blob: f2ccb1e3a137809d9f9ed3e0c620132c239f4af1 [file] [log] [blame]
/*
* Copyright 2005-2015 Freescale Semiconductor, Inc. All Rights Reserved.
*/
/*
* The code contained herein is licensed under the GNU General Public
* License. You may obtain a copy of the GNU General Public License
* Version 2 or later at the following locations:
*
* http://www.opensource.org/licenses/gpl-license.html
* http://www.gnu.org/copyleft/gpl.html
*/
/*!
* @file ipu_disp.c
*
* @brief IPU display submodule API functions
*
* @ingroup IPU
*/
#include <linux/clk.h>
#include <linux/clk-provider.h>
#include <linux/delay.h>
#include <linux/err.h>
#include <linux/errno.h>
#include <linux/io.h>
#include <linux/ipu-v3.h>
#include <linux/module.h>
#include <linux/spinlock.h>
#include <linux/types.h>
#include <asm/atomic.h>
#include "ipu_param_mem.h"
#include "ipu_regs.h"
struct dp_csc_param_t {
int mode;
void *coeff;
};
#define SYNC_WAVE 0
#define NULL_WAVE (-1)
#define ASYNC_SER_WAVE 6
/* DC display ID assignments */
#define DC_DISP_ID_SYNC(di) (di)
#define DC_DISP_ID_SERIAL 2
#define DC_DISP_ID_ASYNC 3
int dmfc_type_setup;
void _ipu_dmfc_init(struct ipu_soc *ipu, int dmfc_type, int first)
{
u32 dmfc_wr_chan, dmfc_dp_chan;
if (first) {
if (dmfc_type_setup > dmfc_type)
dmfc_type = dmfc_type_setup;
else
dmfc_type_setup = dmfc_type;
/* disable DMFC-IC channel*/
ipu_dmfc_write(ipu, 0x2, DMFC_IC_CTRL);
} else if (dmfc_type_setup >= DMFC_HIGH_RESOLUTION_DC) {
dev_dbg(ipu->dev, "DMFC high resolution has set, will not change\n");
return;
} else
dmfc_type_setup = dmfc_type;
if (dmfc_type == DMFC_HIGH_RESOLUTION_DC) {
/* 1 - segment 0~3;
* 5B - segement 4, 5;
* 5F - segement 6, 7;
* 1C, 2C and 6B, 6F unused;
*/
dev_info(ipu->dev, "IPU DMFC DC HIGH RESOLUTION: 1(0~3), 5B(4,5), 5F(6,7)\n");
dmfc_wr_chan = 0x00000088;
dmfc_dp_chan = 0x00009694;
ipu->dmfc_size_28 = 256*4;
ipu->dmfc_size_29 = 0;
ipu->dmfc_size_24 = 0;
ipu->dmfc_size_27 = 128*4;
ipu->dmfc_size_23 = 128*4;
} else if (dmfc_type == DMFC_HIGH_RESOLUTION_DP) {
/* 1 - segment 0, 1;
* 5B - segement 2~5;
* 5F - segement 6,7;
* 1C, 2C and 6B, 6F unused;
*/
dev_info(ipu->dev, "IPU DMFC DP HIGH RESOLUTION: 1(0,1), 5B(2~5), 5F(6,7)\n");
dmfc_wr_chan = 0x00000090;
dmfc_dp_chan = 0x0000968a;
ipu->dmfc_size_28 = 128*4;
ipu->dmfc_size_29 = 0;
ipu->dmfc_size_24 = 0;
ipu->dmfc_size_27 = 128*4;
ipu->dmfc_size_23 = 256*4;
} else if (dmfc_type == DMFC_HIGH_RESOLUTION_ONLY_DP) {
/* 5B - segement 0~3;
* 5F - segement 4~7;
* 1, 1C, 2C and 6B, 6F unused;
*/
dev_info(ipu->dev, "IPU DMFC ONLY-DP HIGH RESOLUTION: 5B(0~3), 5F(4~7)\n");
dmfc_wr_chan = 0x00000000;
dmfc_dp_chan = 0x00008c88;
ipu->dmfc_size_28 = 0;
ipu->dmfc_size_29 = 0;
ipu->dmfc_size_24 = 0;
ipu->dmfc_size_27 = 256*4;
ipu->dmfc_size_23 = 256*4;
} else {
/* 1 - segment 0, 1;
* 5B - segement 4, 5;
* 5F - segement 6, 7;
* 1C, 2C and 6B, 6F unused;
*/
dev_info(ipu->dev, "IPU DMFC NORMAL mode: 1(0~1), 5B(4,5), 5F(6,7)\n");
dmfc_wr_chan = 0x00000090;
dmfc_dp_chan = 0x00009694;
ipu->dmfc_size_28 = 128*4;
ipu->dmfc_size_29 = 0;
ipu->dmfc_size_24 = 0;
ipu->dmfc_size_27 = 128*4;
ipu->dmfc_size_23 = 128*4;
}
ipu_dmfc_write(ipu, dmfc_wr_chan, DMFC_WR_CHAN);
ipu_dmfc_write(ipu, 0x202020F6, DMFC_WR_CHAN_DEF);
ipu_dmfc_write(ipu, dmfc_dp_chan, DMFC_DP_CHAN);
/* Enable chan 5 watermark set at 5 bursts and clear at 7 bursts */
ipu_dmfc_write(ipu, 0x2020F6F6, DMFC_DP_CHAN_DEF);
}
static int __init dmfc_setup(char *options)
{
get_option(&options, &dmfc_type_setup);
if (dmfc_type_setup > DMFC_HIGH_RESOLUTION_ONLY_DP)
dmfc_type_setup = DMFC_HIGH_RESOLUTION_ONLY_DP;
return 1;
}
__setup("dmfc=", dmfc_setup);
void _ipu_dmfc_set_wait4eot(struct ipu_soc *ipu, int dma_chan, int width)
{
u32 dmfc_gen1 = ipu_dmfc_read(ipu, DMFC_GENERAL1);
if (width >= HIGH_RESOLUTION_WIDTH) {
if (dma_chan == 23)
_ipu_dmfc_init(ipu, DMFC_HIGH_RESOLUTION_DP, 0);
else if (dma_chan == 28)
_ipu_dmfc_init(ipu, DMFC_HIGH_RESOLUTION_DC, 0);
}
if (dma_chan == 23) { /*5B*/
if (ipu->dmfc_size_23/width > 3)
dmfc_gen1 |= 1UL << 20;
else
dmfc_gen1 &= ~(1UL << 20);
} else if (dma_chan == 24) { /*6B*/
if (ipu->dmfc_size_24/width > 1)
dmfc_gen1 |= 1UL << 22;
else
dmfc_gen1 &= ~(1UL << 22);
} else if (dma_chan == 27) { /*5F*/
if (ipu->dmfc_size_27/width > 2)
dmfc_gen1 |= 1UL << 21;
else
dmfc_gen1 &= ~(1UL << 21);
} else if (dma_chan == 28) { /*1*/
if (ipu->dmfc_size_28/width > 2)
dmfc_gen1 |= 1UL << 16;
else
dmfc_gen1 &= ~(1UL << 16);
} else if (dma_chan == 29) { /*6F*/
if (ipu->dmfc_size_29/width > 1)
dmfc_gen1 |= 1UL << 23;
else
dmfc_gen1 &= ~(1UL << 23);
}
ipu_dmfc_write(ipu, dmfc_gen1, DMFC_GENERAL1);
}
void _ipu_dmfc_set_burst_size(struct ipu_soc *ipu, int dma_chan, int burst_size)
{
u32 dmfc_wr_chan = ipu_dmfc_read(ipu, DMFC_WR_CHAN);
u32 dmfc_dp_chan = ipu_dmfc_read(ipu, DMFC_DP_CHAN);
int dmfc_bs = 0;
switch (burst_size) {
case 64:
dmfc_bs = 0x40;
break;
case 32:
case 20:
dmfc_bs = 0x80;
break;
case 16:
dmfc_bs = 0xc0;
break;
default:
dev_err(ipu->dev, "Unsupported burst size %d\n",
burst_size);
return;
}
if (dma_chan == 23) { /*5B*/
dmfc_dp_chan &= ~(0xc0);
dmfc_dp_chan |= dmfc_bs;
} else if (dma_chan == 27) { /*5F*/
dmfc_dp_chan &= ~(0xc000);
dmfc_dp_chan |= (dmfc_bs << 8);
} else if (dma_chan == 28) { /*1*/
dmfc_wr_chan &= ~(0xc0);
dmfc_wr_chan |= dmfc_bs;
}
ipu_dmfc_write(ipu, dmfc_wr_chan, DMFC_WR_CHAN);
ipu_dmfc_write(ipu, dmfc_dp_chan, DMFC_DP_CHAN);
}
static void _ipu_di_data_wave_config(struct ipu_soc *ipu,
int di, int wave_gen,
int access_size, int component_size)
{
u32 reg;
reg = (access_size << DI_DW_GEN_ACCESS_SIZE_OFFSET) |
(component_size << DI_DW_GEN_COMPONENT_SIZE_OFFSET);
ipu_di_write(ipu, di, reg, DI_DW_GEN(wave_gen));
}
static void _ipu_di_data_pin_config(struct ipu_soc *ipu,
int di, int wave_gen, int di_pin, int set,
int up, int down)
{
u32 reg;
reg = ipu_di_read(ipu, di, DI_DW_GEN(wave_gen));
reg &= ~(0x3 << (di_pin * 2));
reg |= set << (di_pin * 2);
ipu_di_write(ipu, di, reg, DI_DW_GEN(wave_gen));
ipu_di_write(ipu, di, (down << 16) | up, DI_DW_SET(wave_gen, set));
}
static void _ipu_di_sync_config(struct ipu_soc *ipu,
int di, int wave_gen,
int run_count, int run_src,
int offset_count, int offset_src,
int repeat_count, int cnt_clr_src,
int cnt_polarity_gen_en,
int cnt_polarity_clr_src,
int cnt_polarity_trigger_src,
int cnt_up, int cnt_down)
{
u32 reg;
if ((run_count >= 0x1000) || (offset_count >= 0x1000) || (repeat_count >= 0x1000) ||
