blob: 991d20c5065d3d0e83b169614cc474c54fa6d46d [file] [log] [blame]
/*
* GPL HEADER START
*
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License version 2 only,
* as published by the Free Software Foundation.
*
* This program is distributed in the hope that it will be useful, but
* WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* General Public License version 2 for more details (a copy is included
* in the LICENSE file that accompanied this code).
*
* You should have received a copy of the GNU General Public License
* version 2 along with this program; If not, see
* http://www.sun.com/software/products/lustre/docs/GPLv2.pdf
*
* Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa Clara,
* CA 95054 USA or visit www.sun.com if you need additional information or
* have any questions.
*
* GPL HEADER END
*/
/*
* Copyright (c) 2002, 2010, Oracle and/or its affiliates. All rights reserved.
* Use is subject to license terms.
*
* Copyright (c) 2011, 2012, Intel Corporation.
*/
/*
* This file is part of Lustre, http://www.lustre.org/
* Lustre is a trademark of Sun Microsystems, Inc.
*
* lustre/llite/rw.c
*
* Lustre Lite I/O page cache routines shared by different kernel revs
*/
#include <linux/kernel.h>
#include <linux/mm.h>
#include <linux/string.h>
#include <linux/stat.h>
#include <linux/errno.h>
#include <linux/unistd.h>
#include <linux/writeback.h>
#include <linux/uaccess.h>
#include <linux/fs.h>
#include <linux/pagemap.h>
/* current_is_kswapd() */
#include <linux/swap.h>
#define DEBUG_SUBSYSTEM S_LLITE
#include "../include/lustre_lite.h"
#include "../include/obd_cksum.h"
#include "llite_internal.h"
#include "../include/linux/lustre_compat25.h"
/**
* Finalizes cl-data before exiting typical address_space operation. Dual to
* ll_cl_init().
*/
static void ll_cl_fini(struct ll_cl_context *lcc)
{
struct lu_env *env = lcc->lcc_env;
struct cl_io *io = lcc->lcc_io;
struct cl_page *page = lcc->lcc_page;
LASSERT(lcc->lcc_cookie == current);
LASSERT(env != NULL);
if (page != NULL) {
lu_ref_del(&page->cp_reference, "cl_io", io);
cl_page_put(env, page);
}
cl_env_put(env, &lcc->lcc_refcheck);
}
/**
* Initializes common cl-data at the typical address_space operation entry
* point.
*/
static struct ll_cl_context *ll_cl_init(struct file *file,
struct page *vmpage, int create)
{
struct ll_cl_context *lcc;
struct lu_env *env;
struct cl_io *io;
struct cl_object *clob;
struct ccc_io *cio;
int refcheck;
int result = 0;
clob = ll_i2info(vmpage->mapping->host)->lli_clob;
LASSERT(clob != NULL);
env = cl_env_get(&refcheck);
if (IS_ERR(env))
return ERR_CAST(env);
lcc = &vvp_env_info(env)->vti_io_ctx;
memset(lcc, 0, sizeof(*lcc));
lcc->lcc_env = env;
lcc->lcc_refcheck = refcheck;
lcc->lcc_cookie = current;
cio = ccc_env_io(env);
io = cio->cui_cl.cis_io;
if (io == NULL && create) {
struct inode *inode = vmpage->mapping->host;
loff_t pos;
if (mutex_trylock(&inode->i_mutex)) {
mutex_unlock(&(inode)->i_mutex);
/* this is too bad. Someone is trying to write the
* page w/o holding inode mutex. This means we can
* add dirty pages into cache during truncate */
CERROR("Proc %s is dirtying page w/o inode lock, this will break truncate\n",
current->comm);
dump_stack();
LBUG();
return ERR_PTR(-EIO);
}
/*
* Loop-back driver calls ->prepare_write().
* methods directly, bypassing file system ->write() operation,
* so cl_io has to be created here.
*/
io = ccc_env_thread_io(env);
ll_io_init(io, file, 1);
/* No lock at all for this kind of IO - we can't do it because
* we have held page lock, it would cause deadlock.
* XXX: This causes poor performance to loop device - One page
* per RPC.
* In order to get better performance, users should use
* lloop driver instead.
*/
io->ci_lockreq = CILR_NEVER;
pos = vmpage->index << PAGE_CACHE_SHIFT;
/* Create a temp IO to serve write. */
result = cl_io_rw_init(env, io, CIT_WRITE, pos, PAGE_CACHE_SIZE);
if (result == 0) {
cio->cui_fd = LUSTRE_FPRIVATE(file);
cio->cui_iter = NULL;
result = cl_io_iter_init(env, io);
if (result == 0) {
result = cl_io_lock(env, io);
if (result == 0)
result = cl_io_start(env, io);
}
} else
result = io->ci_result;
}
lcc->lcc_io = io;
if (io == NULL)
result = -EIO;
if (result == 0) {
struct cl_page *page;
LASSERT(io != NULL);
LASSERT(io->ci_state == CIS_IO_GOING);
LASSERT(cio->cui_fd == LUSTRE_FPRIVATE(file));
page = cl_page_find(env, clob, vmpage->index, vmpage,
CPT_CACHEABLE);
if (!IS_ERR(page)) {
lcc->lcc_page = page;
lu_ref_add(&page->cp_reference, "cl_io", io);
result = 0;
} else
result = PTR_ERR(page);
}
if (result) {
ll_cl_fini(lcc);
lcc = ERR_PTR(result);
}
CDEBUG(D_VFSTRACE, "%lu@"DFID" -> %d %p %p\n",
vmpage->index, PFID(lu_object_fid(&clob->co_lu)), result,
env, io);
return lcc;
}
static struct ll_cl_context *ll_cl_get(void)
{
struct ll_cl_context *lcc;
struct lu_env *env;
int refcheck;
env = cl_env_get(&refcheck);
LASSERT(!IS_ERR(env));
lcc = &vvp_env_info(env)->vti_io_ctx;
LASSERT(env == lcc->lcc_env);
LASSERT(current == lcc->lcc_cookie);
cl_env_put(env, &refcheck);
/* env has got in ll_cl_init, so it is still usable. */
return lcc;
}
/**
* ->prepare_write() address space operation called by generic_file_write()
* for every page during write.
