blob: a1ed48a9507aaa03ec17073c8c36e97e69d510f0 [file] [log] [blame]
/*
* Freescale i.MX7 SoC series MIPI-CSI V3.3 receiver driver
*
* Copyright (C) 2015 Freescale Semiconductor, Inc. All Rights Reserved.
*/
/*
* The code contained herein is licensed under the GNU General Public
* License. You may obtain a copy of the GNU General Public License
* Version 2 or later at the following locations:
*
* http://www.opensource.org/licenses/gpl-license.html
* http://www.gnu.org/copyleft/gpl.html
*/
/*
* Samsung S5P/EXYNOS SoC series MIPI-CSI receiver driver
*
* Copyright (C) 2011 - 2013 Samsung Electronics Co., Ltd.
* Author: Sylwester Nawrocki <s.nawrocki@samsung.com>
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License version 2 as
* published by the Free Software Foundation.
*/
#include <linux/clk.h>
#include <linux/delay.h>
#include <linux/errno.h>
#include <linux/interrupt.h>
#include <linux/io.h>
#include <linux/irq.h>
#include <linux/kernel.h>
#include <linux/mfd/syscon.h>
#include <linux/module.h>
#include <linux/of.h>
#include <linux/of_graph.h>
#include <linux/platform_device.h>
#include <linux/pm_runtime.h>
#include <linux/regmap.h>
#include <linux/regulator/consumer.h>
#include <linux/slab.h>
#include <linux/spinlock.h>
#include <linux/videodev2.h>
#include <media/v4l2-of.h>
#include <media/v4l2-subdev.h>
#include <media/v4l2-device.h>
static int debug;
module_param(debug, int, 0644);
MODULE_PARM_DESC(debug, "Debug level (0-2)");
#define CSIS_DRIVER_NAME "mxc_mipi-csi"
#define CSIS_SUBDEV_NAME CSIS_DRIVER_NAME
#define CSIS_MAX_ENTITIES 2
#define CSIS0_MAX_LANES 4
#define CSIS1_MAX_LANES 2
#define MIPI_CSIS_DEF_PIX_WIDTH 640
#define MIPI_CSIS_DEF_PIX_HEIGHT 480
/* Register map definition */
/* CSIS version */
#define MIPI_CSIS_VERSION 0x00
/* CSIS common control */
#define MIPI_CSIS_CMN_CTRL 0x04
#define MIPI_CSIS_CMN_CTRL_UPDATE_SHADOW (1 << 16)
#define MIPI_CSIS_CMN_CTRL_INTER_MODE (1 << 10)
#define MIPI_CSIS_CMN_CTRL_LANE_NR_OFFSET 8
#define MIPI_CSIS_CMN_CTRL_LANE_NR_MASK (3 << 8)
#define MIPI_CSIS_CMN_CTRL_UPDATE_SHADOW_CTRL (1 << 2)
#define MIPI_CSIS_CMN_CTRL_RESET (1 << 1)
#define MIPI_CSIS_CMN_CTRL_ENABLE (1 << 0)
/* CSIS clock control */
#define MIPI_CSIS_CLK_CTRL 0x08
#define MIPI_CSIS_CLK_CTRL_CLKGATE_TRAIL_CH3(x) (x << 28)
#define MIPI_CSIS_CLK_CTRL_CLKGATE_TRAIL_CH2(x) (x << 24)
#define MIPI_CSIS_CLK_CTRL_CLKGATE_TRAIL_CH1(x) (x << 20)
#define MIPI_CSIS_CLK_CTRL_CLKGATE_TRAIL_CH0(x) (x << 16)
#define MIPI_CSIS_CLK_CTRL_CLKGATE_EN_MSK (0xf << 4)
#define MIPI_CSIS_CLK_CTRL_WCLK_SRC (1 << 0)
/* CSIS Interrupt mask */
#define MIPI_CSIS_INTMSK 0x10
#define MIPI_CSIS_INTMSK_EVEN_BEFORE (1 << 31)
#define MIPI_CSIS_INTMSK_EVEN_AFTER (1 << 30)
#define MIPI_CSIS_INTMSK_ODD_BEFORE (1 << 29)
#define MIPI_CSIS_INTMSK_ODD_AFTER (1 << 28)
#define MIPI_CSIS_INTMSK_FRAME_START (1 << 24)
#define MIPI_CSIS_INTMSK_FRAME_END (1 << 20)
#define MIPI_CSIS_INTMSK_ERR_SOT_HS (1 << 16)
#define MIPI_CSIS_INTMSK_ERR_LOST_FS (1 << 12)
#define MIPI_CSIS_INTMSK_ERR_LOST_FE (1 << 8)
#define MIPI_CSIS_INTMSK_ERR_OVER (1 << 4)
#define MIPI_CSIS_INTMSK_ERR_WRONG_CFG (1 << 3)
#define MIPI_CSIS_INTMSK_ERR_ECC (1 << 2)
#define MIPI_CSIS_INTMSK_ERR_CRC (1 << 1)
#define MIPI_CSIS_INTMSK_ERR_UNKNOWN (1 << 0)
/* CSIS Interrupt source */
#define MIPI_CSIS_INTSRC 0x14
#define MIPI_CSIS_INTSRC_EVEN_BEFORE (1 << 31)
#define MIPI_CSIS_INTSRC_EVEN_AFTER (1 << 30)
#define MIPI_CSIS_INTSRC_EVEN (0x3 << 30)
#define MIPI_CSIS_INTSRC_ODD_BEFORE (1 << 29)
#define MIPI_CSIS_INTSRC_ODD_AFTER (1 << 28)
#define MIPI_CSIS_INTSRC_ODD (0x3 << 28)
#define MIPI_CSIS_INTSRC_NON_IMAGE_DATA (0xf << 28)
#define MIPI_CSIS_INTSRC_FRAME_START (1 << 24)
#define MIPI_CSIS_INTSRC_FRAME_END (1 << 20)
#define MIPI_CSIS_INTSRC_ERR_SOT_HS (1 << 16)
#define MIPI_CSIS_INTSRC_ERR_LOST_FS (1 << 12)
#define MIPI_CSIS_INTSRC_ERR_LOST_FE (1 << 8)
#define MIPI_CSIS_INTSRC_ERR_OVER (1 << 4)
#define MIPI_CSIS_INTSRC_ERR_WRONG_CFG (1 << 3)
#define MIPI_CSIS_INTSRC_ERR_ECC (1 << 2)
#define MIPI_CSIS_INTSRC_ERR_CRC (1 << 1)
#define MIPI_CSIS_INTSRC_ERR_UNKNOWN (1 << 0)
#define MIPI_CSIS_INTSRC_ERRORS 0xfffff
/* D-PHY status control */
#define MIPI_CSIS_DPHYSTATUS 0x20