(cnt_up >= 0x400) || (cnt_down >= 0x400)) {
dev_err(ipu->dev, "DI%d counters out of range.\n", di);
return;
}
reg = (run_count << 19) | (++run_src << 16) |
(offset_count << 3) | ++offset_src;
ipu_di_write(ipu, di, reg, DI_SW_GEN0(wave_gen));
reg = (cnt_polarity_gen_en << 29) | (++cnt_clr_src << 25) |
(++cnt_polarity_trigger_src << 12) | (++cnt_polarity_clr_src << 9);
reg |= (cnt_down << 16) | cnt_up;
if (repeat_count == 0) {
/* Enable auto reload */
reg |= 0x10000000;
}
ipu_di_write(ipu, di, reg, DI_SW_GEN1(wave_gen));
reg = ipu_di_read(ipu, di, DI_STP_REP(wave_gen));
reg &= ~(0xFFFF << (16 * ((wave_gen - 1) & 0x1)));
reg |= repeat_count << (16 * ((wave_gen - 1) & 0x1));
ipu_di_write(ipu, di, reg, DI_STP_REP(wave_gen));
}
static void _ipu_dc_map_link(struct ipu_soc *ipu,
int current_map,
int base_map_0, int buf_num_0,
int base_map_1, int buf_num_1,
int base_map_2, int buf_num_2)
{
int ptr_0 = base_map_0 * 3 + buf_num_0;
int ptr_1 = base_map_1 * 3 + buf_num_1;
int ptr_2 = base_map_2 * 3 + buf_num_2;
int ptr;
u32 reg;
ptr = (ptr_2 << 10) + (ptr_1 << 5) + ptr_0;
reg = ipu_dc_read(ipu, DC_MAP_CONF_PTR(current_map));
reg &= ~(0x1F << ((16 * (current_map & 0x1))));
reg |= ptr << ((16 * (current_map & 0x1)));
ipu_dc_write(ipu, reg, DC_MAP_CONF_PTR(current_map));
}
static void _ipu_dc_map_config(struct ipu_soc *ipu,
int map, int byte_num, int offset, int mask)
{
int ptr = map * 3 + byte_num;
u32 reg;
reg = ipu_dc_read(ipu, DC_MAP_CONF_VAL(ptr));
reg &= ~(0xFFFF << (16 * (ptr & 0x1)));
reg |= ((offset << 8) | mask) << (16 * (ptr & 0x1));
ipu_dc_write(ipu, reg, DC_MAP_CONF_VAL(ptr));
reg = ipu_dc_read(ipu, DC_MAP_CONF_PTR(map));
reg &= ~(0x1F << ((16 * (map & 0x1)) + (5 * byte_num)));
reg |= ptr << ((16 * (map & 0x1)) + (5 * byte_num));
ipu_dc_write(ipu, reg, DC_MAP_CONF_PTR(map));
}
static void _ipu_dc_map_clear(struct ipu_soc *ipu, int map)
{
u32 reg = ipu_dc_read(ipu, DC_MAP_CONF_PTR(map));
ipu_dc_write(ipu, reg & ~(0xFFFF << (16 * (map & 0x1))),
DC_MAP_CONF_PTR(map));
}
static void _ipu_dc_write_tmpl(struct ipu_soc *ipu,
int word, u32 opcode, u32 operand, int map,
int wave, int glue, int sync, int stop)
{
u32 reg;
if (opcode == WRG) {
reg = sync;
reg |= (glue << 4);
reg |= (++wave << 11);
reg |= ((operand & 0x1FFFF) << 15);
ipu_dc_tmpl_write(ipu, reg, word * 8);
reg = (operand >> 17);
reg |= opcode << 7;
reg |= (stop << 9);
ipu_dc_tmpl_write(ipu, reg, word * 8 + 4);
} else {
reg = sync;
reg |= (glue << 4);
reg |= (++wave << 11);
reg |= (++map << 15);
reg |= (operand << 20) & 0xFFF00000;
ipu_dc_tmpl_write(ipu, reg, word * 8);
reg = (operand >> 12);
reg |= opcode << 4;
reg |= (stop << 9);
ipu_dc_tmpl_write(ipu, reg, word * 8 + 4);
}
}
static void _ipu_dc_link_event(struct ipu_soc *ipu,
int chan, int event, int addr, int priority)
{
u32 reg;
u32 address_shift;
if (event < DC_EVEN_UGDE0) {
reg = ipu_dc_read(ipu, DC_RL_CH(chan, event));
reg &= ~(0xFFFF << (16 * (event & 0x1)));
reg |= ((addr << 8) | priority) << (16 * (event & 0x1));
ipu_dc_write(ipu, reg, DC_RL_CH(chan, event));
} else {
reg = ipu_dc_read(ipu, DC_UGDE_0((event - DC_EVEN_UGDE0) / 2));
if ((event - DC_EVEN_UGDE0) & 0x1) {
reg &= ~(0x2FF << 16);
reg |= (addr << 16);
reg |= priority ? (2 << 24) : 0x0;
} else {
reg &= ~0xFC00FFFF;
if (priority)
chan = (chan >> 1) +
((((chan & 0x1) + ((chan & 0x2) >> 1))) | (chan >> 3));
else
chan = 0x7;
address_shift = ((event - DC_EVEN_UGDE0) >> 1) ? 7 : 8;
reg |= (addr << address_shift) | (priority << 3) | chan;
}
ipu_dc_write(ipu, reg, DC_UGDE_0((event - DC_EVEN_UGDE0) / 2));
}
}
/* Y = R * 1.200 + G * 2.343 + B * .453 + 0.250;
U = R * -.672 + G * -1.328 + B * 2.000 + 512.250.;
V = R * 2.000 + G * -1.672 + B * -.328 + 512.250.;*/
static const int rgb2ycbcr_coeff[5][3] = {
{0x4D, 0x96, 0x1D},
{-0x2B, -0x55, 0x80},
{0x80, -0x6B, -0x15},
{0x0000, 0x0200, 0x0200}, /* B0, B1, B2 */
{0x2, 0x2, 0x2}, /* S0, S1, S2 */
};
/* R = (1.164 * (Y - 16)) + (1.596 * (Cr - 128));
G = (1.164 * (Y - 16)) - (0.392 * (Cb - 128)) - (0.813 * (Cr - 128));
B = (1.164 * (Y - 16)) + (2.017 * (Cb - 128); */
static const int ycbcr2rgb_coeff[5][3] = {
{0x095, 0x000, 0x0CC},
{0x095, 0x3CE, 0x398},
{0x095, 0x0FF, 0x000},
{0x3E42, 0x010A, 0x3DD6}, /*B0,B1,B2 */
{0x1, 0x1, 0x1}, /*S0,S1,S2 */
};
#define mask_a(a) ((u32)(a) & 0x3FF)
#define mask_b(b) ((u32)(b) & 0x3FFF)
/* Pls keep S0, S1 and S2 as 0x2 by using this convertion */
static int _rgb_to_yuv(int n, int red, int green, int blue)
{
int c;
c = red * rgb2ycbcr_coeff[n][0];
c += green * rgb2ycbcr_coeff[n][1];
c += blue * rgb2ycbcr_coeff[n][2];
c /= 16;
c += rgb2ycbcr_coeff[3][n] * 4;
c += 8;
c /= 16;
if (c < 0)
c = 0;
if (c > 255)
c = 255;
return c;
}
/*
* Row is for BG: RGB2YUV YUV2RGB RGB2RGB YUV2YUV CSC_NONE
* Column is for FG: RGB2YUV YUV2RGB RGB2RGB YUV2YUV CSC_NONE
*/
static struct dp_csc_param_t dp_csc_array[CSC_NUM][CSC_NUM] = {
{
{DP_COM_CONF_CSC_DEF_BOTH, (void *)&rgb2ycbcr_coeff},
{0, 0}, {0, 0},
{DP_COM_CONF_CSC_DEF_BG, (void *)&rgb2ycbcr_coeff},
{DP_COM_CONF_CSC_DEF_BG, (void *)&rgb2ycbcr_coeff}
},
{
{0, 0},
{DP_COM_CONF_CSC_DEF_BOTH, (void *)&ycbcr2rgb_coeff},
{DP_COM_CONF_CSC_DEF_BG, (void *)&ycbcr2rgb_coeff},
{0, 0},
{DP_COM_CONF_CSC_DEF_BG, (void *)&ycbcr2rgb_coeff}
},
{
{0, 0},
{DP_COM_CONF_CSC_DEF_FG, (void *)&ycbcr2rgb_coeff},
{0, 0}, {0, 0}, {0, 0}
},
{
{DP_COM_CONF_CSC_DEF_FG, (void *)&rgb2ycbcr_coeff},
{0, 0}, {0, 0}, {0, 0}, {0, 0}
},
{
{DP_COM_CONF_CSC_DEF_FG, (void *)&rgb2ycbcr_coeff},
{DP_COM_CONF_CSC_DEF_FG, (void *)&ycbcr2rgb_coeff},
{0, 0}, {0, 0}, {0, 0}
}
};
void __ipu_dp_csc_setup(struct ipu_soc *ipu,
int dp, struct dp_csc_param_t dp_csc_param,
bool srm_mode_update)
{
u32 reg;
const int (*coeff)[5][3];
if (dp_csc_param.mode >= 0) {
reg = ipu_dp_read(ipu, DP_COM_CONF(dp));
reg &= ~DP_COM_CONF_CSC_DEF_MASK;
reg |= dp_csc_param.mode;
ipu_dp_write(ipu, reg, DP_COM_CONF(dp));
}
coeff = dp_csc_param.coeff;
if (coeff) {
ipu_dp_write(ipu, mask_a((*coeff)[0][0]) |
(mask_a((*coeff)[0][1]) << 16), DP_CSC_A_0(dp));
ipu_dp_write(ipu, mask_a((*coeff)[0][2]) |
(mask_a((*coeff)[1][0]) << 16), DP_CSC_A_1(dp));
ipu_dp_write(ipu, mask_a((*coeff)[1][1]) |
(mask_a((*coeff)[1][2]) << 16), DP_CSC_A_2(dp));
ipu_dp_write(ipu, mask_a((*coeff)[2][0]) |
(mask_a((*coeff)[2][1]) << 16), DP_CSC_A_3(dp));
ipu_dp_write(ipu, mask_a((*coeff)[2][2]) |
(mask_b((*coeff)[3][0]) << 16) |
((*coeff)[4][0] << 30), DP_CSC_0(dp));
ipu_dp_write(ipu, mask_b((*coeff)[3][1]) | ((*coeff)[4][1] << 14) |