*/
int ll_prepare_write(struct file *file, struct page *vmpage, unsigned from,
unsigned to)
{
struct ll_cl_context *lcc;
int result;
lcc = ll_cl_init(file, vmpage, 1);
if (!IS_ERR(lcc)) {
struct lu_env *env = lcc->lcc_env;
struct cl_io *io = lcc->lcc_io;
struct cl_page *page = lcc->lcc_page;
cl_page_assume(env, io, page);
result = cl_io_prepare_write(env, io, page, from, to);
if (result == 0) {
/*
* Add a reference, so that page is not evicted from
* the cache until ->commit_write() is called.
*/
cl_page_get(page);
lu_ref_add(&page->cp_reference, "prepare_write",
current);
} else {
cl_page_unassume(env, io, page);
ll_cl_fini(lcc);
}
/* returning 0 in prepare assumes commit must be called
* afterwards */
} else {
result = PTR_ERR(lcc);
}
return result;
}
int ll_commit_write(struct file *file, struct page *vmpage, unsigned from,
unsigned to)
{
struct ll_cl_context *lcc;
struct lu_env *env;
struct cl_io *io;
struct cl_page *page;
int result = 0;
lcc = ll_cl_get();
env = lcc->lcc_env;
page = lcc->lcc_page;
io = lcc->lcc_io;
LASSERT(cl_page_is_owned(page, io));
LASSERT(from <= to);
if (from != to) /* handle short write case. */
result = cl_io_commit_write(env, io, page, from, to);
if (cl_page_is_owned(page, io))
cl_page_unassume(env, io, page);
/*
* Release reference acquired by ll_prepare_write().
*/
lu_ref_del(&page->cp_reference, "prepare_write", current);
cl_page_put(env, page);
ll_cl_fini(lcc);
return result;
}
struct obd_capa *cl_capa_lookup(struct inode *inode, enum cl_req_type crt)
{
__u64 opc;
opc = crt == CRT_WRITE ? CAPA_OPC_OSS_WRITE : CAPA_OPC_OSS_RW;
return ll_osscapa_get(inode, opc);
}
static void ll_ra_stats_inc_sbi(struct ll_sb_info *sbi, enum ra_stat which);
/**
* Get readahead pages from the filesystem readahead pool of the client for a
* thread.
*
* /param sbi superblock for filesystem readahead state ll_ra_info
* /param ria per-thread readahead state
* /param pages number of pages requested for readahead for the thread.
*
* WARNING: This algorithm is used to reduce contention on sbi->ll_lock.
* It should work well if the ra_max_pages is much greater than the single
* file's read-ahead window, and not too many threads contending for
* these readahead pages.
*
* TODO: There may be a 'global sync problem' if many threads are trying
* to get an ra budget that is larger than the remaining readahead pages
* and reach here at exactly the same time. They will compute /a ret to
* consume the remaining pages, but will fail at atomic_add_return() and
* get a zero ra window, although there is still ra space remaining. - Jay */
static unsigned long ll_ra_count_get(struct ll_sb_info *sbi,
struct ra_io_arg *ria,
unsigned long pages)
{
struct ll_ra_info *ra = &sbi->ll_ra_info;
long ret;
/* If read-ahead pages left are less than 1M, do not do read-ahead,
* otherwise it will form small read RPC(< 1M), which hurt server
* performance a lot. */
ret = min(ra->ra_max_pages - atomic_read(&ra->ra_cur_pages), pages);
if (ret < 0 || ret < min_t(long, PTLRPC_MAX_BRW_PAGES, pages)) {
ret = 0;
goto out;
}
/* If the non-strided (ria_pages == 0) readahead window
* (ria_start + ret) has grown across an RPC boundary, then trim
* readahead size by the amount beyond the RPC so it ends on an
* RPC boundary. If the readahead window is already ending on
* an RPC boundary (beyond_rpc == 0), or smaller than a full
* RPC (beyond_rpc < ret) the readahead size is unchanged.
* The (beyond_rpc != 0) check is skipped since the conditional
* branch is more expensive than subtracting zero from the result.
