blob: c8cc48f0002690f130a1b246fdfb3870d1c99781 [file] [log] [blame]
/*
* GPL HEADER START
*
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License version 2 only,
* as published by the Free Software Foundation.
*
* This program is distributed in the hope that it will be useful, but
* WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* General Public License version 2 for more details (a copy is included
* in the LICENSE file that accompanied this code).
*
* You should have received a copy of the GNU General Public License
* version 2 along with this program; If not, see
* http://www.sun.com/software/products/lustre/docs/GPLv2.pdf
*
* Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa Clara,
* CA 95054 USA or visit www.sun.com if you need additional information or
* have any questions.
*
* GPL HEADER END
*/
/*
* Copyright (c) 2007, 2010, Oracle and/or its affiliates. All rights reserved.
* Use is subject to license terms.
*
* Copyright (c) 2011, 2012, Intel Corporation.
*/
/*
* This file is part of Lustre, http://www.lustre.org/
* Lustre is a trademark of Sun Microsystems, Inc.
*/
#ifndef __LUSTRE_LU_OBJECT_H
#define __LUSTRE_LU_OBJECT_H
#include <stdarg.h>
#include "../../include/linux/libcfs/libcfs.h"
#include "lustre/lustre_idl.h"
#include "lu_ref.h"
struct seq_file;
struct proc_dir_entry;
struct lustre_cfg;
struct lprocfs_stats;
/** \defgroup lu lu
* lu_* data-types represent server-side entities shared by data and meta-data
* stacks.
*
* Design goals:
*
* -# support for layering.
*
* Server side object is split into layers, one per device in the
* corresponding device stack. Individual layer is represented by struct
* lu_object. Compound layered object --- by struct lu_object_header. Most
* interface functions take lu_object as an argument and operate on the
* whole compound object. This decision was made due to the following
* reasons:
*
* - it's envisaged that lu_object will be used much more often than
* lu_object_header;
*
* - we want lower (non-top) layers to be able to initiate operations
* on the whole object.
*
* Generic code supports layering more complex than simple stacking, e.g.,
* it is possible that at some layer object "spawns" multiple sub-objects
* on the lower layer.
*
* -# fid-based identification.
*
* Compound object is uniquely identified by its fid. Objects are indexed
* by their fids (hash table is used for index).
*
* -# caching and life-cycle management.
*
* Object's life-time is controlled by reference counting. When reference
* count drops to 0, object is returned to cache. Cached objects still
* retain their identity (i.e., fid), and can be recovered from cache.
*
* Objects are kept in the global LRU list, and lu_site_purge() function
* can be used to reclaim given number of unused objects from the tail of
* the LRU.
*
* -# avoiding recursion.
*
* Generic code tries to replace recursion through layers by iterations
* where possible. Additionally to the end of reducing stack consumption,
* data, when practically possible, are allocated through lu_context_key
* interface rather than on stack.
* @{
*/
struct lu_site;
struct lu_object;
struct lu_device;
struct lu_object_header;
struct lu_context;
struct lu_env;
/**
* Operations common for data and meta-data devices.
*/
struct lu_device_operations {
/**
* Allocate object for the given device (without lower-layer
* parts). This is called by lu_object_operations::loo_object_init()
* from the parent layer, and should setup at least lu_object::lo_dev
* and lu_object::lo_ops fields of resulting lu_object.
*
* Object creation protocol.
*
* Due to design goal of avoiding recursion, object creation (see
* lu_object_alloc()) is somewhat involved:
*
* - first, lu_device_operations::ldo_object_alloc() method of the
* top-level device in the stack is called. It should allocate top
* level object (including lu_object_header), but without any
* lower-layer sub-object(s).
*
* - then lu_object_alloc() sets fid in the header of newly created
* object.
*
* - then lu_object_operations::loo_object_init() is called. It has
* to allocate lower-layer object(s). To do this,
* lu_object_operations::loo_object_init() calls ldo_object_alloc()
* of the lower-layer device(s).
*
* - for all new objects allocated by
* lu_object_operations::loo_object_init() (and inserted into object
* stack), lu_object_operations::loo_object_init() is called again
* repeatedly, until no new objects are created.
*
* \post ergo(!IS_ERR(result), result->lo_dev == d &&
* result->lo_ops != NULL);
*/
struct lu_object *(*ldo_object_alloc)(const struct lu_env *env,
const struct lu_object_header *h,
struct lu_device *d);
/**
* process config specific for device.
*/
int (*ldo_process_config)(const struct lu_env *env,
struct lu_device *, struct lustre_cfg *);
int (*ldo_recovery_complete)(const struct lu_env *,
struct lu_device *);
/**
* initialize local objects for device. this method called after layer has
* been initialized (after LCFG_SETUP stage) and before it starts serving
* user requests.