(mask_b((*coeff)[3][2]) << 16) |
((*coeff)[4][2] << 30), DP_CSC_1(dp));
}
if (srm_mode_update) {
reg = ipu_cm_read(ipu, IPU_SRM_PRI2) | 0x8;
ipu_cm_write(ipu, reg, IPU_SRM_PRI2);
}
}
int _ipu_dp_init(struct ipu_soc *ipu,
ipu_channel_t channel, uint32_t in_pixel_fmt,
uint32_t out_pixel_fmt)
{
int in_fmt, out_fmt;
int dp;
int partial = false;
uint32_t reg;
if (channel == MEM_FG_SYNC) {
dp = DP_SYNC;
partial = true;
} else if (channel == MEM_BG_SYNC) {
dp = DP_SYNC;
partial = false;
} else if (channel == MEM_BG_ASYNC0) {
dp = DP_ASYNC0;
partial = false;
} else {
return -EINVAL;
}
in_fmt = format_to_colorspace(in_pixel_fmt);
out_fmt = format_to_colorspace(out_pixel_fmt);
if (partial) {
if (in_fmt == RGB) {
if (out_fmt == RGB)
ipu->fg_csc_type = RGB2RGB;
else
ipu->fg_csc_type = RGB2YUV;
} else {
if (out_fmt == RGB)
ipu->fg_csc_type = YUV2RGB;
else
ipu->fg_csc_type = YUV2YUV;
}
} else {
if (in_fmt == RGB) {
if (out_fmt == RGB)
ipu->bg_csc_type = RGB2RGB;
else
ipu->bg_csc_type = RGB2YUV;
} else {
if (out_fmt == RGB)
ipu->bg_csc_type = YUV2RGB;
else
ipu->bg_csc_type = YUV2YUV;
}
}
/* Transform color key from rgb to yuv if CSC is enabled */
reg = ipu_dp_read(ipu, DP_COM_CONF(dp));
if (ipu->color_key_4rgb && (reg & DP_COM_CONF_GWCKE) &&
(((ipu->fg_csc_type == RGB2YUV) && (ipu->bg_csc_type == YUV2YUV)) ||
((ipu->fg_csc_type == YUV2YUV) && (ipu->bg_csc_type == RGB2YUV)) ||
((ipu->fg_csc_type == YUV2YUV) && (ipu->bg_csc_type == YUV2YUV)) ||
((ipu->fg_csc_type == YUV2RGB) && (ipu->bg_csc_type == YUV2RGB)))) {
int red, green, blue;
int y, u, v;
uint32_t color_key = ipu_dp_read(ipu, DP_GRAPH_WIND_CTRL(dp)) & 0xFFFFFFL;
dev_dbg(ipu->dev, "_ipu_dp_init color key 0x%x need change to yuv fmt!\n", color_key);
red = (color_key >> 16) & 0xFF;
green = (color_key >> 8) & 0xFF;
blue = color_key & 0xFF;
y = _rgb_to_yuv(0, red, green, blue);
u = _rgb_to_yuv(1, red, green, blue);
v = _rgb_to_yuv(2, red, green, blue);
color_key = (y << 16) | (u << 8) | v;
reg = ipu_dp_read(ipu, DP_GRAPH_WIND_CTRL(dp)) & 0xFF000000L;
ipu_dp_write(ipu, reg | color_key, DP_GRAPH_WIND_CTRL(dp));
ipu->color_key_4rgb = false;
dev_dbg(ipu->dev, "_ipu_dp_init color key change to yuv fmt 0x%x!\n", color_key);
}
__ipu_dp_csc_setup(ipu, dp,
dp_csc_array[ipu->bg_csc_type][ipu->fg_csc_type],
false);
return 0;
}
void _ipu_dp_uninit(struct ipu_soc *ipu, ipu_channel_t channel)
{
int dp;
int partial = false;
if (channel == MEM_FG_SYNC) {
dp = DP_SYNC;
partial = true;
} else if (channel == MEM_BG_SYNC) {
dp = DP_SYNC;
partial = false;
} else if (channel == MEM_BG_ASYNC0) {
dp = DP_ASYNC0;
partial = false;
} else {
return;
}
if (partial)
ipu->fg_csc_type = CSC_NONE;
else
ipu->bg_csc_type = CSC_NONE;
__ipu_dp_csc_setup(ipu, dp, dp_csc_array[ipu->bg_csc_type][ipu->fg_csc_type], false);
}
void _ipu_dc_init(struct ipu_soc *ipu, int dc_chan, int di, bool interlaced, uint32_t pixel_fmt)
{
u32 reg = 0;
if ((dc_chan == 1) || (dc_chan == 5)) {
if (interlaced) {
_ipu_dc_link_event(ipu, dc_chan, DC_EVT_NL, 0, 3);
_ipu_dc_link_event(ipu, dc_chan, DC_EVT_EOL, 0, 2);
_ipu_dc_link_event(ipu, dc_chan, DC_EVT_NEW_DATA, 0, 1);
} else {
if (di) {
_ipu_dc_link_event(ipu, dc_chan, DC_EVT_NL, 2, 3);
_ipu_dc_link_event(ipu, dc_chan, DC_EVT_EOL, 3, 2);
_ipu_dc_link_event(ipu, dc_chan, DC_EVT_NEW_DATA, 1, 1);
if ((pixel_fmt == IPU_PIX_FMT_YUYV) ||
(pixel_fmt == IPU_PIX_FMT_UYVY) ||
(pixel_fmt == IPU_PIX_FMT_YVYU) ||
(pixel_fmt == IPU_PIX_FMT_VYUY)) {
_ipu_dc_link_event(ipu, dc_chan, DC_ODD_UGDE1, 9, 5);
_ipu_dc_link_event(ipu, dc_chan, DC_EVEN_UGDE1, 8, 5);
}
} else {
_ipu_dc_link_event(ipu, dc_chan, DC_EVT_NL, 5, 3);
_ipu_dc_link_event(ipu, dc_chan, DC_EVT_EOL, 6, 2);
_ipu_dc_link_event(ipu, dc_chan, DC_EVT_NEW_DATA, 12, 1);
if ((pixel_fmt == IPU_PIX_FMT_YUYV) ||
(pixel_fmt == IPU_PIX_FMT_UYVY) ||
(pixel_fmt == IPU_PIX_FMT_YVYU) ||
(pixel_fmt == IPU_PIX_FMT_VYUY)) {
_ipu_dc_link_event(ipu, dc_chan, DC_ODD_UGDE0, 10, 5);
_ipu_dc_link_event(ipu, dc_chan, DC_EVEN_UGDE0, 11, 5);
}
}
}
_ipu_dc_link_event(ipu, dc_chan, DC_EVT_NF, 0, 0);
_ipu_dc_link_event(ipu, dc_chan, DC_EVT_NFIELD, 0, 0);
_ipu_dc_link_event(ipu, dc_chan, DC_EVT_EOF, 0, 0);
_ipu_dc_link_event(ipu, dc_chan, DC_EVT_EOFIELD, 0, 0);
_ipu_dc_link_event(ipu, dc_chan, DC_EVT_NEW_CHAN, 0, 0);
_ipu_dc_link_event(ipu, dc_chan, DC_EVT_NEW_ADDR, 0, 0);
reg = 0x2;
reg |= DC_DISP_ID_SYNC(di) << DC_WR_CH_CONF_PROG_DISP_ID_OFFSET;
reg |= di << 2;
if (interlaced)
reg |= DC_WR_CH_CONF_FIELD_MODE;
} else if ((dc_chan == 8) || (dc_chan == 9)) {
/* async channels */
_ipu_dc_link_event(ipu, dc_chan, DC_EVT_NEW_DATA_W_0, 0x64, 1);
_ipu_dc_link_event(ipu, dc_chan, DC_EVT_NEW_DATA_W_1, 0x64, 1);
reg = 0x3;
reg |= DC_DISP_ID_SERIAL << DC_WR_CH_CONF_PROG_DISP_ID_OFFSET;
}
ipu_dc_write(ipu, reg, DC_WR_CH_CONF(dc_chan));
ipu_dc_write(ipu, 0x00000000, DC_WR_CH_ADDR(dc_chan));
ipu_dc_write(ipu, 0x00000084, DC_GEN);
}
void _ipu_dc_uninit(struct ipu_soc *ipu, int dc_chan)
{
if ((dc_chan == 1) || (dc_chan == 5)) {
_ipu_dc_link_event(ipu, dc_chan, DC_EVT_NL, 0, 0);
_ipu_dc_link_event(ipu, dc_chan, DC_EVT_EOL, 0, 0);
_ipu_dc_link_event(ipu, dc_chan, DC_EVT_NEW_DATA, 0, 0);
_ipu_dc_link_event(ipu, dc_chan, DC_EVT_NF, 0, 0);
_ipu_dc_link_event(ipu, dc_chan, DC_EVT_NFIELD, 0, 0);
_ipu_dc_link_event(ipu, dc_chan, DC_EVT_EOF, 0, 0);
_ipu_dc_link_event(ipu, dc_chan, DC_EVT_EOFIELD, 0, 0);
_ipu_dc_link_event(ipu, dc_chan, DC_EVT_NEW_CHAN, 0, 0);
_ipu_dc_link_event(ipu, dc_chan, DC_EVT_NEW_ADDR, 0, 0);
_ipu_dc_link_event(ipu, dc_chan, DC_ODD_UGDE0, 0, 0);
_ipu_dc_link_event(ipu, dc_chan, DC_EVEN_UGDE0, 0, 0);
_ipu_dc_link_event(ipu, dc_chan, DC_ODD_UGDE1, 0, 0);
_ipu_dc_link_event(ipu, dc_chan, DC_EVEN_UGDE1, 0, 0);
} else if ((dc_chan == 8) || (dc_chan == 9)) {
_ipu_dc_link_event(ipu, dc_chan, DC_EVT_NEW_ADDR_W_0, 0, 0);
_ipu_dc_link_event(ipu, dc_chan, DC_EVT_NEW_ADDR_W_1, 0, 0);
_ipu_dc_link_event(ipu, dc_chan, DC_EVT_NEW_CHAN_W_0, 0, 0);
_ipu_dc_link_event(ipu, dc_chan, DC_EVT_NEW_CHAN_W_1, 0, 0);
_ipu_dc_link_event(ipu, dc_chan, DC_EVT_NEW_DATA_W_0, 0, 0);
_ipu_dc_link_event(ipu, dc_chan, DC_EVT_NEW_DATA_W_1, 0, 0);
_ipu_dc_link_event(ipu, dc_chan, DC_EVT_NEW_ADDR_R_0, 0, 0);
_ipu_dc_link_event(ipu, dc_chan, DC_EVT_NEW_ADDR_R_1, 0, 0);
_ipu_dc_link_event(ipu, dc_chan, DC_EVT_NEW_CHAN_R_0, 0, 0);
_ipu_dc_link_event(ipu, dc_chan, DC_EVT_NEW_CHAN_R_1, 0, 0);
_ipu_dc_link_event(ipu, dc_chan, DC_EVT_NEW_DATA_R_0, 0, 0);