*
* Strided read is left unaligned to avoid small fragments beyond
* the RPC boundary from needing an extra read RPC. */
if (ria->ria_pages == 0) {
long beyond_rpc = (ria->ria_start + ret) % PTLRPC_MAX_BRW_PAGES;
if (/* beyond_rpc != 0 && */ beyond_rpc < ret)
ret -= beyond_rpc;
}
if (atomic_add_return(ret, &ra->ra_cur_pages) > ra->ra_max_pages) {
atomic_sub(ret, &ra->ra_cur_pages);
ret = 0;
}
out:
return ret;
}
void ll_ra_count_put(struct ll_sb_info *sbi, unsigned long len)
{
struct ll_ra_info *ra = &sbi->ll_ra_info;
atomic_sub(len, &ra->ra_cur_pages);
}
static void ll_ra_stats_inc_sbi(struct ll_sb_info *sbi, enum ra_stat which)
{
LASSERTF(which >= 0 && which < _NR_RA_STAT, "which: %u\n", which);
lprocfs_counter_incr(sbi->ll_ra_stats, which);
}
void ll_ra_stats_inc(struct address_space *mapping, enum ra_stat which)
{
struct ll_sb_info *sbi = ll_i2sbi(mapping->host);
ll_ra_stats_inc_sbi(sbi, which);
}
#define RAS_CDEBUG(ras) \
CDEBUG(D_READA, \
"lrp %lu cr %lu cp %lu ws %lu wl %lu nra %lu r %lu ri %lu" \
"csr %lu sf %lu sp %lu sl %lu \n", \
ras->ras_last_readpage, ras->ras_consecutive_requests, \
ras->ras_consecutive_pages, ras->ras_window_start, \
ras->ras_window_len, ras->ras_next_readahead, \
ras->ras_requests, ras->ras_request_index, \
ras->ras_consecutive_stride_requests, ras->ras_stride_offset, \
ras->ras_stride_pages, ras->ras_stride_length)
static int index_in_window(unsigned long index, unsigned long point,
unsigned long before, unsigned long after)
{
unsigned long start = point - before, end = point + after;
if (start > point)
start = 0;
if (end < point)
end = ~0;
return start <= index && index <= end;
}
static struct ll_readahead_state *ll_ras_get(struct file *f)
{
struct ll_file_data *fd;
fd = LUSTRE_FPRIVATE(f);
return &fd->fd_ras;
}
void ll_ra_read_in(struct file *f, struct ll_ra_read *rar)
{
struct ll_readahead_state *ras;
ras = ll_ras_get(f);
spin_lock(&ras->ras_lock);
ras->ras_requests++;
ras->ras_request_index = 0;
ras->ras_consecutive_requests++;
rar->lrr_reader = current;
list_add(&rar->lrr_linkage, &ras->ras_read_beads);
spin_unlock(&ras->ras_lock);
}
void ll_ra_read_ex(struct file *f, struct ll_ra_read *rar)
{
struct ll_readahead_state *ras;
ras = ll_ras_get(f);
spin_lock(&ras->ras_lock);
list_del_init(&rar->lrr_linkage);
spin_unlock(&ras->ras_lock);
}
static struct ll_ra_read *ll_ra_read_get_locked(struct ll_readahead_state *ras)
{
struct ll_ra_read *scan;
list_for_each_entry(scan, &ras->ras_read_beads, lrr_linkage) {
if (scan->lrr_reader == current)
return scan;
}
return NULL;
}
struct ll_ra_read *ll_ra_read_get(struct file *f)
{
struct ll_readahead_state *ras;
struct ll_ra_read *bead;
ras = ll_ras_get(f);
spin_lock(&ras->ras_lock);
bead = ll_ra_read_get_locked(ras);
spin_unlock(&ras->ras_lock);
return bead;
}
static int cl_read_ahead_page(const struct lu_env *env, struct cl_io *io,
struct cl_page_list *queue, struct cl_page *page,
struct page *vmpage)
{
struct ccc_page *cp;
int rc;
rc = 0;
cl_page_assume(env, io, page);
lu_ref_add(&page->cp_reference, "ra", current);
cp = cl2ccc_page(cl_page_at(page, &vvp_device_type));
if (!cp->cpg_defer_uptodate && !PageUptodate(vmpage)) {
rc = cl_page_is_under_lock(env, io, page);
if (rc == -EBUSY) {
cp->cpg_defer_uptodate = 1;
cp->cpg_ra_used = 0;
cl_page_list_add(queue, page);
rc = 1;
} else {
cl_page_delete(env, page);
rc = -ENOLCK;
}
} else {
/* skip completed pages */
cl_page_unassume(env, io, page);
}
lu_ref_del(&page->cp_reference, "ra", current);
cl_page_put(env, page);
return rc;
}
/**
* Initiates read-ahead of a page with given index.
*
* \retval +ve: page was added to \a queue.
*
* \retval -ENOLCK: there is no extent lock for this part of a file, stop
* read-ahead.
*
* \retval -ve, 0: page wasn't added to \a queue for other reason.