#define MIPI_CSIS_DPHYSTATUS_ULPS_DAT (1 << 8)
#define MIPI_CSIS_DPHYSTATUS_STOPSTATE_DAT (1 << 4)
#define MIPI_CSIS_DPHYSTATUS_ULPS_CLK (1 << 1)
#define MIPI_CSIS_DPHYSTATUS_STOPSTATE_CLK (1 << 0)
/* D-PHY common control */
#define MIPI_CSIS_DPHYCTRL 0x24
#define MIPI_CSIS_DPHYCTRL_HSS_MASK (0xff << 24)
#define MIPI_CSIS_DPHYCTRL_HSS_OFFSET 24
#define MIPI_CSIS_DPHYCTRL_SCLKS_MASK (0x3 << 22)
#define MIPI_CSIS_DPHYCTRL_SCLKS_OFFSET 22
#define MIPI_CSIS_DPHYCTRL_DPDN_SWAP_CLK (1 << 6)
#define MIPI_CSIS_DPHYCTRL_DPDN_SWAP_DAT (1 << 5)
#define MIPI_CSIS_DPHYCTRL_ENABLE_DAT (1 << 1)
#define MIPI_CSIS_DPHYCTRL_ENABLE_CLK (1 << 0)
#define MIPI_CSIS_DPHYCTRL_ENABLE (0x1f << 0)
/* D-PHY Master and Slave Control register Low */
#define MIPI_CSIS_DPHYBCTRL_L 0x30
/* D-PHY Master and Slave Control register High */
#define MIPI_CSIS_DPHYBCTRL_H 0x34
/* D-PHY Slave Control register Low */
#define MIPI_CSIS_DPHYSCTRL_L 0x38
/* D-PHY Slave Control register High */
#define MIPI_CSIS_DPHYSCTRL_H 0x3c
/* ISP Configuration register */
#define MIPI_CSIS_ISPCONFIG_CH0 0x40
#define MIPI_CSIS_ISPCONFIG_CH1 0x50
#define MIPI_CSIS_ISPCONFIG_CH2 0x60
#define MIPI_CSIS_ISPCONFIG_CH3 0x70
#define MIPI_CSIS_ISPCFG_MEM_FULL_GAP_MSK (0xff << 24)
#define MIPI_CSIS_ISPCFG_MEM_FULL_GAP(x) (x << 24)
#define MIPI_CSIS_ISPCFG_DOUBLE_CMPNT (1 << 12)
#define MIPI_CSIS_ISPCFG_ALIGN_32BIT (1 << 11)
#define MIPI_CSIS_ISPCFG_FMT_YCBCR422_8BIT (0x1e << 2)
#define MIPI_CSIS_ISPCFG_FMT_RAW8 (0x2a << 2)
#define MIPI_CSIS_ISPCFG_FMT_RAW10 (0x2b << 2)
#define MIPI_CSIS_ISPCFG_FMT_RAW12 (0x2c << 2)
/* User defined formats, x = 1...4 */
#define MIPI_CSIS_ISPCFG_FMT_USER(x) ((0x30 + x - 1) << 2)
#define MIPI_CSIS_ISPCFG_FMT_MASK (0x3f << 2)
/* ISP Image Resolution register */
#define MIPI_CSIS_ISPRESOL_CH0 0x44
#define MIPI_CSIS_ISPRESOL_CH1 0x54
#define MIPI_CSIS_ISPRESOL_CH2 0x64
#define MIPI_CSIS_ISPRESOL_CH3 0x74
#define CSIS_MAX_PIX_WIDTH 0xffff
#define CSIS_MAX_PIX_HEIGHT 0xffff
/* ISP SYNC register */
#define MIPI_CSIS_ISPSYNC_CH0 0x48
#define MIPI_CSIS_ISPSYNC_CH1 0x58
#define MIPI_CSIS_ISPSYNC_CH2 0x68
#define MIPI_CSIS_ISPSYNC_CH3 0x78
#define MIPI_CSIS_ISPSYNC_HSYNC_LINTV_OFFSET 18
#define MIPI_CSIS_ISPSYNC_VSYNC_SINTV_OFFSET 12
#define MIPI_CSIS_ISPSYNC_VSYNC_EINTV_OFFSET 0
/* Non-image packet data buffers */
#define MIPI_CSIS_PKTDATA_ODD 0x2000
#define MIPI_CSIS_PKTDATA_EVEN 0x3000
#define MIPI_CSIS_PKTDATA_SIZE SZ_4K
#define DEFAULT_SCLK_CSIS_FREQ 166000000UL
enum {
ST_POWERED = 1,
ST_STREAMING = 2,
ST_SUSPENDED = 4,
};
struct mipi_csis_event {
u32 mask;
const char * const name;
unsigned int counter;
};
static const struct mipi_csis_event mipi_csis_events[] = {
/* Errors */
{ MIPI_CSIS_INTSRC_ERR_SOT_HS, "SOT Error" },
{ MIPI_CSIS_INTSRC_ERR_LOST_FS, "Lost Frame Start Error" },
{ MIPI_CSIS_INTSRC_ERR_LOST_FE, "Lost Frame End Error" },
{ MIPI_CSIS_INTSRC_ERR_OVER, "FIFO Overflow Error" },
{ MIPI_CSIS_INTSRC_ERR_ECC, "ECC Error" },
{ MIPI_CSIS_INTSRC_ERR_CRC, "CRC Error" },
{ MIPI_CSIS_INTSRC_ERR_UNKNOWN, "Unknown Error" },
/* Non-image data receive events */
{ MIPI_CSIS_INTSRC_EVEN_BEFORE, "Non-image data before even frame" },
{ MIPI_CSIS_INTSRC_EVEN_AFTER, "Non-image data after even frame" },
{ MIPI_CSIS_INTSRC_ODD_BEFORE, "Non-image data before odd frame" },
{ MIPI_CSIS_INTSRC_ODD_AFTER, "Non-image data after odd frame" },
/* Frame start/end */
{ MIPI_CSIS_INTSRC_FRAME_START, "Frame Start" },
{ MIPI_CSIS_INTSRC_FRAME_END, "Frame End" },
};
#define MIPI_CSIS_NUM_EVENTS ARRAY_SIZE(mipi_csis_events)
struct csis_pktbuf {
u32 *data;
unsigned int len;
};
struct csis_hw_reset {
struct regmap *src;
u8 req_src;
u8 rst_bit;
};
/**
* struct csi_state - the driver's internal state data structure
* @lock: mutex serializing the subdev and power management operations,
* protecting @format and @flags members
* @sd: v4l2_subdev associated with CSIS device instance
* @index: the hardware instance index
* @pdev: CSIS platform device
* @phy: pointer to the CSIS generic PHY
* @regs: mmaped I/O registers memory
* @supplies: CSIS regulator supplies
* @clock: CSIS clocks
* @irq: requested s5p-mipi-csis irq number
* @flags: the state variable for power and streaming control