_ipu_dc_link_event(ipu, dc_chan, DC_EVT_NEW_DATA_R_1, 0, 0);
}
}
int _ipu_disp_chan_is_interlaced(struct ipu_soc *ipu, ipu_channel_t channel)
{
if (channel == MEM_DC_SYNC)
return !!(ipu_dc_read(ipu, DC_WR_CH_CONF_1) &
DC_WR_CH_CONF_FIELD_MODE);
else if ((channel == MEM_BG_SYNC) || (channel == MEM_FG_SYNC))
return !!(ipu_dc_read(ipu, DC_WR_CH_CONF_5) &
DC_WR_CH_CONF_FIELD_MODE);
return 0;
}
void _ipu_dp_dc_enable(struct ipu_soc *ipu, ipu_channel_t channel)
{
int di;
uint32_t reg;
uint32_t dc_chan;
int irq = 0;
if (channel == MEM_FG_SYNC)
irq = IPU_IRQ_DP_SF_END;
else if (channel == MEM_DC_SYNC)
dc_chan = 1;
else if (channel == MEM_BG_SYNC)
dc_chan = 5;
else
return;
if (channel == MEM_FG_SYNC) {
/* Enable FG channel */
reg = ipu_dp_read(ipu, DP_COM_CONF(DP_SYNC));
ipu_dp_write(ipu, reg | DP_COM_CONF_FG_EN, DP_COM_CONF(DP_SYNC));
reg = ipu_cm_read(ipu, IPU_SRM_PRI2) | 0x8;
ipu_cm_write(ipu, reg, IPU_SRM_PRI2);
return;
} else if (channel == MEM_BG_SYNC) {
reg = ipu_cm_read(ipu, IPU_SRM_PRI2) | 0x8;
ipu_cm_write(ipu, reg, IPU_SRM_PRI2);
}
di = ipu->dc_di_assignment[dc_chan];
/* Make sure other DC sync channel is not assigned same DI */
reg = ipu_dc_read(ipu, DC_WR_CH_CONF(6 - dc_chan));
if ((di << 2) == (reg & DC_WR_CH_CONF_PROG_DI_ID)) {
reg &= ~DC_WR_CH_CONF_PROG_DI_ID;
reg |= di ? 0 : DC_WR_CH_CONF_PROG_DI_ID;
ipu_dc_write(ipu, reg, DC_WR_CH_CONF(6 - dc_chan));
}
reg = ipu_dc_read(ipu, DC_WR_CH_CONF(dc_chan));
reg |= 4 << DC_WR_CH_CONF_PROG_TYPE_OFFSET;
ipu_dc_write(ipu, reg, DC_WR_CH_CONF(dc_chan));
clk_prepare_enable(ipu->pixel_clk[di]);
ipu->pixel_clk_en[ipu->dc_di_assignment[dc_chan]] = true;
}
static irqreturn_t dc_irq_handler(int irq, void *dev_id)
{
struct ipu_soc *ipu = dev_id;
struct completion *comp = &ipu->dc_comp;
uint32_t reg;
uint32_t dc_chan;
if (irq == IPU_IRQ_DC_FC_1)
dc_chan = 1;
else
dc_chan = 5;
if (!ipu->dc_swap) {
reg = ipu_dc_read(ipu, DC_WR_CH_CONF(dc_chan));
reg &= ~DC_WR_CH_CONF_PROG_TYPE_MASK;
ipu_dc_write(ipu, reg, DC_WR_CH_CONF(dc_chan));
reg = ipu_cm_read(ipu, IPU_DISP_GEN);
if (ipu->dc_di_assignment[dc_chan])
reg &= ~DI1_COUNTER_RELEASE;
else
reg &= ~DI0_COUNTER_RELEASE;
ipu_cm_write(ipu, reg, IPU_DISP_GEN);
}
complete(comp);
return IRQ_HANDLED;
}
void _ipu_dp_dc_disable(struct ipu_soc *ipu, ipu_channel_t channel, bool swap)
{
int ret;
uint32_t reg;
uint32_t csc;
uint32_t dc_chan;
int irq = 0;
int timeout = 50;
ipu->dc_swap = swap;
if (channel == MEM_DC_SYNC) {
dc_chan = 1;
irq = IPU_IRQ_DC_FC_1;
} else if (channel == MEM_BG_SYNC) {
dc_chan = 5;
irq = IPU_IRQ_DP_SF_END;
} else if (channel == MEM_FG_SYNC) {
/* Disable FG channel */
dc_chan = 5;
reg = ipu_dp_read(ipu, DP_COM_CONF(DP_SYNC));
csc = reg & DP_COM_CONF_CSC_DEF_MASK;
if (csc == DP_COM_CONF_CSC_DEF_FG)
reg &= ~DP_COM_CONF_CSC_DEF_MASK;
reg &= ~DP_COM_CONF_FG_EN;
ipu_dp_write(ipu, reg, DP_COM_CONF(DP_SYNC));
reg = ipu_cm_read(ipu, IPU_SRM_PRI2) | 0x8;
ipu_cm_write(ipu, reg, IPU_SRM_PRI2);
if (ipu_is_channel_busy(ipu, MEM_BG_SYNC)) {
ipu_cm_write(ipu, IPUIRQ_2_MASK(IPU_IRQ_DP_SF_END),
IPUIRQ_2_STATREG(ipu->devtype,
IPU_IRQ_DP_SF_END));
while ((ipu_cm_read(ipu,
IPUIRQ_2_STATREG(ipu->devtype,
IPU_IRQ_DP_SF_END)) &
IPUIRQ_2_MASK(IPU_IRQ_DP_SF_END)) == 0) {
msleep(2);
timeout -= 2;
if (timeout <= 0)
break;
}
}
return;
} else {
return;
}
init_completion(&ipu->dc_comp);
ret = ipu_request_irq(ipu, irq, dc_irq_handler, 0, NULL, ipu);
if (ret < 0) {
dev_err(ipu->dev, "DC irq %d in use\n", irq);
return;
}
ret = wait_for_completion_timeout(&ipu->dc_comp, msecs_to_jiffies(50));
ipu_free_irq(ipu, irq, ipu);
dev_dbg(ipu->dev, "DC stop timeout - %d * 10ms\n", 5 - ret);
if (ipu->dc_swap) {
/* Swap DC channel 1 and 5 settings, and disable old dc chan */
reg = ipu_dc_read(ipu, DC_WR_CH_CONF(dc_chan));
ipu_dc_write(ipu, reg, DC_WR_CH_CONF(6 - dc_chan));
reg &= ~DC_WR_CH_CONF_PROG_TYPE_MASK;
reg ^= DC_WR_CH_CONF_PROG_DI_ID;
ipu_dc_write(ipu, reg, DC_WR_CH_CONF(dc_chan));
}
}
void _ipu_init_dc_mappings(struct ipu_soc *ipu)
{
/* IPU_PIX_FMT_RGB24 */
_ipu_dc_map_clear(ipu, 0);
_ipu_dc_map_config(ipu, 0, 0, 7, 0xFF);
_ipu_dc_map_config(ipu, 0, 1, 15, 0xFF);
_ipu_dc_map_config(ipu, 0, 2, 23, 0xFF);
/* IPU_PIX_FMT_RGB666 */
_ipu_dc_map_clear(ipu, 1);
_ipu_dc_map_config(ipu, 1, 0, 5, 0xFC);
_ipu_dc_map_config(ipu, 1, 1, 11, 0xFC);
_ipu_dc_map_config(ipu, 1, 2, 17, 0xFC);
/* IPU_PIX_FMT_YUV444 */
_ipu_dc_map_clear(ipu, 2);
_ipu_dc_map_config(ipu, 2, 0, 15, 0xFF);
_ipu_dc_map_config(ipu, 2, 1, 23, 0xFF);
_ipu_dc_map_config(ipu, 2, 2, 7, 0xFF);
/* IPU_PIX_FMT_RGB565 */
_ipu_dc_map_clear(ipu, 3);
_ipu_dc_map_config(ipu, 3, 0, 4, 0xF8);
_ipu_dc_map_config(ipu, 3, 1, 10, 0xFC);
_ipu_dc_map_config(ipu, 3, 2, 15, 0xF8);
/* IPU_PIX_FMT_LVDS666 */
_ipu_dc_map_clear(ipu, 4);
_ipu_dc_map_config(ipu, 4, 0, 5, 0xFC);
_ipu_dc_map_config(ipu, 4, 1, 13, 0xFC);
_ipu_dc_map_config(ipu, 4, 2, 21, 0xFC);
/* IPU_PIX_FMT_VYUY 16bit width */
_ipu_dc_map_clear(ipu, 5);
_ipu_dc_map_config(ipu, 5, 0, 7, 0xFF);
_ipu_dc_map_config(ipu, 5, 1, 0, 0x0);
_ipu_dc_map_config(ipu, 5, 2, 15, 0xFF);
_ipu_dc_map_clear(ipu, 6);
_ipu_dc_map_config(ipu, 6, 0, 0, 0x0);
_ipu_dc_map_config(ipu, 6, 1, 7, 0xFF);
_ipu_dc_map_config(ipu, 6, 2, 15, 0xFF);
/* IPU_PIX_FMT_UYUV 16bit width */
_ipu_dc_map_clear(ipu, 7);
_ipu_dc_map_link(ipu, 7, 6, 0, 6, 1, 6, 2);
_ipu_dc_map_clear(ipu, 8);
_ipu_dc_map_link(ipu, 8, 5, 0, 5, 1, 5, 2);
/* IPU_PIX_FMT_YUYV 16bit width */
_ipu_dc_map_clear(ipu, 9);
_ipu_dc_map_link(ipu, 9, 5, 2, 5, 1, 5, 0);
_ipu_dc_map_clear(ipu, 10);
_ipu_dc_map_link(ipu, 10, 5, 1, 5, 2, 5, 0);
/* IPU_PIX_FMT_YVYU 16bit width */
_ipu_dc_map_clear(ipu, 11);
_ipu_dc_map_link(ipu, 11, 5, 1, 5, 2, 5, 0);
_ipu_dc_map_clear(ipu, 12);
_ipu_dc_map_link(ipu, 12, 5, 2, 5, 1, 5, 0);
/* IPU_PIX_FMT_GBR24 */
/* IPU_PIX_FMT_VYU444 */
_ipu_dc_map_clear(ipu, 13);
_ipu_dc_map_link(ipu, 13, 0, 2, 0, 0, 0, 1);
/* IPU_PIX_FMT_BGR24 */
_ipu_dc_map_clear(ipu, 14);
_ipu_dc_map_link(ipu, 14, 0, 2, 0, 1, 0, 0);
}
int _ipu_pixfmt_to_map(uint32_t fmt)
{
switch (fmt) {
case IPU_PIX_FMT_GENERIC:
case IPU_PIX_FMT_RGB24:
return 0;
case IPU_PIX_FMT_RGB666:
return 1;
case IPU_PIX_FMT_YUV444:
return 2;
case IPU_PIX_FMT_RGB565:
return 3;
case IPU_PIX_FMT_LVDS666:
return 4;
case IPU_PIX_FMT_VYUY:
return 6;
case IPU_PIX_FMT_UYVY:
return 8;
case IPU_PIX_FMT_YUYV:
return 10;
case IPU_PIX_FMT_YVYU:
return 12;
case IPU_PIX_FMT_GBR24:
case IPU_PIX_FMT_VYU444:
return 13;
case IPU_PIX_FMT_BGR24:
return 14;
}
return -1;
}
/*!