*/
static int ll_read_ahead_page(const struct lu_env *env, struct cl_io *io,
struct cl_page_list *queue,
pgoff_t index, struct address_space *mapping)
{
struct page *vmpage;
struct cl_object *clob = ll_i2info(mapping->host)->lli_clob;
struct cl_page *page;
enum ra_stat which = _NR_RA_STAT; /* keep gcc happy */
int rc = 0;
const char *msg = NULL;
vmpage = grab_cache_page_nowait(mapping, index);
if (vmpage != NULL) {
/* Check if vmpage was truncated or reclaimed */
if (vmpage->mapping == mapping) {
page = cl_page_find(env, clob, vmpage->index,
vmpage, CPT_CACHEABLE);
if (!IS_ERR(page)) {
rc = cl_read_ahead_page(env, io, queue,
page, vmpage);
if (rc == -ENOLCK) {
which = RA_STAT_FAILED_MATCH;
msg = "lock match failed";
}
} else {
which = RA_STAT_FAILED_GRAB_PAGE;
msg = "cl_page_find failed";
}
} else {
which = RA_STAT_WRONG_GRAB_PAGE;
msg = "g_c_p_n returned invalid page";
}
if (rc != 1)
unlock_page(vmpage);
page_cache_release(vmpage);
} else {
which = RA_STAT_FAILED_GRAB_PAGE;
msg = "g_c_p_n failed";
}
if (msg != NULL) {
ll_ra_stats_inc(mapping, which);
CDEBUG(D_READA, "%s\n", msg);
}
return rc;
}
#define RIA_DEBUG(ria) \
CDEBUG(D_READA, "rs %lu re %lu ro %lu rl %lu rp %lu\n", \
ria->ria_start, ria->ria_end, ria->ria_stoff, ria->ria_length,\
ria->ria_pages)
/* Limit this to the blocksize instead of PTLRPC_BRW_MAX_SIZE, since we don't
* know what the actual RPC size is. If this needs to change, it makes more
* sense to tune the i_blkbits value for the file based on the OSTs it is
* striped over, rather than having a constant value for all files here. */
/* RAS_INCREASE_STEP should be (1UL << (inode->i_blkbits - PAGE_CACHE_SHIFT)).
* Temporarily set RAS_INCREASE_STEP to 1MB. After 4MB RPC is enabled
* by default, this should be adjusted corresponding with max_read_ahead_mb
* and max_read_ahead_per_file_mb otherwise the readahead budget can be used
* up quickly which will affect read performance significantly. See LU-2816 */
#define RAS_INCREASE_STEP(inode) (ONE_MB_BRW_SIZE >> PAGE_CACHE_SHIFT)
static inline int stride_io_mode(struct ll_readahead_state *ras)
{
return ras->ras_consecutive_stride_requests > 1;
}
/* The function calculates how much pages will be read in
* [off, off + length], in such stride IO area,
* stride_offset = st_off, stride_length = st_len,
* stride_pages = st_pgs
*
* |------------------|*****|------------------|*****|------------|*****|....
* st_off
* |--- st_pgs ---|
* |----- st_len -----|
*
* How many pages it should read in such pattern
* |-------------------------------------------------------------|
* off
* |<------ length ------->|
*
* = |<----->| + |-------------------------------------| + |---|
* start_left st_pgs * i end_left
*/
static unsigned long
stride_pg_count(pgoff_t st_off, unsigned long st_len, unsigned long st_pgs,
unsigned long off, unsigned long length)
{
__u64 start = off > st_off ? off - st_off : 0;
__u64 end = off + length > st_off ? off + length - st_off : 0;
unsigned long start_left = 0;
unsigned long end_left = 0;
unsigned long pg_count;
if (st_len == 0 || length == 0 || end == 0)
return length;
start_left = do_div(start, st_len);
if (start_left < st_pgs)
start_left = st_pgs - start_left;
else
start_left = 0;
end_left = do_div(end, st_len);
if (end_left > st_pgs)
end_left = st_pgs;
CDEBUG(D_READA, "start %llu, end %llu start_left %lu end_left %lu \n",
start, end, start_left, end_left);
if (start == end)
pg_count = end_left - (st_pgs - start_left);
else
pg_count = start_left + st_pgs * (end - start - 1) + end_left;
CDEBUG(D_READA, "st_off %lu, st_len %lu st_pgs %lu off %lu length %lu pgcount %lu\n",
st_off, st_len, st_pgs, off, length, pg_count);
return pg_count;
}
static int ria_page_count(struct ra_io_arg *ria)