*/
int (*ldo_prepare)(const struct lu_env *,
struct lu_device *parent,
struct lu_device *dev);
};
/**
* For lu_object_conf flags
*/
typedef enum {
/* This is a new object to be allocated, or the file
* corresponding to the object does not exists. */
LOC_F_NEW = 0x00000001,
} loc_flags_t;
/**
* Object configuration, describing particulars of object being created. On
* server this is not used, as server objects are full identified by fid. On
* client configuration contains struct lustre_md.
*/
struct lu_object_conf {
/**
* Some hints for obj find and alloc.
*/
loc_flags_t loc_flags;
};
/**
* Type of "printer" function used by lu_object_operations::loo_object_print()
* method.
*
* Printer function is needed to provide some flexibility in (semi-)debugging
* output: possible implementations: printk, CDEBUG, sysfs/seq_file
*/
typedef int (*lu_printer_t)(const struct lu_env *env,
void *cookie, const char *format, ...)
__printf(3, 4);
/**
* Operations specific for particular lu_object.
*/
struct lu_object_operations {
/**
* Allocate lower-layer parts of the object by calling
* lu_device_operations::ldo_object_alloc() of the corresponding
* underlying device.
*
* This method is called once for each object inserted into object
* stack. It's responsibility of this method to insert lower-layer
* object(s) it create into appropriate places of object stack.
*/
int (*loo_object_init)(const struct lu_env *env,
struct lu_object *o,
const struct lu_object_conf *conf);
/**
* Called (in top-to-bottom order) during object allocation after all
* layers were allocated and initialized. Can be used to perform
* initialization depending on lower layers.
*/
int (*loo_object_start)(const struct lu_env *env,
struct lu_object *o);
/**
* Called before lu_object_operations::loo_object_free() to signal
* that object is being destroyed. Dual to
* lu_object_operations::loo_object_init().
*/
void (*loo_object_delete)(const struct lu_env *env,
struct lu_object *o);
/**
* Dual to lu_device_operations::ldo_object_alloc(). Called when
* object is removed from memory.
*/
void (*loo_object_free)(const struct lu_env *env,
struct lu_object *o);
/**
* Called when last active reference to the object is released (and
* object returns to the cache). This method is optional.
*/
void (*loo_object_release)(const struct lu_env *env,
struct lu_object *o);
/**
* Optional debugging helper. Print given object.
*/
int (*loo_object_print)(const struct lu_env *env, void *cookie,
lu_printer_t p, const struct lu_object *o);
/**
* Optional debugging method. Returns true iff method is internally
* consistent.
*/
int (*loo_object_invariant)(const struct lu_object *o);
};
/**
* Type of lu_device.
*/
struct lu_device_type;
/**
* Device: a layer in the server side abstraction stacking.
*/
struct lu_device {
/**
* reference count. This is incremented, in particular, on each object
* created at this layer.
*
* \todo XXX which means that atomic_t is probably too small.
*/
atomic_t ld_ref;
/**
* Pointer to device type. Never modified once set.
*/
struct lu_device_type *ld_type;
/**
* Operation vector for this device.
*/
const struct lu_device_operations *ld_ops;
/**
* Stack this device belongs to.
*/
struct lu_site *ld_site;
struct proc_dir_entry *ld_proc_entry;
/** \todo XXX: temporary back pointer into obd. */
struct obd_device *ld_obd;
/**
* A list of references to this object, for debugging.
*/
struct lu_ref ld_reference;
/**
* Link the device to the site.
**/
struct list_head ld_linkage;
};
struct lu_device_type_operations;
/**
* Tag bits for device type. They are used to distinguish certain groups of
* device types.
*/
enum lu_device_tag {
/** this is meta-data device */
LU_DEVICE_MD = (1 << 0),
/** this is data device */
LU_DEVICE_DT = (1 << 1),
/** data device in the client stack */
LU_DEVICE_CL = (1 << 2)
};
/**
* Type of device.
*/
struct lu_device_type {
/**
* Tag bits. Taken from enum lu_device_tag. Never modified once set.
*/
__u32 ldt_tags;
/**
* Name of this class. Unique system-wide. Never modified once set.
*/
char *ldt_name;
/**
* Operations for this type.
*/
const struct lu_device_type_operations *ldt_ops;
/**
* \todo XXX: temporary pointer to associated obd_type.
*/
struct obd_type *ldt_obd_type;
/**
* \todo XXX: temporary: context tags used by obd_*() calls.
*/
__u32 ldt_ctx_tags;
/**
* Number of existing device type instances.
*/
unsigned ldt_device_nr;
/**
* Linkage into a global list of all device types.
*
* \see lu_device_types.
*/
struct list_head ldt_linkage;
};
/**
* Operations on a device type.
*/
struct lu_device_type_operations {
/**
* Allocate new device.