* @clock_frequency: device bus clock frequency
* @hs_settle: HS-RX settle time
* @num_lanes: number of MIPI-CSI data lanes used
* @max_num_lanes: maximum number of MIPI-CSI data lanes supported
* @wclk_ext: CSI wrapper clock: 0 - bus clock, 1 - external SCLK_CAM
* @csis_fmt: current CSIS pixel format
* @format: common media bus format for the source and sink pad
* @slock: spinlock protecting structure members below
* @pkt_buf: the frame embedded (non-image) data buffer
* @events: MIPI-CSIS event (error) counters
*/
struct csi_state {
struct mutex lock;
struct device *dev;
struct v4l2_subdev mipi_sd;
struct v4l2_subdev *sensor_sd;
struct v4l2_device v4l2_dev;
u8 index;
struct platform_device *pdev;
struct phy *phy;
void __iomem *regs;
struct clk *mipi_clk;
struct clk *phy_clk;
int irq;
u32 flags;
u32 clk_frequency;
u32 hs_settle;
u32 num_lanes;
u32 max_num_lanes;
u8 wclk_ext;
const struct csis_pix_format *csis_fmt;
struct v4l2_mbus_framefmt format;
spinlock_t slock;
struct csis_pktbuf pkt_buf;
struct mipi_csis_event events[MIPI_CSIS_NUM_EVENTS];
struct v4l2_async_subdev asd;
struct v4l2_async_notifier subdev_notifier;
struct v4l2_async_subdev *async_subdevs[2];
struct csis_hw_reset hw_reset;
struct regulator *mipi_phy_regulator;
};
/**
* struct csis_pix_format - CSIS pixel format description
* @pix_width_alignment: horizontal pixel alignment, width will be
* multiple of 2^pix_width_alignment
* @code: corresponding media bus code
* @fmt_reg: MIPI_CSIS_CONFIG register value
* @data_alignment: MIPI-CSI data alignment in bits
*/
struct csis_pix_format {
unsigned int pix_width_alignment;
u32 code;
u32 fmt_reg;
u8 data_alignment;
};
static const struct csis_pix_format mipi_csis_formats[] = {
{
.code = MEDIA_BUS_FMT_YUYV8_2X8,
.fmt_reg = MIPI_CSIS_ISPCFG_FMT_YCBCR422_8BIT,
.data_alignment = 16,
}, {
.code = MEDIA_BUS_FMT_VYUY8_2X8,
.fmt_reg = MIPI_CSIS_ISPCFG_FMT_YCBCR422_8BIT,
.data_alignment = 16,
}, {
.code = MEDIA_BUS_FMT_SBGGR8_1X8,
.fmt_reg = MIPI_CSIS_ISPCFG_FMT_RAW8,
.data_alignment = 8,
}
};
#define mipi_csis_write(__csis, __r, __v) writel(__v, __csis->regs + __r)
#define mipi_csis_read(__csis, __r) readl(__csis->regs + __r)
static struct csi_state *mipi_sd_to_csi_state(struct v4l2_subdev *sdev)
{
return container_of(sdev, struct csi_state, mipi_sd);
}
static inline struct csi_state
*notifier_to_mipi_dev(struct v4l2_async_notifier *n)
{
return container_of(n, struct csi_state, subdev_notifier);
}
static const struct csis_pix_format *find_csis_format(u32 code)
{
int i;
for (i = 0; i < ARRAY_SIZE(mipi_csis_formats); i++)
if (code == mipi_csis_formats[i].code)
return &mipi_csis_formats[i];
return NULL;
}
static void mipi_csis_enable_interrupts(struct csi_state *state, bool on)
{
u32 val = mipi_csis_read(state, MIPI_CSIS_INTMSK);
if (on)
val |= 0xf00fffff;
else
val &= ~0xf00fffff;
mipi_csis_write(state, MIPI_CSIS_INTMSK, val);
}
static void mipi_csis_sw_reset(struct csi_state *state)
{
u32 val = mipi_csis_read(state, MIPI_CSIS_CMN_CTRL);
mipi_csis_write(state, MIPI_CSIS_CMN_CTRL, val | MIPI_CSIS_CMN_CTRL_RESET);
udelay(10);
}
static int mipi_csis_phy_init(struct csi_state *state)
{
int ret;
state->mipi_phy_regulator = devm_regulator_get(state->dev,
"mipi-phy");
ret = regulator_set_voltage(state->mipi_phy_regulator,
1000000, 1000000);
ret = regulator_enable(state->mipi_phy_regulator);
if (ret) {
dev_err(state->dev, "failed to set mipi regulator.\n");
return ret;
}
return ret;
}
static int mipi_csis_phy_reset(struct csi_state *state)
{
struct device_node *np = state->dev->of_node;
struct device_node *node;
phandle phandle;
u32 out_val[3];
int ret;
ret = of_property_read_u32_array(np, "csis-phy-reset", out_val, 3);
if (ret) {
dev_dbg(state->dev, "no csis-hw-reset property found\n");
} else {
phandle = *out_val;
node = of_find_node_by_phandle(phandle);
if (!node) {
dev_dbg(state->dev, "not find src node by phandle\n");
ret = PTR_ERR(node);
}
state->hw_reset.src = syscon_node_to_regmap(node);
if (IS_ERR(state->hw_reset.src)) {
dev_err(state->dev, "failed to get src regmap\n");
ret = PTR_ERR(state->hw_reset.src);
}
of_node_put(node);
if (ret < 0)
return ret;
state->hw_reset.req_src = out_val[1];
state->hw_reset.rst_bit = out_val[2];