{
__u64 length = ria->ria_end >= ria->ria_start ?
ria->ria_end - ria->ria_start + 1 : 0;
return stride_pg_count(ria->ria_stoff, ria->ria_length,
ria->ria_pages, ria->ria_start,
length);
}
/*Check whether the index is in the defined ra-window */
static int ras_inside_ra_window(unsigned long idx, struct ra_io_arg *ria)
{
/* If ria_length == ria_pages, it means non-stride I/O mode,
* idx should always inside read-ahead window in this case
* For stride I/O mode, just check whether the idx is inside
* the ria_pages. */
return ria->ria_length == 0 || ria->ria_length == ria->ria_pages ||
(idx >= ria->ria_stoff && (idx - ria->ria_stoff) %
ria->ria_length < ria->ria_pages);
}
static int ll_read_ahead_pages(const struct lu_env *env,
struct cl_io *io, struct cl_page_list *queue,
struct ra_io_arg *ria,
unsigned long *reserved_pages,
struct address_space *mapping,
unsigned long *ra_end)
{
int rc, count = 0, stride_ria;
unsigned long page_idx;
LASSERT(ria != NULL);
RIA_DEBUG(ria);
stride_ria = ria->ria_length > ria->ria_pages && ria->ria_pages > 0;
for (page_idx = ria->ria_start; page_idx <= ria->ria_end &&
*reserved_pages > 0; page_idx++) {
if (ras_inside_ra_window(page_idx, ria)) {
/* If the page is inside the read-ahead window*/
rc = ll_read_ahead_page(env, io, queue,
page_idx, mapping);
if (rc == 1) {
(*reserved_pages)--;
count ++;
} else if (rc == -ENOLCK)
break;
} else if (stride_ria) {
/* If it is not in the read-ahead window, and it is
* read-ahead mode, then check whether it should skip
* the stride gap */
pgoff_t offset;
/* FIXME: This assertion only is valid when it is for
* forward read-ahead, it will be fixed when backward
* read-ahead is implemented */
LASSERTF(page_idx > ria->ria_stoff, "Invalid page_idx %lu rs %lu re %lu ro %lu rl %lu rp %lu\n",
page_idx,
ria->ria_start, ria->ria_end, ria->ria_stoff,
ria->ria_length, ria->ria_pages);
offset = page_idx - ria->ria_stoff;
offset = offset % (ria->ria_length);
if (offset > ria->ria_pages) {
page_idx += ria->ria_length - offset;
CDEBUG(D_READA, "i %lu skip %lu \n", page_idx,
ria->ria_length - offset);
continue;
}
}
}
*ra_end = page_idx;
return count;
}
int ll_readahead(const struct lu_env *env, struct cl_io *io,
struct ll_readahead_state *ras, struct address_space *mapping,
struct cl_page_list *queue, int flags)
{
struct vvp_io *vio = vvp_env_io(env);
struct vvp_thread_info *vti = vvp_env_info(env);
struct cl_attr *attr = ccc_env_thread_attr(env);
unsigned long start = 0, end = 0, reserved;
unsigned long ra_end, len;
struct inode *inode;
struct ll_ra_read *bead;
struct ra_io_arg *ria = &vti->vti_ria;
struct ll_inode_info *lli;
struct cl_object *clob;
int ret = 0;
__u64 kms;
inode = mapping->host;
lli = ll_i2info(inode);
clob = lli->lli_clob;
memset(ria, 0, sizeof(*ria));
cl_object_attr_lock(clob);
ret = cl_object_attr_get(env, clob, attr);
cl_object_attr_unlock(clob);
if (ret != 0)
return ret;
kms = attr->cat_kms;
if (kms == 0) {
ll_ra_stats_inc(mapping, RA_STAT_ZERO_LEN);
return 0;
}
spin_lock(&ras->ras_lock);
if (vio->cui_ra_window_set)
bead = &vio->cui_bead;
else
bead = NULL;
/* Enlarge the RA window to encompass the full read */
if (bead != NULL && ras->ras_window_start + ras->ras_window_len <
bead->lrr_start + bead->lrr_count) {
ras->ras_window_len = bead->lrr_start + bead->lrr_count -
ras->ras_window_start;
}
/* Reserve a part of the read-ahead window that we'll be issuing */
if (ras->ras_window_len) {
start = ras->ras_next_readahead;
end = ras->ras_window_start + ras->ras_window_len - 1;
}
if (end != 0) {
unsigned long rpc_boundary;
/*
* Align RA window to an optimal boundary.
*
* XXX This would be better to align to cl_max_pages_per_rpc
* instead of PTLRPC_MAX_BRW_PAGES, because the RPC size may
* be aligned to the RAID stripe size in the future and that
* is more important than the RPC size.
*/
/* Note: we only trim the RPC, instead of extending the RPC
* to the boundary, so to avoid reading too much pages during
* random reading. */
rpc_boundary = (end + 1) & (~(PTLRPC_MAX_BRW_PAGES - 1));
if (rpc_boundary > 0)
rpc_boundary--;
if (rpc_boundary > start)
end = rpc_boundary;
/* Truncate RA window to end of file */
end = min(end, (unsigned long)((kms - 1) >> PAGE_CACHE_SHIFT));
ras->ras_next_readahead = max(end, end + 1);
RAS_CDEBUG(ras);
}
ria->ria_start = start;
ria->ria_end = end;
/* If stride I/O mode is detected, get stride window*/
if (stride_io_mode(ras)) {
ria->ria_stoff = ras->ras_stride_offset;
ria->ria_length = ras->ras_stride_length;
ria->ria_pages = ras->ras_stride_pages;
}
spin_unlock(&ras->ras_lock);
if (end == 0) {
ll_ra_stats_inc(mapping, RA_STAT_ZERO_WINDOW);
return 0;
}
len = ria_page_count(ria);
if (len == 0)
return 0;