*/
struct lu_device *(*ldto_device_alloc)(const struct lu_env *env,
struct lu_device_type *t,
struct lustre_cfg *lcfg);
/**
* Free device. Dual to
* lu_device_type_operations::ldto_device_alloc(). Returns pointer to
* the next device in the stack.
*/
struct lu_device *(*ldto_device_free)(const struct lu_env *,
struct lu_device *);
/**
* Initialize the devices after allocation
*/
int (*ldto_device_init)(const struct lu_env *env,
struct lu_device *, const char *,
struct lu_device *);
/**
* Finalize device. Dual to
* lu_device_type_operations::ldto_device_init(). Returns pointer to
* the next device in the stack.
*/
struct lu_device *(*ldto_device_fini)(const struct lu_env *env,
struct lu_device *);
/**
* Initialize device type. This is called on module load.
*/
int (*ldto_init)(struct lu_device_type *t);
/**
* Finalize device type. Dual to
* lu_device_type_operations::ldto_init(). Called on module unload.
*/
void (*ldto_fini)(struct lu_device_type *t);
/**
* Called when the first device is created.
*/
void (*ldto_start)(struct lu_device_type *t);
/**
* Called when number of devices drops to 0.
*/
void (*ldto_stop)(struct lu_device_type *t);
};
static inline int lu_device_is_md(const struct lu_device *d)
{
return ergo(d != NULL, d->ld_type->ldt_tags & LU_DEVICE_MD);
}
/**
* Common object attributes.
*/
struct lu_attr {
/** size in bytes */
__u64 la_size;
/** modification time in seconds since Epoch */
s64 la_mtime;
/** access time in seconds since Epoch */
s64 la_atime;
/** change time in seconds since Epoch */
s64 la_ctime;
/** 512-byte blocks allocated to object */
__u64 la_blocks;
/** permission bits and file type */
__u32 la_mode;
/** owner id */
__u32 la_uid;
/** group id */
__u32 la_gid;
/** object flags */
__u32 la_flags;
/** number of persistent references to this object */
__u32 la_nlink;
/** blk bits of the object*/
__u32 la_blkbits;
/** blk size of the object*/
__u32 la_blksize;
/** real device */
__u32 la_rdev;
/**
* valid bits
*
* \see enum la_valid
*/
__u64 la_valid;
};
/** Bit-mask of valid attributes */
enum la_valid {
LA_ATIME = 1 << 0,
LA_MTIME = 1 << 1,
LA_CTIME = 1 << 2,
LA_SIZE = 1 << 3,
LA_MODE = 1 << 4,
LA_UID = 1 << 5,
LA_GID = 1 << 6,
LA_BLOCKS = 1 << 7,
LA_TYPE = 1 << 8,
LA_FLAGS = 1 << 9,
LA_NLINK = 1 << 10,
LA_RDEV = 1 << 11,
LA_BLKSIZE = 1 << 12,
LA_KILL_SUID = 1 << 13,
LA_KILL_SGID = 1 << 14,
};
/**
* Layer in the layered object.
*/
struct lu_object {
/**
* Header for this object.
*/
struct lu_object_header *lo_header;
/**
* Device for this layer.
*/
struct lu_device *lo_dev;
/**
* Operations for this object.
*/
const struct lu_object_operations *lo_ops;
/**
* Linkage into list of all layers.
*/
struct list_head lo_linkage;
/**
* Link to the device, for debugging.
*/
struct lu_ref_link lo_dev_ref;
};
enum lu_object_header_flags {
/**
* Don't keep this object in cache. Object will be destroyed as soon
* as last reference to it is released. This flag cannot be cleared
* once set.
*/
LU_OBJECT_HEARD_BANSHEE = 0,
/**
* Mark this object has already been taken out of cache.
*/
LU_OBJECT_UNHASHED = 1
};
enum lu_object_header_attr {
LOHA_EXISTS = 1 << 0,
LOHA_REMOTE = 1 << 1,
/**
* UNIX file type is stored in S_IFMT bits.
*/
LOHA_FT_START = 001 << 12, /**< S_IFIFO */
LOHA_FT_END = 017 << 12, /**< S_IFMT */
};
/**
* "Compound" object, consisting of multiple layers.
*
* Compound object with given fid is unique with given lu_site.
*
* Note, that object does *not* necessary correspond to the real object in the
* persistent storage: object is an anchor for locking and method calling, so
* it is created for things like not-yet-existing child created by mkdir or
* create calls. lu_object_operations::loo_exists() can be used to check
* whether object is backed by persistent storage entity.
*/
struct lu_object_header {
/**
* Fid, uniquely identifying this object.
*/
struct lu_fid loh_fid;
/**
* Object flags from enum lu_object_header_flags. Set and checked
* atomically.
*/
unsigned long loh_flags;
/**
* Object reference count. Protected by lu_site::ls_guard.
