i; | 
 | 	int err = -EIO; | 
 |  | 
 | 	sector = bio->bi_sector; | 
 | 	if (bio_end_sector(bio) > get_capacity(bdev->bd_disk)) | 
 | 		goto out; | 
 |  | 
 | 	if (unlikely(bio->bi_rw & REQ_DISCARD)) { | 
 | 		err = 0; | 
 | 		discard_from_brd(brd, sector, bio->bi_size); | 
 | 		goto out; | 
 | 	} | 
 |  | 
 | 	rw = bio_rw(bio); | 
 | 	if (rw == READA) | 
 | 		rw = READ; | 
 |  | 
 | 	bio_for_each_segment(bvec, bio, i) { | 
 | 		unsigned int len = bvec->bv_len; | 
 | 		err = brd_do_bvec(brd, bvec->bv_page, len, | 
 | 					bvec->bv_offset, rw, sector); | 
 | 		if (err) | 
 | 			break; | 
 | 		sector += len >> SECTOR_SHIFT; | 
 | 	} | 
 |  | 
 | out: | 
 | 	bio_endio(bio, err); | 
 | } | 
 |  | 
 | #ifdef CONFIG_BLK_DEV_XIP | 
 | static int brd_direct_access(struct block_device *bdev, sector_t sector, | 
 | 			void **kaddr, unsigned long *pfn) | 
 | { | 
 | 	struct brd_device *brd = bdev->bd_disk->private_data; | 
 | 	struct page *page; | 
 |  | 
 | 	if (!brd) | 
 | 		return -ENODEV; | 
 | 	if (sector & (PAGE_SECTORS-1)) | 
 | 		return -EINVAL; | 
 | 	if (sector + PAGE_SECTORS > get_capacity(bdev->bd_disk)) | 
 | 		return -ERANGE; | 
 | 	page = brd_insert_page(brd, sector); | 
 | 	if (!page) | 
 | 		return -ENOMEM; | 
 | 	*kaddr = page_address(page); | 
 | 	*pfn = page_to_pfn(page); | 
 |  | 
 | 	return 0; | 
 | } | 
 | #endif | 
 |  | 
 | static int brd_ioctl(struct block_device *bdev, fmode_t mode, | 
 | 			unsigned int cmd, unsigned long arg) | 
 | { | 
 | 	int error; | 
 | 	struct brd_device *brd = bdev->bd_disk->private_data; | 
 |  | 
 | 	if (cmd != BLKFLSBUF) | 
 | 		return -ENOTTY; | 
 |  | 
 | 	/* | 
 | 	 * ram device BLKFLSBUF has special semantics, we want to actually | 
 | 	 * release and destroy the ramdisk data. | 
 | 	 */ | 
 | 	mutex_lock(&brd_mutex); | 
 | 	mutex_lock(&bdev->bd_mutex); | 
 | 	error = -EBUSY; | 
 | 	if (bdev->bd_openers <= 1) { | 
 | 		/* | 
 | 		 * Kill the cache first, so it isn't written back to the | 
 | 		 * device. | 
 | 		 * | 
 | 		 * Another thread might instantiate more buffercache here, | 
 | 		 * but there is not much we can do to close that race. | 
 | 		 */ | 
 | 		kill_bdev(bdev); | 
 | 		brd_free_pages(brd); | 
 | 		error = 0; | 
 | 	} | 
 | 	mutex_unlock(&bdev->bd_mutex); | 
 | 	mutex_unlock(&brd_mutex); | 
 |  | 
 | 	return error; | 
 | } | 
 |  | 
 | static const struct block_device_operations brd_fops = { | 
 | 	.owner =		THIS_MODULE, | 
 | 	.ioctl =		brd_ioctl, | 
 | #ifdef CONFIG_BLK_DEV_XIP | 
 | 	.direct_access =	brd_direct_access, | 
 | #endif | 
 | }; | 
 |  | 
 | /* | 
 |  * And now the modules code and kernel interface. | 
 |  */ | 
 | static int rd_nr; | 
 | int rd_size = CONFIG_BLK_DEV_RAM_SIZE; | 
 | static int max_part; | 
 | static int part_shift; | 
 | module_param(rd_nr, int, S_IRUGO); | 
 | MODULE_PARM_DESC(rd_nr, "Maximum number of brd devices"); | 
 | module_param(rd_size, int, S_IRUGO); | 
 | MODULE_PARM_DESC(rd_size, "Size of each RAM disk in kbytes."); | 
 | module_param(max_part, int, S_IRUGO); | 
 | MODULE_PARM_DESC(max_part, "Maximum number of partitions per RAM disk"); | 
 | MODULE_LICENSE("GPL"); | 