* This function sets the colorspace for of dp.
* modes.
*
* @param ipu ipu handler
* @param channel Input parameter for the logical channel ID.
*
* @param param If it's not NULL, update the csc table
* with this parameter.
*
* @return N/A
*/
void _ipu_dp_set_csc_coefficients(struct ipu_soc *ipu, ipu_channel_t channel, int32_t param[][3])
{
int dp;
struct dp_csc_param_t dp_csc_param;
if (channel == MEM_FG_SYNC)
dp = DP_SYNC;
else if (channel == MEM_BG_SYNC)
dp = DP_SYNC;
else if (channel == MEM_BG_ASYNC0)
dp = DP_ASYNC0;
else
return;
dp_csc_param.mode = -1;
dp_csc_param.coeff = param;
__ipu_dp_csc_setup(ipu, dp, dp_csc_param, true);
}
void ipu_set_csc_coefficients(struct ipu_soc *ipu, ipu_channel_t channel, int32_t param[][3])
{
_ipu_dp_set_csc_coefficients(ipu, channel, param);
}
EXPORT_SYMBOL(ipu_set_csc_coefficients);
/*!
* This function is called to adapt synchronous LCD panel to IPU restriction.
*
*/
void adapt_panel_to_ipu_restricitions(struct ipu_soc *ipu, uint16_t *v_start_width,
uint16_t *v_sync_width,
uint16_t *v_end_width)
{
if (*v_end_width < 2) {
uint16_t diff = 2 - *v_end_width;
if (*v_start_width >= diff) {
*v_end_width = 2;
*v_start_width = *v_start_width - diff;
} else if (*v_sync_width > diff) {
*v_end_width = 2;
*v_sync_width = *v_sync_width - diff;
} else
dev_err(ipu->dev, "WARNING: try to adapt timming, but failed\n");
dev_err(ipu->dev, "WARNING: adapt panel end blank lines\n");
}
}
/*!
* This function is called to initialize a synchronous LCD panel.
*
* @param ipu ipu handler
* @param disp The DI the panel is attached to.
*
* @param pixel_clk Desired pixel clock frequency in Hz.
*
* @param pixel_fmt Input parameter for pixel format of buffer.
* Pixel format is a FOURCC ASCII code.
*
* @param width The width of panel in pixels.
*
* @param height The height of panel in pixels.
*
* @param hStartWidth The number of pixel clocks between the HSYNC
* signal pulse and the start of valid data.
*
* @param hSyncWidth The width of the HSYNC signal in units of pixel
* clocks.
*
* @param hEndWidth The number of pixel clocks between the end of
* valid data and the HSYNC signal for next line.
*
* @param vStartWidth The number of lines between the VSYNC
* signal pulse and the start of valid data.
*
* @param vSyncWidth The width of the VSYNC signal in units of lines
*
* @param vEndWidth The number of lines between the end of valid
* data and the VSYNC signal for next frame.
*
* @param sig Bitfield of signal polarities for LCD interface.
*
* @return This function returns 0 on success or negative error code on
* fail.
*/
int32_t ipu_init_sync_panel(struct ipu_soc *ipu, int disp, uint32_t pixel_clk,
uint16_t width, uint16_t height,
uint32_t pixel_fmt,
uint16_t h_start_width, uint16_t h_sync_width,
uint16_t h_end_width, uint16_t v_start_width,
uint16_t v_sync_width, uint16_t v_end_width,
uint32_t v_to_h_sync, ipu_di_signal_cfg_t sig)
{
uint32_t field0_offset = 0;
uint32_t field1_offset;
uint32_t reg;
uint32_t di_gen, vsync_cnt;
uint32_t div, rounded_pixel_clk;
uint32_t h_total, v_total;
int map;
int ret;
struct clk *ldb_di0_clk, *ldb_di1_clk;
struct clk *di_parent;
dev_dbg(ipu->dev, "panel size = %d x %d\n", width, height);
if ((v_sync_width == 0) || (h_sync_width == 0))
return -EINVAL;
adapt_panel_to_ipu_restricitions(ipu, &v_start_width, &v_sync_width, &v_end_width);
h_total = width + h_sync_width + h_start_width + h_end_width;
v_total = height + v_sync_width + v_start_width + v_end_width;
/* Init clocking */
dev_dbg(ipu->dev, "pixel clk = %d\n", pixel_clk);
di_parent = clk_get_parent(ipu->di_clk_sel[disp]);
if (!di_parent) {
dev_err(ipu->dev, "get di clk parent fail\n");
return -EINVAL;
}
ldb_di0_clk = clk_get(ipu->dev, "ldb_di0");
if (IS_ERR(ldb_di0_clk)) {
dev_err(ipu->dev, "clk_get di0 failed");
return PTR_ERR(ldb_di0_clk);
}
ldb_di1_clk = clk_get(ipu->dev, "ldb_di1");
if (IS_ERR(ldb_di1_clk)) {
dev_err(ipu->dev, "clk_get di1 failed");
return PTR_ERR(ldb_di1_clk);
}
if (!strcmp(__clk_get_name(di_parent), __clk_get_name(ldb_di0_clk)) ||
!strcmp(__clk_get_name(di_parent), __clk_get_name(ldb_di1_clk))) {
/* if di clk parent is tve/ldb, then keep it;*/
dev_dbg(ipu->dev, "use special clk parent\n");
ret = clk_set_parent(ipu->pixel_clk_sel[disp], ipu->di_clk[disp]);
if (ret) {
dev_err(ipu->dev, "set pixel clk error:%d\n", ret);
return ret;
}
clk_put(ldb_di0_clk);
clk_put(ldb_di1_clk);
} else {
/* try ipu clk first*/
dev_dbg(ipu->dev, "try ipu internal clk\n");
ret = clk_set_parent(ipu->pixel_clk_sel[disp], ipu->ipu_clk);
if (ret) {
dev_err(ipu->dev, "set pixel clk error:%d\n", ret);
return ret;
}
rounded_pixel_clk = clk_round_rate(ipu->pixel_clk[disp], pixel_clk);
dev_dbg(ipu->dev, "rounded pix clk:%d\n", rounded_pixel_clk);
/*
* we will only use 1/2 fraction for ipu clk,
* so if the clk rate is not fit, try ext clk.
*/
if (!sig.int_clk &&
((rounded_pixel_clk >= pixel_clk + pixel_clk/200) ||
(rounded_pixel_clk <= pixel_clk - pixel_clk/200))) {
dev_dbg(ipu->dev, "try ipu ext di clk\n");
rounded_pixel_clk =
clk_round_rate(ipu->di_clk[disp], pixel_clk);
ret = clk_set_rate(ipu->di_clk[disp],
rounded_pixel_clk);
if (ret) {
dev_err(ipu->dev,
"set di clk rate error:%d\n", ret);
return ret;
}
dev_dbg(ipu->dev, "di clk:%d\n", rounded_pixel_clk);
ret = clk_set_parent(ipu->pixel_clk_sel[disp],
ipu->di_clk[disp]);
if (ret) {
dev_err(ipu->dev,
"set pixel clk parent error:%d\n", ret);
return ret;
}
}
}
rounded_pixel_clk = clk_round_rate(ipu->pixel_clk[disp], pixel_clk);
dev_dbg(ipu->dev, "round pixel clk:%d\n", rounded_pixel_clk);
ret = clk_set_rate(ipu->pixel_clk[disp], rounded_pixel_clk);
if (ret) {
dev_err(ipu->dev, "set pixel clk rate error:%d\n", ret);
return ret;
}
msleep(5);
/* Get integer portion of divider */
div = clk_get_rate(clk_get_parent(ipu->pixel_clk_sel[disp])) / rounded_pixel_clk;
dev_dbg(ipu->dev, "div:%d\n", div);
if (!div) {
dev_err(ipu->dev, "invalid pixel clk div = 0\n");
return -EINVAL;
}
mutex_lock(&ipu->mutex_lock);
_ipu_di_data_wave_config(ipu, disp, SYNC_WAVE, div - 1, div - 1);
_ipu_di_data_pin_config(ipu, disp, SYNC_WAVE, DI_PIN15, 3, 0, div * 2);
map = _ipu_pixfmt_to_map(pixel_fmt);
if (map < 0) {
dev_dbg(ipu->dev, "IPU_DISP: No MAP\n");
mutex_unlock(&ipu->mutex_lock);
return -EINVAL;
}
/*clear DI*/
di_gen = ipu_di_read(ipu, disp, DI_GENERAL);
di_gen &= (0x3 << 20);
ipu_di_write(ipu, disp, di_gen, DI_GENERAL);
if (sig.interlaced) {
if (ipu->devtype >= IPUv3EX) {
/* Setup internal HSYNC waveform */
_ipu_di_sync_config(ipu,
disp, /* display */
1, /* counter */
h_total/2 - 1, /* run count */
DI_SYNC_CLK, /* run_resolution */
0, /* offset */
DI_SYNC_NONE, /* offset resolution */
0, /* repeat count */
DI_SYNC_NONE, /* CNT_CLR_SEL */
0, /* CNT_POLARITY_GEN_EN */
DI_SYNC_NONE, /* CNT_POLARITY_CLR_SEL */
DI_SYNC_NONE, /* CNT_POLARITY_TRIGGER_SEL */
0, /* COUNT UP */
0 /* COUNT DOWN */
);
/* Field 1 VSYNC waveform */
_ipu_di_sync_config(ipu,
disp, /* display */