*/
atomic_t loh_ref;
/**
* Common object attributes, cached for efficiency. From enum
* lu_object_header_attr.
*/
__u32 loh_attr;
/**
* Linkage into per-site hash table. Protected by lu_site::ls_guard.
*/
struct hlist_node loh_hash;
/**
* Linkage into per-site LRU list. Protected by lu_site::ls_guard.
*/
struct list_head loh_lru;
/**
* Linkage into list of layers. Never modified once set (except lately
* during object destruction). No locking is necessary.
*/
struct list_head loh_layers;
/**
* A list of references to this object, for debugging.
*/
struct lu_ref loh_reference;
};
struct fld;
struct lu_site_bkt_data {
/**
* number of busy object on this bucket
*/
long lsb_busy;
/**
* LRU list, updated on each access to object. Protected by
* bucket lock of lu_site::ls_obj_hash.
*
* "Cold" end of LRU is lu_site::ls_lru.next. Accessed object are
* moved to the lu_site::ls_lru.prev (this is due to the non-existence
* of list_for_each_entry_safe_reverse()).
*/
struct list_head lsb_lru;
/**
* Wait-queue signaled when an object in this site is ultimately
* destroyed (lu_object_free()). It is used by lu_object_find() to
* wait before re-trying when object in the process of destruction is
* found in the hash table.
*
* \see htable_lookup().
*/
wait_queue_head_t lsb_marche_funebre;
};
enum {
LU_SS_CREATED = 0,
LU_SS_CACHE_HIT,
LU_SS_CACHE_MISS,
LU_SS_CACHE_RACE,
LU_SS_CACHE_DEATH_RACE,
LU_SS_LRU_PURGED,
LU_SS_LAST_STAT
};
/**
* lu_site is a "compartment" within which objects are unique, and LRU
* discipline is maintained.
*
* lu_site exists so that multiple layered stacks can co-exist in the same
* address space.
*
* lu_site has the same relation to lu_device as lu_object_header to
* lu_object.
*/
struct lu_site {
/**
* objects hash table
*/
struct cfs_hash *ls_obj_hash;
/**
* index of bucket on hash table while purging
*/
int ls_purge_start;
/**
* Top-level device for this stack.
*/
struct lu_device *ls_top_dev;
/**
* Bottom-level device for this stack
*/
struct lu_device *ls_bottom_dev;
/**
* Linkage into global list of sites.
*/
struct list_head ls_linkage;
/**
* List for lu device for this site, protected
* by ls_ld_lock.
**/
struct list_head ls_ld_linkage;
spinlock_t ls_ld_lock;
/**
* lu_site stats
*/
struct lprocfs_stats *ls_stats;
/**
* XXX: a hack! fld has to find md_site via site, remove when possible
*/
struct seq_server_site *ld_seq_site;
};
static inline struct lu_site_bkt_data *
lu_site_bkt_from_fid(struct lu_site *site, struct lu_fid *fid)
{
struct cfs_hash_bd bd;
cfs_hash_bd_get(site->ls_obj_hash, fid, &bd);
return cfs_hash_bd_extra_get(site->ls_obj_hash, &bd);
}
static inline struct seq_server_site *lu_site2seq(const struct lu_site *s)
{
return s->ld_seq_site;
}
/** \name ctors
* Constructors/destructors.
* @{
*/
int lu_site_init (struct lu_site *s, struct lu_device *d);
void lu_site_fini (struct lu_site *s);
int lu_site_init_finish (struct lu_site *s);
void lu_stack_fini (const struct lu_env *env, struct lu_device *top);
void lu_device_get (struct lu_device *d);
void lu_device_put (struct lu_device *d);
int lu_device_init (struct lu_device *d, struct lu_device_type *t);
void lu_device_fini (struct lu_device *d);
int lu_object_header_init(struct lu_object_header *h);
void lu_object_header_fini(struct lu_object_header *h);
int lu_object_init (struct lu_object *o,
struct lu_object_header *h, struct lu_device *d);
void lu_object_fini (struct lu_object *o);
void lu_object_add_top (struct lu_object_header *h, struct lu_object *o);
void lu_object_add (struct lu_object *before, struct lu_object *o);
void lu_dev_add_linkage(struct lu_site *s, struct lu_device *d);
void lu_dev_del_linkage(struct lu_site *s, struct lu_device *d);
/**
* Helpers to initialize and finalize device types.
*/
int lu_device_type_init(struct lu_device_type *ldt);
void lu_device_type_fini(struct lu_device_type *ldt);
void lu_types_stop(void);
/** @} ctors */
/** \name caching
* Caching and reference counting.
* @{
*/
/**
* Acquire additional reference to the given object. This function is used to
* attain additional reference. To acquire initial reference use
* lu_object_find().