/* reset mipi phy */
regmap_update_bits(state->hw_reset.src, state->hw_reset.req_src,
1 << state->hw_reset.rst_bit, 1 << state->hw_reset.rst_bit);
msleep(20);
regmap_update_bits(state->hw_reset.src, state->hw_reset.req_src,
1 << state->hw_reset.rst_bit, 0);
}
return ret;
}
static void mipi_csis_system_enable(struct csi_state *state, int on)
{
u32 val, mask;
val = mipi_csis_read(state, MIPI_CSIS_CMN_CTRL);
if (on)
val |= MIPI_CSIS_CMN_CTRL_ENABLE;
else
val &= ~MIPI_CSIS_CMN_CTRL_ENABLE;
mipi_csis_write(state, MIPI_CSIS_CMN_CTRL, val);
val = mipi_csis_read(state, MIPI_CSIS_DPHYCTRL);
val &= ~MIPI_CSIS_DPHYCTRL_ENABLE;
if (on) {
mask = (1 << (state->num_lanes + 1)) - 1;
val |= (mask & MIPI_CSIS_DPHYCTRL_ENABLE);
}
mipi_csis_write(state, MIPI_CSIS_DPHYCTRL, val);
}
/* Called with the state.lock mutex held */
static void __mipi_csis_set_format(struct csi_state *state)
{
struct v4l2_mbus_framefmt *mf = &state->format;
u32 val;
v4l2_dbg(1, debug, &state->mipi_sd, "fmt: %#x, %d x %d\n",
mf->code, mf->width, mf->height);
/* Color format */
val = mipi_csis_read(state, MIPI_CSIS_ISPCONFIG_CH0);
val = (val & ~MIPI_CSIS_ISPCFG_FMT_MASK) | state->csis_fmt->fmt_reg;
mipi_csis_write(state, MIPI_CSIS_ISPCONFIG_CH0, val);
/* Pixel resolution */
val = mf->width | (mf->height << 16);
mipi_csis_write(state, MIPI_CSIS_ISPRESOL_CH0, val);
}
static void mipi_csis_set_hsync_settle(struct csi_state *state, int settle)
{
u32 val = mipi_csis_read(state, MIPI_CSIS_DPHYCTRL);
val = (val & ~MIPI_CSIS_DPHYCTRL_HSS_MASK) | (settle << 24);
mipi_csis_write(state, MIPI_CSIS_DPHYCTRL, val);
}
static void mipi_csis_set_params(struct csi_state *state)
{
u32 val;
val = mipi_csis_read(state, MIPI_CSIS_CMN_CTRL);
val &= ~MIPI_CSIS_CMN_CTRL_LANE_NR_MASK;
val |= (state->num_lanes - 1) << MIPI_CSIS_CMN_CTRL_LANE_NR_OFFSET;
mipi_csis_write(state, MIPI_CSIS_CMN_CTRL, val);
__mipi_csis_set_format(state);
mipi_csis_set_hsync_settle(state, state->hs_settle);
val = mipi_csis_read(state, MIPI_CSIS_ISPCONFIG_CH0);
if (state->csis_fmt->data_alignment == 32)
val |= MIPI_CSIS_ISPCFG_ALIGN_32BIT;
else /* Normal output */
val &= ~MIPI_CSIS_ISPCFG_ALIGN_32BIT;
mipi_csis_write(state, MIPI_CSIS_ISPCONFIG_CH0, val);
val = (0 << MIPI_CSIS_ISPSYNC_HSYNC_LINTV_OFFSET) |
(0 << MIPI_CSIS_ISPSYNC_VSYNC_SINTV_OFFSET) |
(0 << MIPI_CSIS_ISPSYNC_VSYNC_EINTV_OFFSET);
mipi_csis_write(state, MIPI_CSIS_ISPSYNC_CH0, val);
val = mipi_csis_read(state, MIPI_CSIS_CLK_CTRL);
val &= ~MIPI_CSIS_CLK_CTRL_WCLK_SRC;
if (state->wclk_ext)
val |= MIPI_CSIS_CLK_CTRL_WCLK_SRC;
val |= MIPI_CSIS_CLK_CTRL_CLKGATE_TRAIL_CH0(15);
val &= ~MIPI_CSIS_CLK_CTRL_CLKGATE_EN_MSK;
mipi_csis_write(state, MIPI_CSIS_CLK_CTRL, val);
mipi_csis_write(state, MIPI_CSIS_DPHYBCTRL_L, 0x1f4);
mipi_csis_write(state, MIPI_CSIS_DPHYBCTRL_H, 0);
/* Update the shadow register. */
val = mipi_csis_read(state, MIPI_CSIS_CMN_CTRL);
mipi_csis_write(state, MIPI_CSIS_CMN_CTRL, val | MIPI_CSIS_CMN_CTRL_UPDATE_SHADOW |
MIPI_CSIS_CMN_CTRL_UPDATE_SHADOW_CTRL);
}
static void mipi_csis_clk_enable(struct csi_state *state)
{
clk_prepare_enable(state->mipi_clk);
clk_prepare_enable(state->phy_clk);
}
static void mipi_csis_clk_disable(struct csi_state *state)
{
clk_disable_unprepare(state->mipi_clk);
clk_disable_unprepare(state->phy_clk);
}
static int mipi_csis_clk_get(struct csi_state *state)
{
struct device *dev = &state->pdev->dev;
int ret = true;
state->mipi_clk = devm_clk_get(dev, "mipi_clk");
if (IS_ERR(state->mipi_clk)) {
dev_err(dev, "Could not get mipi csi clock\n");
return -ENODEV;
}
state->phy_clk = devm_clk_get(dev, "phy_clk");
if (IS_ERR(state->phy_clk)) {
dev_err(dev, "Could not get mipi phy clock\n");
return -ENODEV;
}
/* Set clock rate */
if (state->clk_frequency)
ret = clk_set_rate(state->mipi_clk,
state->clk_frequency);
else
dev_WARN(dev, "No clock frequency specified!\n");
if (ret < 0) {
dev_err(dev, "set rate filed, rate=%d\n", state->clk_frequency);
return -EINVAL;
}
return ret;
}
static void dump_regs(struct csi_state *state, const char *label)
{
struct {
u32 offset;
const char * const name;
} registers[] = {
{ 0x00, "CTRL" },
{ 0x04, "DPHYCTRL" },
{ 0x08, "CONFIG" },
{ 0x0c, "DPHYSTS" },
{ 0x10, "INTMSK" },
{ 0x2c, "RESOL" },