2, /* counter */
h_total - 1, /* run count */
DI_SYNC_CLK, /* run_resolution */
0, /* offset */
DI_SYNC_NONE, /* offset resolution */
0, /* repeat count */
DI_SYNC_NONE, /* CNT_CLR_SEL */
0, /* CNT_POLARITY_GEN_EN */
DI_SYNC_NONE, /* CNT_POLARITY_CLR_SEL */
DI_SYNC_NONE, /* CNT_POLARITY_TRIGGER_SEL */
0, /* COUNT UP */
2*div /* COUNT DOWN */
);
/* Setup internal HSYNC waveform */
_ipu_di_sync_config(ipu,
disp, /* display */
3, /* counter */
v_total*2 - 1, /* run count */
DI_SYNC_INT_HSYNC, /* run_resolution */
1, /* offset */
DI_SYNC_INT_HSYNC, /* offset resolution */
0, /* repeat count */
DI_SYNC_NONE, /* CNT_CLR_SEL */
0, /* CNT_POLARITY_GEN_EN */
DI_SYNC_NONE, /* CNT_POLARITY_CLR_SEL */
DI_SYNC_NONE, /* CNT_POLARITY_TRIGGER_SEL */
0, /* COUNT UP */
2*div /* COUNT DOWN */
);
/* Active Field ? */
_ipu_di_sync_config(ipu,
disp, /* display */
4, /* counter */
v_total/2 - 1, /* run count */
DI_SYNC_HSYNC, /* run_resolution */
v_start_width, /* offset */
DI_SYNC_HSYNC, /* offset resolution */
2, /* repeat count */
DI_SYNC_VSYNC, /* CNT_CLR_SEL */
0, /* CNT_POLARITY_GEN_EN */
DI_SYNC_NONE, /* CNT_POLARITY_CLR_SEL */
DI_SYNC_NONE, /* CNT_POLARITY_TRIGGER_SEL */
0, /* COUNT UP */
0 /* COUNT DOWN */
);
/* Active Line */
_ipu_di_sync_config(ipu,
disp, /* display */
5, /* counter */
0, /* run count */
DI_SYNC_HSYNC, /* run_resolution */
0, /* offset */
DI_SYNC_NONE, /* offset resolution */
height/2, /* repeat count */
4, /* CNT_CLR_SEL */
0, /* CNT_POLARITY_GEN_EN */
DI_SYNC_NONE, /* CNT_POLARITY_CLR_SEL */
DI_SYNC_NONE, /* CNT_POLARITY_TRIGGER_SEL */
0, /* COUNT UP */
0 /* COUNT DOWN */
);
/* Field 0 VSYNC waveform */
_ipu_di_sync_config(ipu,
disp, /* display */
6, /* counter */
v_total - 1, /* run count */
DI_SYNC_HSYNC, /* run_resolution */
0, /* offset */
DI_SYNC_NONE, /* offset resolution */
0, /* repeat count */
DI_SYNC_NONE, /* CNT_CLR_SEL */
0, /* CNT_POLARITY_GEN_EN */
DI_SYNC_NONE, /* CNT_POLARITY_CLR_SEL */
DI_SYNC_NONE, /* CNT_POLARITY_TRIGGER_SEL */
0, /* COUNT UP */
0 /* COUNT DOWN */
);
/* DC VSYNC waveform */
vsync_cnt = 7;
_ipu_di_sync_config(ipu,
disp, /* display */
7, /* counter */
v_total/2 - 1, /* run count */
DI_SYNC_HSYNC, /* run_resolution */
9, /* offset */
DI_SYNC_HSYNC, /* offset resolution */
2, /* repeat count */
DI_SYNC_VSYNC, /* CNT_CLR_SEL */
0, /* CNT_POLARITY_GEN_EN */
DI_SYNC_NONE, /* CNT_POLARITY_CLR_SEL */
DI_SYNC_NONE, /* CNT_POLARITY_TRIGGER_SEL */
0, /* COUNT UP */
0 /* COUNT DOWN */
);
/* active pixel waveform */
_ipu_di_sync_config(ipu,
disp, /* display */
8, /* counter */
0, /* run count */
DI_SYNC_CLK, /* run_resolution */
h_start_width, /* offset */
DI_SYNC_CLK, /* offset resolution */
width, /* repeat count */
5, /* CNT_CLR_SEL */
0, /* CNT_POLARITY_GEN_EN */
DI_SYNC_NONE, /* CNT_POLARITY_CLR_SEL */
DI_SYNC_NONE, /* CNT_POLARITY_TRIGGER_SEL */
0, /* COUNT UP */
0 /* COUNT DOWN */
);
/* Second VSYNC */
_ipu_di_sync_config(ipu,
disp, /* display */
9, /* counter */
v_total - 1, /* run count */
DI_SYNC_INT_HSYNC, /* run_resolution */
v_total/2, /* offset */
DI_SYNC_INT_HSYNC, /* offset resolution */
0, /* repeat count */
DI_SYNC_HSYNC, /* CNT_CLR_SEL */
0, /* CNT_POLARITY_GEN_EN */
DI_SYNC_NONE, /* CNT_POLARITY_CLR_SEL */
DI_SYNC_NONE, /* CNT_POLARITY_TRIGGER_SEL */
0, /* COUNT UP */
2*div /* COUNT DOWN */
);
/* set gentime select and tag sel */
reg = ipu_di_read(ipu, disp, DI_SW_GEN1(9));
reg &= 0x1FFFFFFF;
reg |= (3-1)<<29 | 0x00008000;
ipu_di_write(ipu, disp, reg, DI_SW_GEN1(9));
ipu_di_write(ipu, disp, v_total / 2 - 1, DI_SCR_CONF);
/* set y_sel = 1 */
di_gen |= 0x10000000;
di_gen |= DI_GEN_POLARITY_5;
di_gen |= DI_GEN_POLARITY_8;
} else {
/* Setup internal HSYNC waveform */
_ipu_di_sync_config(ipu, disp, 1, h_total - 1, DI_SYNC_CLK,
0, DI_SYNC_NONE, 0, DI_SYNC_NONE, 0, DI_SYNC_NONE,
DI_SYNC_NONE, 0, 0);
field1_offset = v_sync_width + v_start_width + height / 2 +
v_end_width;
if (sig.odd_field_first) {
field0_offset = field1_offset - 1;
field1_offset = 0;
}
v_total += v_start_width + v_end_width;
/* Field 1 VSYNC waveform */
_ipu_di_sync_config(ipu, disp, 2, v_total - 1, 1,
field0_offset,
field0_offset ? 1 : DI_SYNC_NONE,
0, DI_SYNC_NONE, 0,
DI_SYNC_NONE, DI_SYNC_NONE, 0, 4);
/* Setup internal HSYNC waveform */
_ipu_di_sync_config(ipu, disp, 3, h_total - 1, DI_SYNC_CLK,
0, DI_SYNC_NONE, 0, DI_SYNC_NONE, 0,
DI_SYNC_NONE, DI_SYNC_NONE, 0, 4);
/* Active Field ? */
_ipu_di_sync_config(ipu, disp, 4,
field0_offset ?
field0_offset : field1_offset - 2,
1, v_start_width + v_sync_width, 1, 2, 2,
0, DI_SYNC_NONE, DI_SYNC_NONE, 0, 0);
/* Active Line */
_ipu_di_sync_config(ipu, disp, 5, 0, 1,
0, DI_SYNC_NONE,
height / 2, 4, 0, DI_SYNC_NONE,
DI_SYNC_NONE, 0, 0);
/* Field 0 VSYNC waveform */
_ipu_di_sync_config(ipu, disp, 6, v_total - 1, 1,
0, DI_SYNC_NONE,
0, DI_SYNC_NONE, 0, DI_SYNC_NONE,
DI_SYNC_NONE, 0, 0);
/* DC VSYNC waveform */
vsync_cnt = 7;
_ipu_di_sync_config(ipu, disp, 7, 0, 1,
field1_offset,
field1_offset ? 1 : DI_SYNC_NONE,
1, 2, 0, DI_SYNC_NONE, DI_SYNC_NONE, 0, 0);
/* active pixel waveform */
_ipu_di_sync_config(ipu, disp, 8, 0, DI_SYNC_CLK,
h_sync_width + h_start_width, DI_SYNC_CLK,
width, 5, 0, DI_SYNC_NONE, DI_SYNC_NONE,
0, 0);
/* ??? */
_ipu_di_sync_config(ipu, disp, 9, v_total - 1, 2,
0, DI_SYNC_NONE,
0, DI_SYNC_NONE, 6, DI_SYNC_NONE,
DI_SYNC_NONE, 0, 0);
reg = ipu_di_read(ipu, disp, DI_SW_GEN1(9));
reg |= 0x8000;
ipu_di_write(ipu, disp, reg, DI_SW_GEN1(9));
ipu_di_write(ipu, disp, v_sync_width + v_start_width +
v_end_width + height / 2 - 1, DI_SCR_CONF);
}
/* Init template microcode */
_ipu_dc_write_tmpl(ipu, 0, WROD(0), 0, map, SYNC_WAVE, 0, 8, 1);
if (sig.Hsync_pol)
di_gen |= DI_GEN_POLARITY_3;
if (sig.Vsync_pol)
di_gen |= DI_GEN_POLARITY_2;
} else {
/* Setup internal HSYNC waveform */
_ipu_di_sync_config(ipu, disp, 1, h_total - 1, DI_SYNC_CLK,
0, DI_SYNC_NONE, 0, DI_SYNC_NONE, 0, DI_SYNC_NONE,
DI_SYNC_NONE, 0, 0);
/* Setup external (delayed) HSYNC waveform */
_ipu_di_sync_config(ipu, disp, DI_SYNC_HSYNC, h_total - 1,
DI_SYNC_CLK, div * v_to_h_sync, DI_SYNC_CLK,
0, DI_SYNC_NONE, 1, DI_SYNC_NONE,
DI_SYNC_CLK, 0, h_sync_width * 2);
/* Setup VSYNC waveform */
vsync_cnt = DI_SYNC_VSYNC;
_ipu_di_sync_config(ipu, disp, DI_SYNC_VSYNC, v_total - 1,
DI_SYNC_INT_HSYNC, 0, DI_SYNC_NONE, 0,
DI_SYNC_NONE, 1, DI_SYNC_NONE,
DI_SYNC_INT_HSYNC, 0, v_sync_width * 2);
ipu_di_write(ipu, disp, v_total - 1, DI_SCR_CONF);
/* Setup active data waveform to sync with DC */
_ipu_di_sync_config(ipu, disp, 4, 0, DI_SYNC_HSYNC,
v_sync_width + v_start_width, DI_SYNC_HSYNC, height,
DI_SYNC_VSYNC, 0, DI_SYNC_NONE,
DI_SYNC_NONE, 0, 0);
_ipu_di_sync_config(ipu, disp, 5, 0, DI_SYNC_CLK,
h_sync_width + h_start_width, DI_SYNC_CLK,
width, 4, 0, DI_SYNC_NONE, DI_SYNC_NONE, 0,
0);
/* set VGA delayed hsync/vsync no matter VGA enabled */
if (disp) {
/* couter 7 for VGA delay HSYNC */
_ipu_di_sync_config(ipu, disp, 7,
h_total - 1, DI_SYNC_CLK,
18, DI_SYNC_CLK,