 | MODULE_ALIAS_BLOCKDEV_MAJOR(RAMDISK_MAJOR); | 
 | MODULE_ALIAS("rd"); | 
 |  | 
 | #ifndef MODULE | 
 | /* Legacy boot options - nonmodular */ | 
 | static int __init ramdisk_size(char *str) | 
 | { | 
 | 	rd_size = simple_strtol(str, NULL, 0); | 
 | 	return 1; | 
 | } | 
 | __setup("ramdisk_size=", ramdisk_size); | 
 | #endif | 
 |  | 
 | /* | 
 |  * The device scheme is derived from loop.c. Keep them in synch where possible | 
 |  * (should share code eventually). | 
 |  */ | 
 | static LIST_HEAD(brd_devices); | 
 | static DEFINE_MUTEX(brd_devices_mutex); | 
 |  | 
 | static struct brd_device *brd_alloc(int i) | 
 | { | 
 | 	struct brd_device *brd; | 
 | 	struct gendisk *disk; | 
 |  | 
 | 	brd = kzalloc(sizeof(*brd), GFP_KERNEL); | 
 | 	if (!brd) | 
 | 		goto out; | 
 | 	brd->brd_number		= i; | 
 | 	spin_lock_init(&brd->brd_lock); | 
 | 	INIT_RADIX_TREE(&brd->brd_pages, GFP_ATOMIC); | 
 |  | 
 | 	brd->brd_queue = blk_alloc_queue(GFP_KERNEL); | 
 | 	if (!brd->brd_queue) | 
 | 		goto out_free_dev; | 
 | 	blk_queue_make_request(brd->brd_queue, brd_make_request); | 
 | 	blk_queue_max_hw_sectors(brd->brd_queue, 1024); | 
 | 	blk_queue_bounce_limit(brd->brd_queue, BLK_BOUNCE_ANY); | 
 |  | 
 | 	brd->brd_queue->limits.discard_granularity = PAGE_SIZE; | 
 | 	brd->brd_queue->limits.max_discard_sectors = UINT_MAX; | 
 | 	brd->brd_queue->limits.discard_zeroes_data = 1; | 
 | 	queue_flag_set_unlocked(QUEUE_FLAG_DISCARD, brd->brd_queue); | 
 |  | 
 | 	disk = brd->brd_disk = alloc_disk(1 << part_shift); | 
 | 	if (!disk) | 
 | 		goto out_free_queue; | 
 | 	disk->major		= RAMDISK_MAJOR; | 
 | 	disk->first_minor	= i << part_shift; | 
 | 	disk->fops		= &brd_fops; | 
 | 	disk->private_data	= brd; | 
 | 	disk->queue		= brd->brd_queue; | 
 | 	disk->flags |= GENHD_FL_SUPPRESS_PARTITION_INFO; | 
 | 	sprintf(disk->disk_name, "ram%d", i); | 
 | 	set_capacity(disk, rd_size * 2); | 
 |  | 
 | 	return brd; | 
 |  | 
 | out_free_queue: | 
 | 	blk_cleanup_queue(brd->brd_queue); | 
 | out_free_dev: | 
 | 	kfree(brd); | 
 | out: | 
 | 	return NULL; | 
 | } | 
 |  | 
 | static void brd_free(struct brd_device *brd) | 
 | { | 
 | 	put_disk(brd->brd_disk); | 
 | 	blk_cleanup_queue(brd->brd_queue); | 
 | 	brd_free_pages(brd); | 
 | 	kfree(brd); | 
 | } | 
 |  | 
 | static struct brd_device *brd_init_one(int i) | 
 | { | 
 | 	struct brd_device *brd; | 
 |  | 
 | 	list_for_each_entry(brd, &brd_devices, brd_list) { | 
 | 		if (brd->brd_number == i) | 
 | 			goto out; | 
 | 	} | 
 |  | 
 | 	brd = brd_alloc(i); | 
 | 	if (brd) { | 
 | 		add_disk(brd->brd_disk); | 
 | 		list_add_tail(&brd->brd_list, &brd_devices); | 
 | 	} | 
 | out: | 
 | 	return brd; | 
 | } | 
 |  | 
 | static void brd_del_one(struct brd_device *brd) | 
 | { | 
 | 	list_del(&brd->brd_list); | 
 | 	del_gendisk(brd->brd_disk); | 
 | 	brd_free(brd); | 
 | } | 
 |  | 
 | static struct kobject *brd_probe(dev_t dev, int *part, void *data) | 
 | { | 
 | 	struct brd_device *brd; | 
 | 	struct kobject *kobj; | 
 |  | 
 | 	mutex_lock(&brd_devices_mutex); | 
 | 	brd = brd_init_one(MINOR(dev) >> part_shift); | 
 | 	kobj = brd ? get_disk(brd->brd_disk) : NULL; | 