*/
static inline void lu_object_get(struct lu_object *o)
{
LASSERT(atomic_read(&o->lo_header->loh_ref) > 0);
atomic_inc(&o->lo_header->loh_ref);
}
/**
* Return true of object will not be cached after last reference to it is
* released.
*/
static inline int lu_object_is_dying(const struct lu_object_header *h)
{
return test_bit(LU_OBJECT_HEARD_BANSHEE, &h->loh_flags);
}
void lu_object_put(const struct lu_env *env, struct lu_object *o);
void lu_object_put_nocache(const struct lu_env *env, struct lu_object *o);
void lu_object_unhash(const struct lu_env *env, struct lu_object *o);
int lu_site_purge(const struct lu_env *env, struct lu_site *s, int nr);
void lu_site_print(const struct lu_env *env, struct lu_site *s, void *cookie,
lu_printer_t printer);
struct lu_object *lu_object_find(const struct lu_env *env,
struct lu_device *dev, const struct lu_fid *f,
const struct lu_object_conf *conf);
struct lu_object *lu_object_find_at(const struct lu_env *env,
struct lu_device *dev,
const struct lu_fid *f,
const struct lu_object_conf *conf);
struct lu_object *lu_object_find_slice(const struct lu_env *env,
struct lu_device *dev,
const struct lu_fid *f,
const struct lu_object_conf *conf);
/** @} caching */
/** \name helpers
* Helpers.
* @{
*/
/**
* First (topmost) sub-object of given compound object
*/
static inline struct lu_object *lu_object_top(struct lu_object_header *h)
{
LASSERT(!list_empty(&h->loh_layers));
return container_of0(h->loh_layers.next, struct lu_object, lo_linkage);
}
/**
* Next sub-object in the layering
*/
static inline struct lu_object *lu_object_next(const struct lu_object *o)
{
return container_of0(o->lo_linkage.next, struct lu_object, lo_linkage);
}
/**
* Pointer to the fid of this object.
*/
static inline const struct lu_fid *lu_object_fid(const struct lu_object *o)
{
return &o->lo_header->loh_fid;
}
/**
* return device operations vector for this object
*/
static const inline struct lu_device_operations *
lu_object_ops(const struct lu_object *o)
{
return o->lo_dev->ld_ops;
}
/**
* Given a compound object, find its slice, corresponding to the device type
* \a dtype.
*/
struct lu_object *lu_object_locate(struct lu_object_header *h,
const struct lu_device_type *dtype);
/**
* Printer function emitting messages through libcfs_debug_msg().
*/
int lu_cdebug_printer(const struct lu_env *env,
void *cookie, const char *format, ...);
/**
* Print object description followed by a user-supplied message.
*/
#define LU_OBJECT_DEBUG(mask, env, object, format, ...) \
do { \
LIBCFS_DEBUG_MSG_DATA_DECL(msgdata, mask, NULL); \
\
if (cfs_cdebug_show(mask, DEBUG_SUBSYSTEM)) { \
lu_object_print(env, &msgdata, lu_cdebug_printer, object);\
CDEBUG(mask, format , ## __VA_ARGS__); \
} \
} while (0)
/**
* Print short object description followed by a user-supplied message.
*/
#define LU_OBJECT_HEADER(mask, env, object, format, ...) \
do { \
LIBCFS_DEBUG_MSG_DATA_DECL(msgdata, mask, NULL); \
\
if (cfs_cdebug_show(mask, DEBUG_SUBSYSTEM)) { \
lu_object_header_print(env, &msgdata, lu_cdebug_printer,\
(object)->lo_header); \
lu_cdebug_printer(env, &msgdata, "\n"); \
CDEBUG(mask, format , ## __VA_ARGS__); \
} \
} while (0)
void lu_object_print (const struct lu_env *env, void *cookie,
lu_printer_t printer, const struct lu_object *o);
void lu_object_header_print(const struct lu_env *env, void *cookie,
lu_printer_t printer,
const struct lu_object_header *hdr);
/**
* Check object consistency.
*/
int lu_object_invariant(const struct lu_object *o);
/**
* Check whether object exists, no matter on local or remote storage.
* Note: LOHA_EXISTS will be set once some one created the object,
* and it does not needs to be committed to storage.
*/
#define lu_object_exists(o) ((o)->lo_header->loh_attr & LOHA_EXISTS)
/**
* Check whether object on the remote storage.
*/
#define lu_object_remote(o) unlikely((o)->lo_header->loh_attr & LOHA_REMOTE)
static inline int lu_object_assert_exists(const struct lu_object *o)
{
return lu_object_exists(o);
}
static inline int lu_object_assert_not_exists(const struct lu_object *o)
{
return !lu_object_exists(o);
}
/**
* Attr of this object.