reserved = ll_ra_count_get(ll_i2sbi(inode), ria, len);
if (reserved < len)
ll_ra_stats_inc(mapping, RA_STAT_MAX_IN_FLIGHT);
CDEBUG(D_READA, "reserved page %lu ra_cur %d ra_max %lu\n", reserved,
atomic_read(&ll_i2sbi(inode)->ll_ra_info.ra_cur_pages),
ll_i2sbi(inode)->ll_ra_info.ra_max_pages);
ret = ll_read_ahead_pages(env, io, queue,
ria, &reserved, mapping, &ra_end);
LASSERTF(reserved >= 0, "reserved %lu\n", reserved);
if (reserved != 0)
ll_ra_count_put(ll_i2sbi(inode), reserved);
if (ra_end == end + 1 && ra_end == (kms >> PAGE_CACHE_SHIFT))
ll_ra_stats_inc(mapping, RA_STAT_EOF);
/* if we didn't get to the end of the region we reserved from
* the ras we need to go back and update the ras so that the
* next read-ahead tries from where we left off. we only do so
* if the region we failed to issue read-ahead on is still ahead
* of the app and behind the next index to start read-ahead from */
CDEBUG(D_READA, "ra_end %lu end %lu stride end %lu \n",
ra_end, end, ria->ria_end);
if (ra_end != end + 1) {
spin_lock(&ras->ras_lock);
if (ra_end < ras->ras_next_readahead &&
index_in_window(ra_end, ras->ras_window_start, 0,
ras->ras_window_len)) {
ras->ras_next_readahead = ra_end;
RAS_CDEBUG(ras);
}
spin_unlock(&ras->ras_lock);
}
return ret;
}
static void ras_set_start(struct inode *inode, struct ll_readahead_state *ras,
unsigned long index)
{
ras->ras_window_start = index & (~(RAS_INCREASE_STEP(inode) - 1));
}
/* called with the ras_lock held or from places where it doesn't matter */
static void ras_reset(struct inode *inode, struct ll_readahead_state *ras,
unsigned long index)
{
ras->ras_last_readpage = index;
ras->ras_consecutive_requests = 0;
ras->ras_consecutive_pages = 0;
ras->ras_window_len = 0;
ras_set_start(inode, ras, index);
ras->ras_next_readahead = max(ras->ras_window_start, index);
RAS_CDEBUG(ras);
}
/* called with the ras_lock held or from places where it doesn't matter */
static void ras_stride_reset(struct ll_readahead_state *ras)
{
ras->ras_consecutive_stride_requests = 0;
ras->ras_stride_length = 0;
ras->ras_stride_pages = 0;
RAS_CDEBUG(ras);
}
void ll_readahead_init(struct inode *inode, struct ll_readahead_state *ras)
{
spin_lock_init(&ras->ras_lock);
ras_reset(inode, ras, 0);
ras->ras_requests = 0;
INIT_LIST_HEAD(&ras->ras_read_beads);
}
/*
* Check whether the read request is in the stride window.
* If it is in the stride window, return 1, otherwise return 0.
*/
static int index_in_stride_window(struct ll_readahead_state *ras,
unsigned long index)
{
unsigned long stride_gap;
if (ras->ras_stride_length == 0 || ras->ras_stride_pages == 0 ||
ras->ras_stride_pages == ras->ras_stride_length)
return 0;
stride_gap = index - ras->ras_last_readpage - 1;
/* If it is contiguous read */
if (stride_gap == 0)
return ras->ras_consecutive_pages + 1 <= ras->ras_stride_pages;
/* Otherwise check the stride by itself */
return (ras->ras_stride_length - ras->ras_stride_pages) == stride_gap &&
ras->ras_consecutive_pages == ras->ras_stride_pages;
}
static void ras_update_stride_detector(struct ll_readahead_state *ras,
unsigned long index)
{
unsigned long stride_gap = index - ras->ras_last_readpage - 1;
if (!stride_io_mode(ras) && (stride_gap != 0 ||
ras->ras_consecutive_stride_requests == 0)) {
ras->ras_stride_pages = ras->ras_consecutive_pages;
ras->ras_stride_length = stride_gap +ras->ras_consecutive_pages;
}
LASSERT(ras->ras_request_index == 0);
LASSERT(ras->ras_consecutive_stride_requests == 0);
if (index <= ras->ras_last_readpage) {
/*Reset stride window for forward read*/
ras_stride_reset(ras);
return;
}
ras->ras_stride_pages = ras->ras_consecutive_pages;
ras->ras_stride_length = stride_gap +ras->ras_consecutive_pages;
RAS_CDEBUG(ras);
return;
}
static unsigned long
stride_page_count(struct ll_readahead_state *ras, unsigned long len)
{
return stride_pg_count(ras->ras_stride_offset, ras->ras_stride_length,
ras->ras_stride_pages, ras->ras_stride_offset,
len);
}
/* Stride Read-ahead window will be increased inc_len according to
* stride I/O pattern */
static void ras_stride_increase_window(struct ll_readahead_state *ras,
struct ll_ra_info *ra,
unsigned long inc_len)
{
unsigned long left, step, window_len;
unsigned long stride_len;
LASSERT(ras->ras_stride_length > 0);
LASSERTF(ras->ras_window_start + ras->ras_window_len
>= ras->ras_stride_offset, "window_start %lu, window_len %lu stride_offset %lu\n",
ras->ras_window_start,
ras->ras_window_len, ras->ras_stride_offset);
stride_len = ras->ras_window_start + ras->ras_window_len -
ras->ras_stride_offset;
left = stride_len % ras->ras_stride_length;
window_len = ras->ras_window_len - left;
if (left < ras->ras_stride_pages)
left += inc_len;
else