{ 0x38, "SDW_CONFIG" },
};
u32 i;
v4l2_info(&state->mipi_sd, "--- %s ---\n", label);
for (i = 0; i < ARRAY_SIZE(registers); i++) {
u32 cfg = mipi_csis_read(state, registers[i].offset);
v4l2_info(&state->mipi_sd, "%10s: 0x%08x\n", registers[i].name, cfg);
}
}
static void mipi_csis_start_stream(struct csi_state *state)
{
mipi_csis_sw_reset(state);
mipi_csis_set_params(state);
mipi_csis_system_enable(state, true);
mipi_csis_enable_interrupts(state, true);
}
static void mipi_csis_stop_stream(struct csi_state *state)
{
mipi_csis_enable_interrupts(state, false);
mipi_csis_system_enable(state, false);
}
static void mipi_csis_clear_counters(struct csi_state *state)
{
unsigned long flags;
int i;
spin_lock_irqsave(&state->slock, flags);
for (i = 0; i < MIPI_CSIS_NUM_EVENTS; i++)
state->events[i].counter = 0;
spin_unlock_irqrestore(&state->slock, flags);
}
static void mipi_csis_log_counters(struct csi_state *state, bool non_errors)
{
int i = non_errors ? MIPI_CSIS_NUM_EVENTS : MIPI_CSIS_NUM_EVENTS - 4;
unsigned long flags;
spin_lock_irqsave(&state->slock, flags);
for (i--; i >= 0; i--) {
if (state->events[i].counter > 0 || debug)
v4l2_info(&state->mipi_sd, "%s events: %d\n",
state->events[i].name,
state->events[i].counter);
}
spin_unlock_irqrestore(&state->slock, flags);
}
/*
* V4L2 subdev operations
*/
static int mipi_csis_s_power(struct v4l2_subdev *mipi_sd, int on)
{
struct csi_state *state = mipi_sd_to_csi_state(mipi_sd);
struct device *dev = &state->pdev->dev;
v4l2_subdev_call(state->sensor_sd, core, s_power, on);
if (on)
return pm_runtime_get_sync(dev);
return pm_runtime_put_sync(dev);
}
static int mipi_csis_s_stream(struct v4l2_subdev *mipi_sd, int enable)
{
struct csi_state *state = mipi_sd_to_csi_state(mipi_sd);
int ret = 0;
v4l2_dbg(1, debug, mipi_sd, "%s: %d, state: 0x%x\n",
__func__, enable, state->flags);
if (enable) {
mipi_csis_clear_counters(state);
ret = pm_runtime_get_sync(&state->pdev->dev);
if (ret && ret != 1)
return ret;
}
mutex_lock(&state->lock);
if (enable) {
if (state->flags & ST_SUSPENDED) {
ret = -EBUSY;
goto unlock;
}
mipi_csis_start_stream(state);
v4l2_subdev_call(state->sensor_sd, video, s_stream, true);
state->flags |= ST_STREAMING;
} else {
v4l2_subdev_call(state->sensor_sd, video, s_stream, false);
mipi_csis_stop_stream(state);
state->flags &= ~ST_STREAMING;
if (debug > 0)
mipi_csis_log_counters(state, true);
}
unlock:
mutex_unlock(&state->lock);
if (!enable)
pm_runtime_put(&state->pdev->dev);
return ret == 1 ? 0 : ret;
}
static int mipi_csis_enum_mbus_fmt(struct v4l2_subdev *mipi_sd, unsigned int index,
u32 *code)
{
struct csi_state *state = mipi_sd_to_csi_state(mipi_sd);
struct v4l2_subdev *sensor_sd = state->sensor_sd;
struct csis_pix_format const *csis_fmt;
int ret;
ret = v4l2_subdev_call(sensor_sd, video, enum_mbus_fmt, index, code);
if (ret < 0)
return -EINVAL;
csis_fmt = find_csis_format(*code);
if (csis_fmt == NULL) {
dev_err(state->dev, "format not match\n");
return -EINVAL;
}
return ret;
}
static struct csis_pix_format const *mipi_csis_try_format(
struct v4l2_subdev *mipi_sd, struct v4l2_mbus_framefmt *mf)
{
struct csi_state *state = mipi_sd_to_csi_state(mipi_sd);
struct v4l2_subdev *sensor_sd = state->sensor_sd;
struct csis_pix_format const *csis_fmt;
csis_fmt = find_csis_format(mf->code);
if (csis_fmt == NULL)
csis_fmt = &mipi_csis_formats[0];
v4l2_subdev_call(sensor_sd, video, s_mbus_fmt, mf);
mf->code = csis_fmt->code;
v4l_bound_align_image(&mf->width, 1, CSIS_MAX_PIX_WIDTH,
csis_fmt->pix_width_alignment,
&mf->height, 1, CSIS_MAX_PIX_HEIGHT, 1,
0);
state->format.code = mf->code;
state->format.width = mf->width;
state->format.height = mf->height;
return csis_fmt;
}
static int mipi_csis_set_fmt(struct v4l2_subdev *mipi_sd,
struct v4l2_mbus_framefmt *fmt)
{
struct csi_state *state = mipi_sd_to_csi_state(mipi_sd);
struct csis_pix_format const *csis_fmt;
csis_fmt = mipi_csis_try_format(mipi_sd, fmt);
if (csis_fmt) {
mutex_lock(&state->lock);
state->csis_fmt = csis_fmt;
mutex_unlock(&state->lock);
}
return 0;
}
static int mipi_csis_get_fmt(struct v4l2_subdev *mipi_sd,
struct v4l2_mbus_framefmt *fmt)
{
struct csi_state *state = mipi_sd_to_csi_state(mipi_sd);