*/
static inline __u32 lu_object_attr(const struct lu_object *o)
{
LASSERT(lu_object_exists(o) != 0);
return o->lo_header->loh_attr;
}
static inline void lu_object_ref_add(struct lu_object *o,
const char *scope,
const void *source)
{
lu_ref_add(&o->lo_header->loh_reference, scope, source);
}
static inline void lu_object_ref_add_at(struct lu_object *o,
struct lu_ref_link *link,
const char *scope,
const void *source)
{
lu_ref_add_at(&o->lo_header->loh_reference, link, scope, source);
}
static inline void lu_object_ref_del(struct lu_object *o,
const char *scope, const void *source)
{
lu_ref_del(&o->lo_header->loh_reference, scope, source);
}
static inline void lu_object_ref_del_at(struct lu_object *o,
struct lu_ref_link *link,
const char *scope, const void *source)
{
lu_ref_del_at(&o->lo_header->loh_reference, link, scope, source);
}
/** input params, should be filled out by mdt */
struct lu_rdpg {
/** hash */
__u64 rp_hash;
/** count in bytes */
unsigned int rp_count;
/** number of pages */
unsigned int rp_npages;
/** requested attr */
__u32 rp_attrs;
/** pointers to pages */
struct page **rp_pages;
};
enum lu_xattr_flags {
LU_XATTR_REPLACE = (1 << 0),
LU_XATTR_CREATE = (1 << 1)
};
/** @} helpers */
/** \name lu_context
* @{ */
/** For lu_context health-checks */
enum lu_context_state {
LCS_INITIALIZED = 1,
LCS_ENTERED,
LCS_LEFT,
LCS_FINALIZED
};
/**
* lu_context. Execution context for lu_object methods. Currently associated
* with thread.
*
* All lu_object methods, except device and device type methods (called during
* system initialization and shutdown) are executed "within" some
* lu_context. This means, that pointer to some "current" lu_context is passed
* as an argument to all methods.
*
* All service ptlrpc threads create lu_context as part of their
* initialization. It is possible to create "stand-alone" context for other
* execution environments (like system calls).
*
* lu_object methods mainly use lu_context through lu_context_key interface
* that allows each layer to associate arbitrary pieces of data with each
* context (see pthread_key_create(3) for similar interface).
*
* On a client, lu_context is bound to a thread, see cl_env_get().
*
* \see lu_context_key
*/
struct lu_context {
/**
* lu_context is used on the client side too. Yet we don't want to
* allocate values of server-side keys for the client contexts and
* vice versa.
*
* To achieve this, set of tags in introduced. Contexts and keys are
* marked with tags. Key value are created only for context whose set
* of tags has non-empty intersection with one for key. Tags are taken
* from enum lu_context_tag.
*/
__u32 lc_tags;
enum lu_context_state lc_state;
/**
* Pointer to the home service thread. NULL for other execution
* contexts.
*/
struct ptlrpc_thread *lc_thread;
/**
* Pointer to an array with key values. Internal implementation
* detail.
*/
void **lc_value;
/**
* Linkage into a list of all remembered contexts. Only
* `non-transient' contexts, i.e., ones created for service threads
* are placed here.
*/
struct list_head lc_remember;
/**
* Version counter used to skip calls to lu_context_refill() when no
* keys were registered.
*/
unsigned lc_version;
/**
* Debugging cookie.
*/
unsigned lc_cookie;
};
/**
* lu_context_key interface. Similar to pthread_key.
*/
enum lu_context_tag {
/**
* Thread on md server
*/
LCT_MD_THREAD = 1 << 0,
/**
* Thread on dt server
*/
LCT_DT_THREAD = 1 << 1,
/**
* Context for transaction handle
*/
LCT_TX_HANDLE = 1 << 2,
/**
* Thread on client
*/
LCT_CL_THREAD = 1 << 3,
/**
* A per-request session on a server, and a per-system-call session on
* a client.
*/
LCT_SESSION = 1 << 4,
/**
* A per-request data on OSP device
*/
LCT_OSP_THREAD = 1 << 5,
/**
* MGS device thread
*/
LCT_MG_THREAD = 1 << 6,
/**
* Context for local operations
*/
LCT_LOCAL = 1 << 7,
/**
* Set when at least one of keys, having values in this context has
* non-NULL lu_context_key::lct_exit() method. This is used to
* optimize lu_context_exit() call.
*/
LCT_HAS_EXIT = 1 << 28,
/**
* Don't add references for modules creating key values in that context.
* This is only for contexts used internally by lu_object framework.
*/
LCT_NOREF = 1 << 29,
/**
* Key is being prepared for retiring, don't create new values for it.
*/
LCT_QUIESCENT = 1 << 30,
/**
* Context should be remembered.
*/
LCT_REMEMBER = 1 << 31,
/**
* Contexts usable in cache shrinker thread.