left = ras->ras_stride_pages + inc_len;
LASSERT(ras->ras_stride_pages != 0);
step = left / ras->ras_stride_pages;
left %= ras->ras_stride_pages;
window_len += step * ras->ras_stride_length + left;
if (stride_page_count(ras, window_len) <= ra->ra_max_pages_per_file)
ras->ras_window_len = window_len;
RAS_CDEBUG(ras);
}
static void ras_increase_window(struct inode *inode,
struct ll_readahead_state *ras,
struct ll_ra_info *ra)
{
/* The stretch of ra-window should be aligned with max rpc_size
* but current clio architecture does not support retrieve such
* information from lower layer. FIXME later
*/
if (stride_io_mode(ras))
ras_stride_increase_window(ras, ra, RAS_INCREASE_STEP(inode));
else
ras->ras_window_len = min(ras->ras_window_len +
RAS_INCREASE_STEP(inode),
ra->ra_max_pages_per_file);
}
void ras_update(struct ll_sb_info *sbi, struct inode *inode,
struct ll_readahead_state *ras, unsigned long index,
unsigned hit)
{
struct ll_ra_info *ra = &sbi->ll_ra_info;
int zero = 0, stride_detect = 0, ra_miss = 0;
spin_lock(&ras->ras_lock);
ll_ra_stats_inc_sbi(sbi, hit ? RA_STAT_HIT : RA_STAT_MISS);
/* reset the read-ahead window in two cases. First when the app seeks
* or reads to some other part of the file. Secondly if we get a
* read-ahead miss that we think we've previously issued. This can
* be a symptom of there being so many read-ahead pages that the VM is
* reclaiming it before we get to it. */
if (!index_in_window(index, ras->ras_last_readpage, 8, 8)) {
zero = 1;
ll_ra_stats_inc_sbi(sbi, RA_STAT_DISTANT_READPAGE);
} else if (!hit && ras->ras_window_len &&
index < ras->ras_next_readahead &&
index_in_window(index, ras->ras_window_start, 0,
ras->ras_window_len)) {
ra_miss = 1;
ll_ra_stats_inc_sbi(sbi, RA_STAT_MISS_IN_WINDOW);
}
/* On the second access to a file smaller than the tunable
* ra_max_read_ahead_whole_pages trigger RA on all pages in the
* file up to ra_max_pages_per_file. This is simply a best effort
* and only occurs once per open file. Normal RA behavior is reverted
* to for subsequent IO. The mmap case does not increment
* ras_requests and thus can never trigger this behavior. */
if (ras->ras_requests == 2 && !ras->ras_request_index) {
__u64 kms_pages;
kms_pages = (i_size_read(inode) + PAGE_CACHE_SIZE - 1) >>
PAGE_CACHE_SHIFT;
CDEBUG(D_READA, "kmsp %llu mwp %lu mp %lu\n", kms_pages,
ra->ra_max_read_ahead_whole_pages, ra->ra_max_pages_per_file);
if (kms_pages &&
kms_pages <= ra->ra_max_read_ahead_whole_pages) {
ras->ras_window_start = 0;
ras->ras_last_readpage = 0;
ras->ras_next_readahead = 0;
ras->ras_window_len = min(ra->ra_max_pages_per_file,
ra->ra_max_read_ahead_whole_pages);
goto out_unlock;
}
}
if (zero) {
/* check whether it is in stride I/O mode*/
if (!index_in_stride_window(ras, index)) {
if (ras->ras_consecutive_stride_requests == 0 &&
ras->ras_request_index == 0) {
ras_update_stride_detector(ras, index);
ras->ras_consecutive_stride_requests++;
} else {
ras_stride_reset(ras);
}
ras_reset(inode, ras, index);
ras->ras_consecutive_pages++;
goto out_unlock;
} else {
ras->ras_consecutive_pages = 0;
ras->ras_consecutive_requests = 0;
if (++ras->ras_consecutive_stride_requests > 1)
stride_detect = 1;
RAS_CDEBUG(ras);
}
} else {
if (ra_miss) {
if (index_in_stride_window(ras, index) &&
stride_io_mode(ras)) {
/*If stride-RA hit cache miss, the stride dector
*will not be reset to avoid the overhead of
*redetecting read-ahead mode */
if (index != ras->ras_last_readpage + 1)
ras->ras_consecutive_pages = 0;
ras_reset(inode, ras, index);
RAS_CDEBUG(ras);
} else {
/* Reset both stride window and normal RA
* window */
ras_reset(inode, ras, index);
ras->ras_consecutive_pages++;
ras_stride_reset(ras);
goto out_unlock;
}
} else if (stride_io_mode(ras)) {
/* If this is contiguous read but in stride I/O mode
* currently, check whether stride step still is valid,
* if invalid, it will reset the stride ra window*/
if (!index_in_stride_window(ras, index)) {
/* Shrink stride read-ahead window to be zero */
ras_stride_reset(ras);
ras->ras_window_len = 0;
ras->ras_next_readahead = index;
}
}
}
ras->ras_consecutive_pages++;
ras->ras_last_readpage = index;
ras_set_start(inode, ras, index);
if (stride_io_mode(ras))
/* Since stride readahead is sensitive to the offset
* of read-ahead, so we use original offset here,
* instead of ras_window_start, which is RPC aligned */
ras->ras_next_readahead = max(index, ras->ras_next_readahead);
else
ras->ras_next_readahead = max(ras->ras_window_start,
ras->ras_next_readahead);
RAS_CDEBUG(ras);
/* Trigger RA in the mmap case where ras_consecutive_requests
* is not incremented and thus can't be used to trigger RA */
if (!ras->ras_window_len && ras->ras_consecutive_pages == 4) {