struct v4l2_subdev *sensor_sd = state->sensor_sd;
v4l2_subdev_call(sensor_sd, video, g_mbus_fmt, fmt);
if (!fmt)
return -EINVAL;
return 0;
}
static int mipi_csis_s_rx_buffer(struct v4l2_subdev *mipi_sd, void *buf,
unsigned int *size)
{
struct csi_state *state = mipi_sd_to_csi_state(mipi_sd);
unsigned long flags;
*size = min_t(unsigned int, *size, MIPI_CSIS_PKTDATA_SIZE);
spin_lock_irqsave(&state->slock, flags);
state->pkt_buf.data = buf;
state->pkt_buf.len = *size;
spin_unlock_irqrestore(&state->slock, flags);
return 0;
}
static int mipi_csis_try_fmt(struct v4l2_subdev *mipi_sd,
struct v4l2_mbus_framefmt *mf)
{
struct csi_state *state = mipi_sd_to_csi_state(mipi_sd);
struct v4l2_subdev *sensor_sd = state->sensor_sd;
return v4l2_subdev_call(sensor_sd, video, try_mbus_fmt, mf);
}
static int mipi_csis_s_parm(struct v4l2_subdev *mipi_sd, struct v4l2_streamparm *a)
{
struct csi_state *state = mipi_sd_to_csi_state(mipi_sd);
struct v4l2_subdev *sensor_sd = state->sensor_sd;
return v4l2_subdev_call(sensor_sd, video, s_parm, a);
}
static int mipi_csis_g_parm(struct v4l2_subdev *mipi_sd, struct v4l2_streamparm *a)
{
struct csi_state *state = mipi_sd_to_csi_state(mipi_sd);
struct v4l2_subdev *sensor_sd = state->sensor_sd;
return v4l2_subdev_call(sensor_sd, video, g_parm, a);
}
static int mipi_csis_enum_framesizes(struct v4l2_subdev *mipi_sd,
struct v4l2_subdev_pad_config *cfg,
struct v4l2_subdev_frame_size_enum *fse)
{
struct csi_state *state = mipi_sd_to_csi_state(mipi_sd);
struct v4l2_subdev *sensor_sd = state->sensor_sd;
return v4l2_subdev_call(sensor_sd, pad, enum_frame_size, NULL, fse);
}
static int mipi_csis_enum_frameintervals(struct v4l2_subdev *mipi_sd,
struct v4l2_subdev_pad_config *cfg,
struct v4l2_subdev_frame_interval_enum *fie)
{
struct csi_state *state = mipi_sd_to_csi_state(mipi_sd);
struct v4l2_subdev *sensor_sd = state->sensor_sd;
return v4l2_subdev_call(sensor_sd, pad, enum_frame_interval, NULL, fie);
}
static int mipi_csis_log_status(struct v4l2_subdev *mipi_sd)
{
struct csi_state *state = mipi_sd_to_csi_state(mipi_sd);
mutex_lock(&state->lock);
mipi_csis_log_counters(state, true);
if (debug && (state->flags & ST_POWERED))
dump_regs(state, __func__);
mutex_unlock(&state->lock);
return 0;
}
static struct v4l2_subdev_core_ops mipi_csis_core_ops = {
.s_power = mipi_csis_s_power,
.log_status = mipi_csis_log_status,
};
static struct v4l2_subdev_video_ops mipi_csis_video_ops = {
.s_rx_buffer = mipi_csis_s_rx_buffer,
.s_stream = mipi_csis_s_stream,
.enum_mbus_fmt = mipi_csis_enum_mbus_fmt,
.try_mbus_fmt = mipi_csis_try_fmt,
.g_mbus_fmt = mipi_csis_get_fmt,
.s_mbus_fmt = mipi_csis_set_fmt,
.s_parm = mipi_csis_s_parm,
.g_parm = mipi_csis_g_parm,
};
static const struct v4l2_subdev_pad_ops mipi_csis_pad_ops = {
.enum_frame_size = mipi_csis_enum_framesizes,
.enum_frame_interval = mipi_csis_enum_frameintervals,
};
static struct v4l2_subdev_ops mipi_csis_subdev_ops = {
.core = &mipi_csis_core_ops,
.video = &mipi_csis_video_ops,
.pad = &mipi_csis_pad_ops,
};
static irqreturn_t mipi_csis_irq_handler(int irq, void *dev_id)
{
struct csi_state *state = dev_id;
struct csis_pktbuf *pktbuf = &state->pkt_buf;
unsigned long flags;
u32 status;
status = mipi_csis_read(state, MIPI_CSIS_INTSRC);
spin_lock_irqsave(&state->slock, flags);
if ((status & MIPI_CSIS_INTSRC_NON_IMAGE_DATA) && pktbuf->data) {
u32 offset;
if (status & MIPI_CSIS_INTSRC_EVEN)
offset = MIPI_CSIS_PKTDATA_EVEN;
else
offset = MIPI_CSIS_PKTDATA_ODD;
memcpy(pktbuf->data, state->regs + offset, pktbuf->len);
pktbuf->data = NULL;
rmb();
}
/* Update the event/error counters */
if ((status & MIPI_CSIS_INTSRC_ERRORS) || debug) {
int i;
for (i = 0; i < MIPI_CSIS_NUM_EVENTS; i++) {
if (!(status & state->events[i].mask))
continue;
state->events[i].counter++;
v4l2_dbg(2, debug, &state->mipi_sd, "%s: %d\n",
state->events[i].name,
state->events[i].counter);
}
v4l2_dbg(2, debug, &state->mipi_sd, "status: %08x\n", status);
}
spin_unlock_irqrestore(&state->slock, flags);
mipi_csis_write(state, MIPI_CSIS_INTSRC, status);
return IRQ_HANDLED;
}
static int subdev_notifier_bound(struct v4l2_async_notifier *notifier,
struct v4l2_subdev *subdev,
struct v4l2_async_subdev *asd)
{