*/
LCT_SHRINKER = LCT_MD_THREAD|LCT_DT_THREAD|LCT_CL_THREAD|LCT_NOREF
};
/**
* Key. Represents per-context value slot.
*
* Keys are usually registered when module owning the key is initialized, and
* de-registered when module is unloaded. Once key is registered, all new
* contexts with matching tags, will get key value. "Old" contexts, already
* initialized at the time of key registration, can be forced to get key value
* by calling lu_context_refill().
*
* Every key value is counted in lu_context_key::lct_used and acquires a
* reference on an owning module. This means, that all key values have to be
* destroyed before module can be unloaded. This is usually achieved by
* stopping threads started by the module, that created contexts in their
* entry functions. Situation is complicated by the threads shared by multiple
* modules, like ptlrpcd daemon on a client. To work around this problem,
* contexts, created in such threads, are `remembered' (see
* LCT_REMEMBER)---i.e., added into a global list. When module is preparing
* for unloading it does the following:
*
* - marks its keys as `quiescent' (lu_context_tag::LCT_QUIESCENT)
* preventing new key values from being allocated in the new contexts,
* and
*
* - scans a list of remembered contexts, destroying values of module
* keys, thus releasing references to the module.
*
* This is done by lu_context_key_quiesce(). If module is re-activated
* before key has been de-registered, lu_context_key_revive() call clears
* `quiescent' marker.
*
* lu_context code doesn't provide any internal synchronization for these
* activities---it's assumed that startup (including threads start-up) and
* shutdown are serialized by some external means.
*
* \see lu_context
*/
struct lu_context_key {
/**
* Set of tags for which values of this key are to be instantiated.
*/
__u32 lct_tags;
/**
* Value constructor. This is called when new value is created for a
* context. Returns pointer to new value of error pointer.
*/
void *(*lct_init)(const struct lu_context *ctx,
struct lu_context_key *key);
/**
* Value destructor. Called when context with previously allocated
* value of this slot is destroyed. \a data is a value that was returned
* by a matching call to lu_context_key::lct_init().
*/
void (*lct_fini)(const struct lu_context *ctx,
struct lu_context_key *key, void *data);
/**
* Optional method called on lu_context_exit() for all allocated
* keys. Can be used by debugging code checking that locks are
* released, etc.
*/
void (*lct_exit)(const struct lu_context *ctx,
struct lu_context_key *key, void *data);
/**
* Internal implementation detail: index within lu_context::lc_value[]
* reserved for this key.
*/
int lct_index;
/**
* Internal implementation detail: number of values created for this
* key.
*/
atomic_t lct_used;
/**
* Internal implementation detail: module for this key.
*/
struct module *lct_owner;
/**
* References to this key. For debugging.
*/
struct lu_ref lct_reference;
};
#define LU_KEY_INIT(mod, type) \
static void *mod##_key_init(const struct lu_context *ctx, \
struct lu_context_key *key) \
{ \
type *value; \
\
CLASSERT(PAGE_CACHE_SIZE >= sizeof (*value)); \
\
OBD_ALLOC_PTR(value); \
if (value == NULL) \
value = ERR_PTR(-ENOMEM); \
\
return value; \
} \
struct __##mod##__dummy_init {;} /* semicolon catcher */
#define LU_KEY_FINI(mod, type) \
static void mod##_key_fini(const struct lu_context *ctx, \
struct lu_context_key *key, void *data) \
{ \
type *info = data; \
\
OBD_FREE_PTR(info); \
} \
struct __##mod##__dummy_fini {;} /* semicolon catcher */
#define LU_KEY_INIT_FINI(mod, type) \
LU_KEY_INIT(mod, type); \
LU_KEY_FINI(mod, type)
#define LU_CONTEXT_KEY_DEFINE(mod, tags) \
struct lu_context_key mod##_thread_key = { \
.lct_tags = tags, \
.lct_init = mod##_key_init, \
.lct_fini = mod##_key_fini \
}
#define LU_CONTEXT_KEY_INIT(key) \
do { \
(key)->lct_owner = THIS_MODULE; \
} while (0)
int lu_context_key_register(struct lu_context_key *key);
void lu_context_key_degister(struct lu_context_key *key);
void *lu_context_key_get (const struct lu_context *ctx,
const struct lu_context_key *key);
void lu_context_key_quiesce (struct lu_context_key *key);
void lu_context_key_revive (struct lu_context_key *key);
/*
* LU_KEY_INIT_GENERIC() has to be a macro to correctly determine an
* owning module.