ras->ras_window_len = RAS_INCREASE_STEP(inode);
goto out_unlock;
}
/* Initially reset the stride window offset to next_readahead*/
if (ras->ras_consecutive_stride_requests == 2 && stride_detect) {
/**
* Once stride IO mode is detected, next_readahead should be
* reset to make sure next_readahead > stride offset
*/
ras->ras_next_readahead = max(index, ras->ras_next_readahead);
ras->ras_stride_offset = index;
ras->ras_window_len = RAS_INCREASE_STEP(inode);
}
/* The initial ras_window_len is set to the request size. To avoid
* uselessly reading and discarding pages for random IO the window is
* only increased once per consecutive request received. */
if ((ras->ras_consecutive_requests > 1 || stride_detect) &&
!ras->ras_request_index)
ras_increase_window(inode, ras, ra);
out_unlock:
RAS_CDEBUG(ras);
ras->ras_request_index++;
spin_unlock(&ras->ras_lock);
return;
}
int ll_writepage(struct page *vmpage, struct writeback_control *wbc)
{
struct inode *inode = vmpage->mapping->host;
struct ll_inode_info *lli = ll_i2info(inode);
struct lu_env *env;
struct cl_io *io;
struct cl_page *page;
struct cl_object *clob;
struct cl_env_nest nest;
bool redirtied = false;
bool unlocked = false;
int result;
LASSERT(PageLocked(vmpage));
LASSERT(!PageWriteback(vmpage));
LASSERT(ll_i2dtexp(inode) != NULL);
env = cl_env_nested_get(&nest);
if (IS_ERR(env)) {
result = PTR_ERR(env);
goto out;
}
clob = ll_i2info(inode)->lli_clob;
LASSERT(clob != NULL);
io = ccc_env_thread_io(env);
io->ci_obj = clob;
io->ci_ignore_layout = 1;
result = cl_io_init(env, io, CIT_MISC, clob);
if (result == 0) {
page = cl_page_find(env, clob, vmpage->index,
vmpage, CPT_CACHEABLE);
if (!IS_ERR(page)) {
lu_ref_add(&page->cp_reference, "writepage",
current);
cl_page_assume(env, io, page);
result = cl_page_flush(env, io, page);
if (result != 0) {
/*
* Re-dirty page on error so it retries write,
* but not in case when IO has actually
* occurred and completed with an error.
*/
if (!PageError(vmpage)) {
redirty_page_for_writepage(wbc, vmpage);
result = 0;
redirtied = true;
}
}
cl_page_disown(env, io, page);
unlocked = true;
lu_ref_del(&page->cp_reference,
"writepage", current);
cl_page_put(env, page);
} else {
result = PTR_ERR(page);
}
}
cl_io_fini(env, io);
if (redirtied && wbc->sync_mode == WB_SYNC_ALL) {
loff_t offset = cl_offset(clob, vmpage->index);
/* Flush page failed because the extent is being written out.
* Wait for the write of extent to be finished to avoid
* breaking kernel which assumes ->writepage should mark
* PageWriteback or clean the page. */
result = cl_sync_file_range(inode, offset,
offset + PAGE_CACHE_SIZE - 1,
CL_FSYNC_LOCAL, 1);
if (result > 0) {
/* actually we may have written more than one page.
* decreasing this page because the caller will count
* it. */
wbc->nr_to_write -= result - 1;
result = 0;
}
}
cl_env_nested_put(&nest, env);
goto out;
out:
if (result < 0) {
if (!lli->lli_async_rc)
lli->lli_async_rc = result;
SetPageError(vmpage);
if (!unlocked)
unlock_page(vmpage);
}
return result;
}
int ll_writepages(struct address_space *mapping, struct writeback_control *wbc)
{
struct inode *inode = mapping->host;
struct ll_sb_info *sbi = ll_i2sbi(inode);
loff_t start;
loff_t end;
enum cl_fsync_mode mode;
int range_whole = 0;
int result;
int ignore_layout = 0;
if (wbc->range_cyclic) {
start = mapping->writeback_index << PAGE_CACHE_SHIFT;
end = OBD_OBJECT_EOF;
} else {
start = wbc->range_start;
end = wbc->range_end;
if (end == LLONG_MAX) {
end = OBD_OBJECT_EOF;
range_whole = start == 0;
}
}
mode = CL_FSYNC_NONE;
if (wbc->sync_mode == WB_SYNC_ALL)
mode = CL_FSYNC_LOCAL;
if (sbi->ll_umounting)
/* if the mountpoint is being umounted, all pages have to be
* evicted to avoid hitting LBUG when truncate_inode_pages()
* is called later on. */
ignore_layout = 1;
result = cl_sync_file_range(inode, start, end, mode, ignore_layout);
if (result > 0) {
wbc->nr_to_write -= result;
result = 0;
}
if (wbc->range_cyclic || (range_whole && wbc->nr_to_write > 0)) {
if (end == OBD_OBJECT_EOF)
end = i_size_read(inode);
mapping->writeback_index = (end >> PAGE_CACHE_SHIFT) + 1;
}
return result;
}
int ll_readpage(struct file *file, struct page *vmpage)
{
struct ll_cl_context *lcc;
int result;
lcc = ll_cl_init(file, vmpage, 0);
if (!IS_ERR(lcc)) {
struct lu_env *env = lcc->lcc_env;
struct cl_io *io = lcc->lcc_io;
struct cl_page *page = lcc->lcc_page;
LASSERT(page->cp_type == CPT_CACHEABLE);
if (likely(!PageUptodate(vmpage))) {
cl_page_assume(env, io, page);
result = cl_io_read_page(env, io, page);
} else {
/* Page from a non-object file. */
unlock_page(vmpage);
result = 0;
}
ll_cl_fini(lcc);
} else {
unlock_page(vmpage);
result = PTR_ERR(lcc);
}
return result;
}