struct csi_state *state = notifier_to_mipi_dev(notifier);
/* Find platform data for this sensor subdev */
if (state->asd.match.of.node == subdev->dev->of_node)
state->sensor_sd = subdev;
if (subdev == NULL)
return -EINVAL;
v4l2_info(&state->v4l2_dev, "Registered sensor subdevice: %s\n",
subdev->name);
return 0;
}
static int mipi_csis_parse_dt(struct platform_device *pdev,
struct csi_state *state)
{
struct device_node *node = pdev->dev.of_node;
if (of_property_read_u32(node, "clock-frequency",
&state->clk_frequency))
state->clk_frequency = DEFAULT_SCLK_CSIS_FREQ;
if (of_property_read_u32(node, "bus-width",
&state->max_num_lanes))
return -EINVAL;
node = of_graph_get_next_endpoint(node, NULL);
if (!node) {
dev_err(&pdev->dev, "No port node at %s\n",
pdev->dev.of_node->full_name);
return -EINVAL;
}
/* Get MIPI CSI-2 bus configration from the endpoint node. */
of_property_read_u32(node, "csis-hs-settle",
&state->hs_settle);
state->wclk_ext = of_property_read_bool(node,
"csis-wclk");
of_property_read_u32(node, "data-lanes",
&state->num_lanes);
of_node_put(node);
return 0;
}
static int mipi_csis_pm_resume(struct device *dev, bool runtime);
static const struct of_device_id mipi_csis_of_match[];
/* register parent dev */
static int mipi_csis_subdev_host(struct csi_state *state)
{
struct device_node *parent = state->dev->of_node;
struct device_node *node, *port, *rem;
int ret;
/* Attach sensors linked to csi receivers */
for_each_available_child_of_node(parent, node) {
if (of_node_cmp(node->name, "port"))
continue;
/* The csi node can have only port subnode. */
port = of_get_next_child(node, NULL);
if (!port)
continue;
rem = of_graph_get_remote_port_parent(port);
of_node_put(port);
if (rem == NULL) {
v4l2_info(&state->v4l2_dev,
"Remote device at %s not found\n",
port->full_name);
return -1;
}
state->asd.match_type = V4L2_ASYNC_MATCH_OF;
state->asd.match.of.node = rem;
state->async_subdevs[0] = &state->asd;
of_node_put(rem);
break;
}
state->subdev_notifier.subdevs = state->async_subdevs;
state->subdev_notifier.num_subdevs = 1;
state->subdev_notifier.bound = subdev_notifier_bound;
ret = v4l2_async_notifier_register(&state->v4l2_dev,
&state->subdev_notifier);
if (ret)
dev_err(state->dev,
"Error register async notifier regoster\n");
return ret;
}
/* init subdev */
static int mipi_csis_subdev_init(struct v4l2_subdev *mipi_sd,
struct platform_device *pdev,
const struct v4l2_subdev_ops *ops)
{
struct csi_state *state = platform_get_drvdata(pdev);
int ret = 0;
v4l2_subdev_init(mipi_sd, ops);
mipi_sd->owner = THIS_MODULE;
snprintf(mipi_sd->name, sizeof(mipi_sd->name), "%s.%d",
CSIS_SUBDEV_NAME, state->index);
mipi_sd->flags |= V4L2_SUBDEV_FL_HAS_DEVNODE;
mipi_sd->dev = &pdev->dev;
state->csis_fmt = &mipi_csis_formats[0];
state->format.code = mipi_csis_formats[0].code;
state->format.width = MIPI_CSIS_DEF_PIX_WIDTH;
state->format.height = MIPI_CSIS_DEF_PIX_HEIGHT;
/* This allows to retrieve the platform device id by the host driver */
v4l2_set_subdevdata(mipi_sd, pdev);
ret = v4l2_async_register_subdev(mipi_sd);
if (ret < 0)
dev_err(&pdev->dev, "%s--Async register faialed, ret=%d\n", __func__, ret);
return ret;
}
static int mipi_csis_probe(struct platform_device *pdev)
{
struct device *dev = &pdev->dev;
struct v4l2_subdev *mipi_sd;
struct resource *mem_res;
struct csi_state *state;
int ret = -ENOMEM;
state = devm_kzalloc(dev, sizeof(*state), GFP_KERNEL);
if (!state)
return -ENOMEM;
mutex_init(&state->lock);
spin_lock_init(&state->slock);
state->pdev = pdev;
mipi_sd = &state->mipi_sd;
state->dev = dev;
ret = mipi_csis_parse_dt(pdev, state);
if (ret < 0)
return ret;
if (state->num_lanes == 0 || state->num_lanes > state->max_num_lanes) {
dev_err(dev, "Unsupported number of data lanes: %d (max. %d)\n",
state->num_lanes, state->max_num_lanes);
return -EINVAL;
}
mipi_csis_phy_init(state);
mipi_csis_phy_reset(state);
mem_res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
state->regs = devm_ioremap_resource(dev, mem_res);
if (IS_ERR(state->regs))
return PTR_ERR(state->regs);
state->irq = platform_get_irq(pdev, 0);
if (state->irq < 0) {
dev_err(dev, "Failed to get irq\n");
return state->irq;
}
ret = mipi_csis_clk_get(state);
if (ret < 0)
return ret;