*/
#define LU_KEY_INIT_GENERIC(mod) \
static void mod##_key_init_generic(struct lu_context_key *k, ...) \
{ \
struct lu_context_key *key = k; \
va_list args; \
\
va_start(args, k); \
do { \
LU_CONTEXT_KEY_INIT(key); \
key = va_arg(args, struct lu_context_key *); \
} while (key != NULL); \
va_end(args); \
}
#define LU_TYPE_INIT(mod, ...) \
LU_KEY_INIT_GENERIC(mod) \
static int mod##_type_init(struct lu_device_type *t) \
{ \
mod##_key_init_generic(__VA_ARGS__, NULL); \
return lu_context_key_register_many(__VA_ARGS__, NULL); \
} \
struct __##mod##_dummy_type_init {;}
#define LU_TYPE_FINI(mod, ...) \
static void mod##_type_fini(struct lu_device_type *t) \
{ \
lu_context_key_degister_many(__VA_ARGS__, NULL); \
} \
struct __##mod##_dummy_type_fini {;}
#define LU_TYPE_START(mod, ...) \
static void mod##_type_start(struct lu_device_type *t) \
{ \
lu_context_key_revive_many(__VA_ARGS__, NULL); \
} \
struct __##mod##_dummy_type_start {;}
#define LU_TYPE_STOP(mod, ...) \
static void mod##_type_stop(struct lu_device_type *t) \
{ \
lu_context_key_quiesce_many(__VA_ARGS__, NULL); \
} \
struct __##mod##_dummy_type_stop {;}
#define LU_TYPE_INIT_FINI(mod, ...) \
LU_TYPE_INIT(mod, __VA_ARGS__); \
LU_TYPE_FINI(mod, __VA_ARGS__); \
LU_TYPE_START(mod, __VA_ARGS__); \
LU_TYPE_STOP(mod, __VA_ARGS__)
int lu_context_init (struct lu_context *ctx, __u32 tags);
void lu_context_fini (struct lu_context *ctx);
void lu_context_enter (struct lu_context *ctx);
void lu_context_exit (struct lu_context *ctx);
int lu_context_refill(struct lu_context *ctx);
/*
* Helper functions to operate on multiple keys. These are used by the default
* device type operations, defined by LU_TYPE_INIT_FINI().
*/
int lu_context_key_register_many(struct lu_context_key *k, ...);
void lu_context_key_degister_many(struct lu_context_key *k, ...);
void lu_context_key_revive_many (struct lu_context_key *k, ...);
void lu_context_key_quiesce_many (struct lu_context_key *k, ...);
/*
* update/clear ctx/ses tags.
*/
void lu_context_tags_update(__u32 tags);
void lu_context_tags_clear(__u32 tags);
void lu_session_tags_update(__u32 tags);
void lu_session_tags_clear(__u32 tags);
/**
* Environment.
*/
struct lu_env {
/**
* "Local" context, used to store data instead of stack.
*/
struct lu_context le_ctx;
/**
* "Session" context for per-request data.
*/
struct lu_context *le_ses;
};
int lu_env_init (struct lu_env *env, __u32 tags);
void lu_env_fini (struct lu_env *env);
int lu_env_refill(struct lu_env *env);
int lu_env_refill_by_tags(struct lu_env *env, __u32 ctags, __u32 stags);
/** @} lu_context */
/**
* Output site statistical counters into a buffer. Suitable for
* ll_rd_*()-style functions.
*/
int lu_site_stats_print(const struct lu_site *s, struct seq_file *m);
/**
* Common name structure to be passed around for various name related methods.
*/
struct lu_name {
const char *ln_name;
int ln_namelen;
};
/**
* Common buffer structure to be passed around for various xattr_{s,g}et()
* methods.
*/
struct lu_buf {
void *lb_buf;
ssize_t lb_len;
};
#define DLUBUF "(%p %zu)"
#define PLUBUF(buf) (buf)->lb_buf, (buf)->lb_len
/**
* One-time initializers, called at obdclass module initialization, not
* exported.
*/
/**
* Initialization of global lu_* data.
*/
int lu_global_init(void);
/**
* Dual to lu_global_init().
*/
void lu_global_fini(void);
struct lu_kmem_descr {
struct kmem_cache **ckd_cache;
const char *ckd_name;
const size_t ckd_size;
};
int lu_kmem_init(struct lu_kmem_descr *caches);
void lu_kmem_fini(struct lu_kmem_descr *caches);
void lu_object_assign_fid(const struct lu_env *env, struct lu_object *o,
const struct lu_fid *fid);
struct lu_object *lu_object_anon(const struct lu_env *env,
struct lu_device *dev,
const struct lu_object_conf *conf);
/** null buffer */
extern struct lu_buf LU_BUF_NULL;
void lu_buf_free(struct lu_buf *buf);
void lu_buf_alloc(struct lu_buf *buf, int size);
void lu_buf_realloc(struct lu_buf *buf, int size);
int lu_buf_check_and_grow(struct lu_buf *buf, int len);
struct lu_buf *lu_buf_check_and_alloc(struct lu_buf *buf, int len);
/** @} lu */
#endif /* __LUSTRE_LU_OBJECT_H */