0, DI_SYNC_NONE,
1, DI_SYNC_NONE, DI_SYNC_CLK,
0, h_sync_width * 2);
/* couter 8 for VGA delay VSYNC */
_ipu_di_sync_config(ipu, disp, 8,
v_total - 1, DI_SYNC_INT_HSYNC,
1, DI_SYNC_INT_HSYNC,
0, DI_SYNC_NONE,
1, DI_SYNC_NONE, DI_SYNC_INT_HSYNC,
0, v_sync_width * 2);
}
/* reset all unused counters */
ipu_di_write(ipu, disp, 0, DI_SW_GEN0(6));
ipu_di_write(ipu, disp, 0, DI_SW_GEN1(6));
if (!disp) {
ipu_di_write(ipu, disp, 0, DI_SW_GEN0(7));
ipu_di_write(ipu, disp, 0, DI_SW_GEN1(7));
ipu_di_write(ipu, disp, 0, DI_STP_REP(7));
ipu_di_write(ipu, disp, 0, DI_SW_GEN0(8));
ipu_di_write(ipu, disp, 0, DI_SW_GEN1(8));
ipu_di_write(ipu, disp, 0, DI_STP_REP(8));
}
ipu_di_write(ipu, disp, 0, DI_SW_GEN0(9));
ipu_di_write(ipu, disp, 0, DI_SW_GEN1(9));
ipu_di_write(ipu, disp, 0, DI_STP_REP(9));
reg = ipu_di_read(ipu, disp, DI_STP_REP(6));
reg &= 0x0000FFFF;
ipu_di_write(ipu, disp, reg, DI_STP_REP(6));
/* Init template microcode */
if (disp) {
if ((pixel_fmt == IPU_PIX_FMT_YUYV) ||
(pixel_fmt == IPU_PIX_FMT_UYVY) ||
(pixel_fmt == IPU_PIX_FMT_YVYU) ||
(pixel_fmt == IPU_PIX_FMT_VYUY)) {
_ipu_dc_write_tmpl(ipu, 8, WROD(0), 0, (map - 1), SYNC_WAVE, 0, 5, 1);
_ipu_dc_write_tmpl(ipu, 9, WROD(0), 0, map, SYNC_WAVE, 0, 5, 1);
/* configure user events according to DISP NUM */
ipu_dc_write(ipu, (width - 1), DC_UGDE_3(disp));
}
_ipu_dc_write_tmpl(ipu, 2, WROD(0), 0, map, SYNC_WAVE, 8, 5, 1);
_ipu_dc_write_tmpl(ipu, 3, WROD(0), 0, map, SYNC_WAVE, 4, 5, 0);
_ipu_dc_write_tmpl(ipu, 4, WRG, 0, map, NULL_WAVE, 0, 0, 1);
_ipu_dc_write_tmpl(ipu, 1, WROD(0), 0, map, SYNC_WAVE, 0, 5, 1);
} else {
if ((pixel_fmt == IPU_PIX_FMT_YUYV) ||
(pixel_fmt == IPU_PIX_FMT_UYVY) ||
(pixel_fmt == IPU_PIX_FMT_YVYU) ||
(pixel_fmt == IPU_PIX_FMT_VYUY)) {
_ipu_dc_write_tmpl(ipu, 10, WROD(0), 0, (map - 1), SYNC_WAVE, 0, 5, 1);
_ipu_dc_write_tmpl(ipu, 11, WROD(0), 0, map, SYNC_WAVE, 0, 5, 1);
/* configure user events according to DISP NUM */
ipu_dc_write(ipu, width - 1, DC_UGDE_3(disp));
}
_ipu_dc_write_tmpl(ipu, 5, WROD(0), 0, map, SYNC_WAVE, 8, 5, 1);
_ipu_dc_write_tmpl(ipu, 6, WROD(0), 0, map, SYNC_WAVE, 4, 5, 0);
_ipu_dc_write_tmpl(ipu, 7, WRG, 0, map, NULL_WAVE, 0, 0, 1);
_ipu_dc_write_tmpl(ipu, 12, WROD(0), 0, map, SYNC_WAVE, 0, 5, 1);
}
if (sig.Hsync_pol) {
di_gen |= DI_GEN_POLARITY_2;
if (disp)
di_gen |= DI_GEN_POLARITY_7;
}
if (sig.Vsync_pol) {
di_gen |= DI_GEN_POLARITY_3;
if (disp)
di_gen |= DI_GEN_POLARITY_8;
}
}
/* changinc DISP_CLK polarity: it can be wrong for some applications */
if ((pixel_fmt == IPU_PIX_FMT_YUYV) ||
(pixel_fmt == IPU_PIX_FMT_UYVY) ||
(pixel_fmt == IPU_PIX_FMT_YVYU) ||
(pixel_fmt == IPU_PIX_FMT_VYUY))
di_gen |= 0x00020000;
if (!sig.clk_pol)
di_gen |= DI_GEN_POLARITY_DISP_CLK;
ipu_di_write(ipu, disp, di_gen, DI_GENERAL);
ipu_di_write(ipu, disp, (--vsync_cnt << DI_VSYNC_SEL_OFFSET) |
0x00000002, DI_SYNC_AS_GEN);
reg = ipu_di_read(ipu, disp, DI_POL);
reg &= ~(DI_POL_DRDY_DATA_POLARITY | DI_POL_DRDY_POLARITY_15);
if (sig.enable_pol)
reg |= DI_POL_DRDY_POLARITY_15;
if (sig.data_pol)
reg |= DI_POL_DRDY_DATA_POLARITY;
ipu_di_write(ipu, disp, reg, DI_POL);
ipu_dc_write(ipu, width, DC_DISP_CONF2(DC_DISP_ID_SYNC(disp)));
mutex_unlock(&ipu->mutex_lock);
return 0;
}
EXPORT_SYMBOL(ipu_init_sync_panel);
void ipu_uninit_sync_panel(struct ipu_soc *ipu, int disp)
{
uint32_t reg;
uint32_t di_gen;
if (disp != 0 && disp != 1)
return;
mutex_lock(&ipu->mutex_lock);
di_gen = ipu_di_read(ipu, disp, DI_GENERAL);
di_gen |= 0x3ff | DI_GEN_POLARITY_DISP_CLK;
ipu_di_write(ipu, disp, di_gen, DI_GENERAL);
reg = ipu_di_read(ipu, disp, DI_POL);
reg |= 0x3ffffff;
ipu_di_write(ipu, disp, reg, DI_POL);
mutex_unlock(&ipu->mutex_lock);
}
EXPORT_SYMBOL(ipu_uninit_sync_panel);
int ipu_init_async_panel(struct ipu_soc *ipu, int disp, int type, uint32_t cycle_time,
uint32_t pixel_fmt, ipu_adc_sig_cfg_t sig)
{
int map;
u32 ser_conf = 0;
u32 div;
u32 di_clk = clk_get_rate(ipu->ipu_clk);
/* round up cycle_time, then calcalate the divider using scaled math */
cycle_time += (1000000000UL / di_clk) - 1;
div = (cycle_time * (di_clk / 256UL)) / (1000000000UL / 256UL);
map = _ipu_pixfmt_to_map(pixel_fmt);
if (map < 0)
return -EINVAL;
mutex_lock(&ipu->mutex_lock);
if (type == IPU_PANEL_SERIAL) {
ipu_di_write(ipu, disp, (div << 24) | ((sig.ifc_width - 1) << 4),
DI_DW_GEN(ASYNC_SER_WAVE));
_ipu_di_data_pin_config(ipu, disp, ASYNC_SER_WAVE, DI_PIN_CS,
0, 0, (div * 2) + 1);
_ipu_di_data_pin_config(ipu, disp, ASYNC_SER_WAVE, DI_PIN_SER_CLK,
1, div, div * 2);
_ipu_di_data_pin_config(ipu, disp, ASYNC_SER_WAVE, DI_PIN_SER_RS,
2, 0, 0);
_ipu_dc_write_tmpl(ipu, 0x64, WROD(0), 0, map, ASYNC_SER_WAVE, 0, 0, 1);
/* Configure DC for serial panel */
ipu_dc_write(ipu, 0x14, DC_DISP_CONF1(DC_DISP_ID_SERIAL));
if (sig.clk_pol)
ser_conf |= DI_SER_CONF_SERIAL_CLK_POL;
if (sig.data_pol)
ser_conf |= DI_SER_CONF_SERIAL_DATA_POL;
if (sig.rs_pol)
ser_conf |= DI_SER_CONF_SERIAL_RS_POL;
if (sig.cs_pol)
ser_conf |= DI_SER_CONF_SERIAL_CS_POL;
ipu_di_write(ipu, disp, ser_conf, DI_SER_CONF);
}
mutex_unlock(&ipu->mutex_lock);
return 0;
}
EXPORT_SYMBOL(ipu_init_async_panel);
/*!
* This function sets the foreground and background plane global alpha blending
* modes. This function also sets the DP graphic plane according to the
* parameter of IPUv3 DP channel.
*
* @param ipu ipu handler
* @param channel IPUv3 DP channel
*
* @param enable Boolean to enable or disable global alpha
* blending. If disabled, local blending is used.
*
* @param alpha Global alpha value.
*
* @return Returns 0 on success or negative error code on fail
*/
int32_t ipu_disp_set_global_alpha(struct ipu_soc *ipu, ipu_channel_t channel,
bool enable, uint8_t alpha)
{
uint32_t reg;
uint32_t flow;
bool bg_chan;
if (channel == MEM_BG_SYNC || channel == MEM_FG_SYNC)
flow = DP_SYNC;
else if (channel == MEM_BG_ASYNC0 || channel == MEM_FG_ASYNC0)
flow = DP_ASYNC0;
else if (channel == MEM_BG_ASYNC1 || channel == MEM_FG_ASYNC1)
flow = DP_ASYNC1;
else
return -EINVAL;
if (channel == MEM_BG_SYNC || channel == MEM_BG_ASYNC0 ||
channel == MEM_BG_ASYNC1)
bg_chan = true;
else
bg_chan = false;
_ipu_get(ipu);
mutex_lock(&ipu->mutex_lock);
if (bg_chan) {
reg = ipu_dp_read(ipu, DP_COM_CONF(flow));
ipu_dp_write(ipu, reg & ~DP_COM_CONF_GWSEL, DP_COM_CONF(flow));
} else {
reg = ipu_dp_read(ipu, DP_COM_CONF(flow));
ipu_dp_write(ipu, reg | DP_COM_CONF_GWSEL, DP_COM_CONF(flow));
}
if (enable) {
reg = ipu_dp_read(ipu, DP_GRAPH_WIND_CTRL(flow)) & 0x00FFFFFFL;
ipu_dp_write(ipu, reg | ((uint32_t) alpha << 24),
DP_GRAPH_WIND_CTRL(flow));
reg = ipu_dp_read(ipu, DP_COM_CONF(flow));
ipu_dp_write(ipu, reg | DP_COM_CONF_GWAM, DP_COM_CONF(flow));
} else {
reg = ipu_dp_read(ipu, DP_COM_CONF(flow));
ipu_dp_write(ipu, reg & ~DP_COM_CONF_GWAM, DP_COM_CONF(flow));
}
reg = ipu_cm_read(ipu, IPU_SRM_PRI2) | 0x8;
ipu_cm_write(ipu, reg, IPU_SRM_PRI2);
mutex_unlock(&ipu->mutex_lock);
_ipu_put(ipu);
return 0;
}
EXPORT_SYMBOL(ipu_disp_set_global_alpha);
/*!