 | 	mutex_unlock(&brd_devices_mutex); | 
 |  | 
 | 	*part = 0; | 
 | 	return kobj; | 
 | } | 
 |  | 
 | static int __init brd_init(void) | 
 | { | 
 | 	int i, nr; | 
 | 	unsigned long range; | 
 | 	struct brd_device *brd, *next; | 
 |  | 
 | 	/* | 
 | 	 * brd module now has a feature to instantiate underlying device | 
 | 	 * structure on-demand, provided that there is an access dev node. | 
 | 	 * However, this will not work well with user space tool that doesn't | 
 | 	 * know about such "feature".  In order to not break any existing | 
 | 	 * tool, we do the following: | 
 | 	 * | 
 | 	 * (1) if rd_nr is specified, create that many upfront, and this | 
 | 	 *     also becomes a hard limit. | 
 | 	 * (2) if rd_nr is not specified, create CONFIG_BLK_DEV_RAM_COUNT | 
 | 	 *     (default 16) rd device on module load, user can further | 
 | 	 *     extend brd device by create dev node themselves and have | 
 | 	 *     kernel automatically instantiate actual device on-demand. | 
 | 	 */ | 
 |  | 
 | 	part_shift = 0; | 
 | 	if (max_part > 0) { | 
 | 		part_shift = fls(max_part); | 
 |  | 
 | 		/* | 
 | 		 * Adjust max_part according to part_shift as it is exported | 
 | 		 * to user space so that user can decide correct minor number | 
 | 		 * if [s]he want to create more devices. | 
 | 		 * | 
 | 		 * Note that -1 is required because partition 0 is reserved | 
 | 		 * for the whole disk. | 
 | 		 */ | 
 | 		max_part = (1UL << part_shift) - 1; | 
 | 	} | 
 |  | 
 | 	if ((1UL << part_shift) > DISK_MAX_PARTS) | 
 | 		return -EINVAL; | 
 |  | 
 | 	if (rd_nr > 1UL << (MINORBITS - part_shift)) | 
 | 		return -EINVAL; | 
 |  | 
 | 	if (rd_nr) { | 
 | 		nr = rd_nr; | 
 | 		range = rd_nr << part_shift; | 
 | 	} else { | 
 | 		nr = CONFIG_BLK_DEV_RAM_COUNT; | 
 | 		range = 1UL << MINORBITS; | 
 | 	} | 
 |  | 
 | 	if (register_blkdev(RAMDISK_MAJOR, "ramdisk")) | 
 | 		return -EIO; | 
 |  | 
 | 	for (i = 0; i < nr; i++) { | 
 | 		brd = brd_alloc(i); | 
 | 		if (!brd) | 
 | 			goto out_free; | 
 | 		list_add_tail(&brd->brd_list, &brd_devices); | 
 | 	} | 
 |  | 
 | 	/* point of no return */ | 
 |  | 
 | 	list_for_each_entry(brd, &brd_devices, brd_list) | 
 | 		add_disk(brd->brd_disk); | 
 |  | 
 | 	blk_register_region(MKDEV(RAMDISK_MAJOR, 0), range, | 
 | 				  THIS_MODULE, brd_probe, NULL, NULL); | 
 |  | 
 | 	printk(KERN_INFO "brd: module loaded\n"); | 
 | 	return 0; | 
 |  | 
 | out_free: | 
 | 	list_for_each_entry_safe(brd, next, &brd_devices, brd_list) { | 
 | 		list_del(&brd->brd_list); | 
 | 		brd_free(brd); | 
 | 	} | 
 | 	unregister_blkdev(RAMDISK_MAJOR, "ramdisk"); | 
 |  | 
 | 	return -ENOMEM; | 
 | } | 
 |  | 
 | static void __exit brd_exit(void) | 
 | { | 
 | 	unsigned long range; | 
 | 	struct brd_device *brd, *next; | 
 |  | 
 | 	range = rd_nr ? rd_nr << part_shift : 1UL << MINORBITS; | 
 |  | 
 | 	list_for_each_entry_safe(brd, next, &brd_devices, brd_list) | 
 | 		brd_del_one(brd); | 
 |  | 
 | 	blk_unregister_region(MKDEV(RAMDISK_MAJOR, 0), range); | 
 | 	unregister_blkdev(RAMDISK_MAJOR, "ramdisk"); | 
 | } | 
 |  | 
 | module_init(brd_init); | 
 | module_exit(brd_exit); | 
 |  |