mipi_csis_clk_enable(state);
ret = devm_request_irq(dev, state->irq, mipi_csis_irq_handler,
0, dev_name(dev), state);
if (ret) {
dev_err(dev, "Interrupt request failed\n");
goto e_clkdis;
}
/* First register a v4l2 device */
ret = v4l2_device_register(dev, &state->v4l2_dev);
if (ret) {
v4l2_err(dev->driver,
"Unable to register v4l2 device.\n");
goto e_clkdis;
}
v4l2_info(&state->v4l2_dev, "mipi csi v4l2 device registered\n");
/* .. and a pointer to the subdev. */
platform_set_drvdata(pdev, state);
ret = mipi_csis_subdev_init(&state->mipi_sd, pdev, &mipi_csis_subdev_ops);
if (ret < 0)
goto e_sd_mipi;
memcpy(state->events, mipi_csis_events, sizeof(state->events));
/* subdev host register */
ret = mipi_csis_subdev_host(state);
if (ret < 0)
goto e_sd_host;
pm_runtime_enable(dev);
if (!pm_runtime_enabled(dev)) {
ret = mipi_csis_pm_resume(dev, true);
if (ret < 0)
goto e_sd_host;
}
dev_info(&pdev->dev, "lanes: %d, hs_settle: %d, wclk: %d, freq: %u\n",
state->num_lanes, state->hs_settle, state->wclk_ext,
state->clk_frequency);
return 0;
e_sd_host:
v4l2_async_notifier_unregister(&state->subdev_notifier);
v4l2_device_unregister(&state->v4l2_dev);
e_sd_mipi:
v4l2_async_unregister_subdev(&state->mipi_sd);
e_clkdis:
mipi_csis_clk_disable(state);
return ret;
}
static int mipi_csis_pm_suspend(struct device *dev, bool runtime)
{
struct platform_device *pdev = to_platform_device(dev);
struct csi_state *state = platform_get_drvdata(pdev);
struct v4l2_subdev *mipi_sd = &state->mipi_sd;
int ret = 0;
v4l2_dbg(1, debug, mipi_sd, "%s: flags: 0x%x\n",
__func__, state->flags);
mutex_lock(&state->lock);
if (state->flags & ST_POWERED) {
mipi_csis_stop_stream(state);
ret = regulator_disable(state->mipi_phy_regulator);
if (ret)
goto unlock;
mipi_csis_clk_disable(state);
state->flags &= ~ST_POWERED;
if (!runtime)
state->flags |= ST_SUSPENDED;
}
unlock:
mutex_unlock(&state->lock);
return ret ? -EAGAIN : 0;
}
static int mipi_csis_pm_resume(struct device *dev, bool runtime)
{
struct platform_device *pdev = to_platform_device(dev);
struct csi_state *state = platform_get_drvdata(pdev);
struct v4l2_subdev *mipi_sd = &state->mipi_sd;
int ret = 0;
v4l2_dbg(1, debug, mipi_sd, "%s: flags: 0x%x\n",
__func__, state->flags);
mutex_lock(&state->lock);
if (!runtime && !(state->flags & ST_SUSPENDED))
goto unlock;
if (!(state->flags & ST_POWERED)) {
ret = regulator_enable(state->mipi_phy_regulator);
if (!ret) {
state->flags |= ST_POWERED;
} else {
goto unlock;
}
mipi_csis_clk_enable(state);
}
if (state->flags & ST_STREAMING)
mipi_csis_start_stream(state);
state->flags &= ~ST_SUSPENDED;
unlock:
mutex_unlock(&state->lock);
return ret ? -EAGAIN : 0;
}
#ifdef CONFIG_PM_SLEEP
static int mipi_csis_suspend(struct device *dev)
{
return mipi_csis_pm_suspend(dev, false);
}
static int mipi_csis_resume(struct device *dev)
{
return mipi_csis_pm_resume(dev, false);
}
#endif
static int mipi_csis_runtime_suspend(struct device *dev)
{
return mipi_csis_pm_suspend(dev, true);
}
static int mipi_csis_runtime_resume(struct device *dev)
{
return mipi_csis_pm_resume(dev, true);
}
static int mipi_csis_remove(struct platform_device *pdev)
{
struct csi_state *state = platform_get_drvdata(pdev);
v4l2_async_unregister_subdev(&state->mipi_sd);
v4l2_async_notifier_unregister(&state->subdev_notifier);
v4l2_device_unregister(&state->v4l2_dev);
pm_runtime_disable(&pdev->dev);
mipi_csis_pm_suspend(&pdev->dev, true);
mipi_csis_clk_disable(state);
pm_runtime_set_suspended(&pdev->dev);
return 0;
}
static const struct dev_pm_ops mipi_csis_pm_ops = {
SET_RUNTIME_PM_OPS(mipi_csis_runtime_suspend, mipi_csis_runtime_resume,
NULL)
SET_SYSTEM_SLEEP_PM_OPS(mipi_csis_suspend, mipi_csis_resume)
};
static const struct of_device_id mipi_csis_of_match[] = {
{ .compatible = "fsl,imx7d-mipi-csi",},
{ /* sentinel */ },
};
MODULE_DEVICE_TABLE(of, mipi_csis_of_match);
static struct platform_driver mipi_csis_driver = {
.probe = mipi_csis_probe,
.remove = mipi_csis_remove,
.driver = {
.of_match_table = mipi_csis_of_match,
.name = CSIS_DRIVER_NAME,
.owner = THIS_MODULE,
.pm = &mipi_csis_pm_ops,
},
};
module_platform_driver(mipi_csis_driver);
MODULE_DESCRIPTION("Freescale MIPI-CSI2 receiver driver");
MODULE_LICENSE("GPL");