* This function sets the transparent color key for SDC graphic plane.
*
* @param ipu ipu handler
* @param channel Input parameter for the logical channel ID.
*
* @param enable Boolean to enable or disable color key
*
* @param colorKey 24-bit RGB color for transparent color key.
*
* @return Returns 0 on success or negative error code on fail
*/
int32_t ipu_disp_set_color_key(struct ipu_soc *ipu, ipu_channel_t channel,
bool enable, uint32_t color_key)
{
uint32_t reg, flow;
int y, u, v;
int red, green, blue;
if (channel == MEM_BG_SYNC || channel == MEM_FG_SYNC)
flow = DP_SYNC;
else if (channel == MEM_BG_ASYNC0 || channel == MEM_FG_ASYNC0)
flow = DP_ASYNC0;
else if (channel == MEM_BG_ASYNC1 || channel == MEM_FG_ASYNC1)
flow = DP_ASYNC1;
else
return -EINVAL;
_ipu_get(ipu);
mutex_lock(&ipu->mutex_lock);
ipu->color_key_4rgb = true;
/* Transform color key from rgb to yuv if CSC is enabled */
if (((ipu->fg_csc_type == RGB2YUV) && (ipu->bg_csc_type == YUV2YUV)) ||
((ipu->fg_csc_type == YUV2YUV) && (ipu->bg_csc_type == RGB2YUV)) ||
((ipu->fg_csc_type == YUV2YUV) && (ipu->bg_csc_type == YUV2YUV)) ||
((ipu->fg_csc_type == YUV2RGB) && (ipu->bg_csc_type == YUV2RGB))) {
dev_dbg(ipu->dev, "color key 0x%x need change to yuv fmt\n", color_key);
red = (color_key >> 16) & 0xFF;
green = (color_key >> 8) & 0xFF;
blue = color_key & 0xFF;
y = _rgb_to_yuv(0, red, green, blue);
u = _rgb_to_yuv(1, red, green, blue);
v = _rgb_to_yuv(2, red, green, blue);
color_key = (y << 16) | (u << 8) | v;
ipu->color_key_4rgb = false;
dev_dbg(ipu->dev, "color key change to yuv fmt 0x%x\n", color_key);
}
if (enable) {
reg = ipu_dp_read(ipu, DP_GRAPH_WIND_CTRL(flow)) & 0xFF000000L;
ipu_dp_write(ipu, reg | color_key, DP_GRAPH_WIND_CTRL(flow));
reg = ipu_dp_read(ipu, DP_COM_CONF(flow));
ipu_dp_write(ipu, reg | DP_COM_CONF_GWCKE, DP_COM_CONF(flow));
} else {
reg = ipu_dp_read(ipu, DP_COM_CONF(flow));
ipu_dp_write(ipu, reg & ~DP_COM_CONF_GWCKE, DP_COM_CONF(flow));
}
reg = ipu_cm_read(ipu, IPU_SRM_PRI2) | 0x8;
ipu_cm_write(ipu, reg, IPU_SRM_PRI2);
mutex_unlock(&ipu->mutex_lock);
_ipu_put(ipu);
return 0;
}
EXPORT_SYMBOL(ipu_disp_set_color_key);
/*!
* This function sets the gamma correction for DP output.
*
* @param ipu ipu handler
* @param channel Input parameter for the logical channel ID.
*
* @param enable Boolean to enable or disable gamma correction.
*
* @param constk Gamma piecewise linear approximation constk coeff.
*
* @param slopek Gamma piecewise linear approximation slopek coeff.
*
* @return Returns 0 on success or negative error code on fail
*/
int32_t ipu_disp_set_gamma_correction(struct ipu_soc *ipu, ipu_channel_t channel, bool enable, int constk[], int slopek[])
{
uint32_t reg, flow, i;
if (channel == MEM_BG_SYNC || channel == MEM_FG_SYNC)
flow = DP_SYNC;
else if (channel == MEM_BG_ASYNC0 || channel == MEM_FG_ASYNC0)
flow = DP_ASYNC0;
else if (channel == MEM_BG_ASYNC1 || channel == MEM_FG_ASYNC1)
flow = DP_ASYNC1;
else
return -EINVAL;
_ipu_get(ipu);
mutex_lock(&ipu->mutex_lock);
for (i = 0; i < 8; i++)
ipu_dp_write(ipu, (constk[2*i] & 0x1ff) | ((constk[2*i+1] & 0x1ff) << 16), DP_GAMMA_C(flow, i));
for (i = 0; i < 4; i++)
ipu_dp_write(ipu, (slopek[4*i] & 0xff) | ((slopek[4*i+1] & 0xff) << 8) |
((slopek[4*i+2] & 0xff) << 16) | ((slopek[4*i+3] & 0xff) << 24), DP_GAMMA_S(flow, i));
reg = ipu_dp_read(ipu, DP_COM_CONF(flow));
if (enable) {
if ((ipu->bg_csc_type == RGB2YUV) || (ipu->bg_csc_type == YUV2YUV))
reg |= DP_COM_CONF_GAMMA_YUV_EN;
else
reg &= ~DP_COM_CONF_GAMMA_YUV_EN;
ipu_dp_write(ipu, reg | DP_COM_CONF_GAMMA_EN, DP_COM_CONF(flow));
} else
ipu_dp_write(ipu, reg & ~DP_COM_CONF_GAMMA_EN, DP_COM_CONF(flow));
reg = ipu_cm_read(ipu, IPU_SRM_PRI2) | 0x8;
ipu_cm_write(ipu, reg, IPU_SRM_PRI2);
mutex_unlock(&ipu->mutex_lock);
_ipu_put(ipu);
return 0;
}
EXPORT_SYMBOL(ipu_disp_set_gamma_correction);
/*!
* This function sets the window position of the foreground or background plane.
* modes.
*
* @param ipu ipu handler
* @param channel Input parameter for the logical channel ID.
*
* @param x_pos The X coordinate position to place window at.
* The position is relative to the top left corner.
*
* @param y_pos The Y coordinate position to place window at.
* The position is relative to the top left corner.
*
* @return Returns 0 on success or negative error code on fail
*/
int32_t _ipu_disp_set_window_pos(struct ipu_soc *ipu, ipu_channel_t channel,
int16_t x_pos, int16_t y_pos)
{
u32 reg;
uint32_t flow = 0;
uint32_t dp_srm_shift;
if ((channel == MEM_FG_SYNC) || (channel == MEM_BG_SYNC)) {
flow = DP_SYNC;
dp_srm_shift = 3;
} else if (channel == MEM_FG_ASYNC0) {
flow = DP_ASYNC0;
dp_srm_shift = 5;
} else if (channel == MEM_FG_ASYNC1) {
flow = DP_ASYNC1;
dp_srm_shift = 7;
} else
return -EINVAL;
ipu_dp_write(ipu, (x_pos << 16) | y_pos, DP_FG_POS(flow));
if (ipu_is_channel_busy(ipu, channel)) {
/* controled by FSU if channel enabled */
reg = ipu_cm_read(ipu, IPU_SRM_PRI2) & (~(0x3 << dp_srm_shift));
reg |= (0x1 << dp_srm_shift);
ipu_cm_write(ipu, reg, IPU_SRM_PRI2);
} else {
/* disable auto swap, controled by MCU if channel disabled */
reg = ipu_cm_read(ipu, IPU_SRM_PRI2) & (~(0x3 << dp_srm_shift));
ipu_cm_write(ipu, reg, IPU_SRM_PRI2);
}
return 0;
}
int32_t ipu_disp_set_window_pos(struct ipu_soc *ipu, ipu_channel_t channel,
int16_t x_pos, int16_t y_pos)
{
int ret;
_ipu_get(ipu);
mutex_lock(&ipu->mutex_lock);
ret = _ipu_disp_set_window_pos(ipu, channel, x_pos, y_pos);
mutex_unlock(&ipu->mutex_lock);
_ipu_put(ipu);
return ret;
}
EXPORT_SYMBOL(ipu_disp_set_window_pos);
int32_t _ipu_disp_get_window_pos(struct ipu_soc *ipu, ipu_channel_t channel,
int16_t *x_pos, int16_t *y_pos)
{
u32 reg;
uint32_t flow = 0;
if (channel == MEM_FG_SYNC)
flow = DP_SYNC;
else if (channel == MEM_FG_ASYNC0)
flow = DP_ASYNC0;
else if (channel == MEM_FG_ASYNC1)
flow = DP_ASYNC1;
else
return -EINVAL;
reg = ipu_dp_read(ipu, DP_FG_POS(flow));
*x_pos = (reg >> 16) & 0x7FF;
*y_pos = reg & 0x7FF;
return 0;
}
int32_t ipu_disp_get_window_pos(struct ipu_soc *ipu, ipu_channel_t channel,
int16_t *x_pos, int16_t *y_pos)
{
int ret;
_ipu_get(ipu);
mutex_lock(&ipu->mutex_lock);
ret = _ipu_disp_get_window_pos(ipu, channel, x_pos, y_pos);
mutex_unlock(&ipu->mutex_lock);
_ipu_put(ipu);
return ret;
}
EXPORT_SYMBOL(ipu_disp_get_window_pos);
void ipu_reset_disp_panel(struct ipu_soc *ipu)
{
uint32_t tmp;
tmp = ipu_di_read(ipu, 1, DI_GENERAL);
ipu_di_write(ipu, 1, tmp | 0x08, DI_GENERAL);
msleep(10); /* tRES >= 100us */
tmp = ipu_di_read(ipu, 1, DI_GENERAL);
ipu_di_write(ipu, 1, tmp & ~0x08, DI_GENERAL);
msleep(60);
return;
}
EXPORT_SYMBOL(ipu_reset_disp_panel);
void ipu_disp_init(struct ipu_soc *ipu)
{
ipu->fg_csc_type = ipu->bg_csc_type = CSC_NONE;
ipu->color_key_4rgb = true;
_ipu_init_dc_mappings(ipu);
_ipu_dmfc_init(ipu, DMFC_NORMAL, 1);
}