blob: 308c5e15676b9160141ddcd86939c82f91029f3f [file] [log] [blame]
/*
* Procedures for creating, accessing and interpreting the device tree.
*
* Paul Mackerras August 1996.
* Copyright (C) 1996-2005 Paul Mackerras.
*
* Adapted for 64bit PowerPC by Dave Engebretsen and Peter Bergner.
* {engebret|bergner}@us.ibm.com
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* as published by the Free Software Foundation; either version
* 2 of the License, or (at your option) any later version.
*/
#undef DEBUG
#include <stdarg.h>
#include <linux/kernel.h>
#include <linux/string.h>
#include <linux/init.h>
#include <linux/threads.h>
#include <linux/spinlock.h>
#include <linux/types.h>
#include <linux/pci.h>
#include <linux/stringify.h>
#include <linux/delay.h>
#include <linux/initrd.h>
#include <linux/bitops.h>
#include <linux/export.h>
#include <linux/kexec.h>
#include <linux/irq.h>
#include <linux/memblock.h>
#include <linux/of.h>
#include <linux/of_fdt.h>
#include <linux/libfdt.h>
#include <asm/prom.h>
#include <asm/rtas.h>
#include <asm/page.h>
#include <asm/processor.h>
#include <asm/irq.h>
#include <asm/io.h>
#include <asm/kdump.h>
#include <asm/smp.h>
#include <asm/mmu.h>
#include <asm/paca.h>
#include <asm/pgtable.h>
#include <asm/pci.h>
#include <asm/iommu.h>
#include <asm/btext.h>
#include <asm/sections.h>
#include <asm/machdep.h>
#include <asm/pci-bridge.h>
#include <asm/kexec.h>
#include <asm/opal.h>
#include <asm/fadump.h>
#include <asm/debug.h>
#include <mm/mmu_decl.h>
#ifdef DEBUG
#define DBG(fmt...) printk(KERN_ERR fmt)
#else
#define DBG(fmt...)
#endif
#ifdef CONFIG_PPC64
int __initdata iommu_is_off;
int __initdata iommu_force_on;
unsigned long tce_alloc_start, tce_alloc_end;
u64 ppc64_rma_size;
#endif
static phys_addr_t first_memblock_size;
static int __initdata boot_cpu_count;
static int __init early_parse_mem(char *p)
{
if (!p)
return 1;
memory_limit = PAGE_ALIGN(memparse(p, &p));
DBG("memory limit = 0x%llx\n", memory_limit);
return 0;
}
early_param("mem", early_parse_mem);
/*
* overlaps_initrd - check for overlap with page aligned extension of
* initrd.
*/
static inline int overlaps_initrd(unsigned long start, unsigned long size)
{
#ifdef CONFIG_BLK_DEV_INITRD
if (!initrd_start)
return 0;
return (start + size) > _ALIGN_DOWN(initrd_start, PAGE_SIZE) &&
start <= _ALIGN_UP(initrd_end, PAGE_SIZE);
#else
return 0;
#endif
}
/**
* move_device_tree - move tree to an unused area, if needed.
*
* The device tree may be allocated beyond our memory limit, or inside the
* crash kernel region for kdump, or within the page aligned range of initrd.
* If so, move it out of the way.
*/
static void __init move_device_tree(void)
{
unsigned long start, size;
void *p;
DBG("-> move_device_tree\n");
start = __pa(initial_boot_params);
size = fdt_totalsize(initial_boot_params);
if ((memory_limit && (start + size) > PHYSICAL_START + memory_limit) ||
overlaps_crashkernel(start, size) ||
overlaps_initrd(start, size)) {
p = __va(memblock_alloc(size, PAGE_SIZE));
memcpy(p, initial_boot_params, size);
initial_boot_params = p;
DBG("Moved device tree to 0x%p\n", p);
}
DBG("<- move_device_tree\n");
}
/*
* ibm,pa-features is a per-cpu property that contains a string of
* attribute descriptors, each of which has a 2 byte header plus up
* to 254 bytes worth of processor attribute bits. First header
* byte specifies the number of bytes following the header.
* Second header byte is an "attribute-specifier" type, of which
* zero is the only currently-defined value.
* Implementation: Pass in the byte and bit offset for the feature
* that we are interested in. The function will return -1 if the
* pa-features property is missing, or a 1/0 to indicate if the feature
* is supported/not supported. Note that the bit numbers are
* big-endian to match the definition in PAPR.
*/
static struct ibm_pa_feature {
unsigned long cpu_features; /* CPU_FTR_xxx bit */
unsigned long mmu_features; /* MMU_FTR_xxx bit */
unsigned int cpu_user_ftrs; /* PPC_FEATURE_xxx bit */
unsigned char pabyte; /* byte number in ibm,pa-features */
unsigned char pabit; /* bit number (big-endian) */
unsigned char invert; /* if 1, pa bit set => clear feature */
} ibm_pa_features[] __initdata = {
{0, 0, PPC_FEATURE_HAS_MMU, 0, 0, 0},
{0, 0, PPC_FEATURE_HAS_FPU, 0, 1, 0},
{CPU_FTR_CTRL, 0, 0, 0, 3, 0},
{CPU_FTR_NOEXECUTE, 0, 0, 0, 6, 0},
{CPU_FTR_NODSISRALIGN, 0, 0, 1, 1, 1},
{0, MMU_FTR_CI_LARGE_PAGE, 0, 1, 2, 0},
{CPU_FTR_REAL_LE, PPC_FEATURE_TRUE_LE, 5, 0, 0},
/*
* If the kernel doesn't support TM (ie. CONFIG_PPC_TRANSACTIONAL_MEM=n),
* we don't want to turn on CPU_FTR_TM here, so we use CPU_FTR_TM_COMP
* which is 0 if the kernel doesn't support TM.
*/
{CPU_FTR_TM_COMP, 0, 0, 22, 0, 0},
};
static void __init scan_features(unsigned long node, const unsigned char *ftrs,
unsigned long tablelen,
struct ibm_pa_feature *fp,
unsigned long ft_size)
{
unsigned long i, len, bit;
/* find descriptor with type == 0 */
for (;;) {
if (tablelen < 3)
return;
len = 2 + ftrs[0];
if (tablelen < len)
return; /* descriptor 0 not found */
if (ftrs[1] == 0)
break;
tablelen -= len;
ftrs += len;
}
/* loop over bits we know about */
for (i = 0; i < ft_size; ++i, ++fp) {
if (fp->pabyte >= ftrs[0])
continue;
bit = (ftrs[2 + fp->pabyte] >> (7 - fp->pabit)) & 1;
if (bit ^ fp->invert) {
cur_cpu_spec->cpu_features |= fp->cpu_features;
cur_cpu_spec->cpu_user_features |= fp->cpu_user_ftrs;
cur_cpu_spec->mmu_features |= fp->mmu_features;
} else {
cur_cpu_spec->cpu_features &= ~fp->cpu_features;
cur_cpu_spec->cpu_user_features &= ~fp->cpu_user_ftrs;
cur_cpu_spec->mmu_features &= ~fp->mmu_features;
}
}
}
static void __init check_cpu_pa_features(unsigned long node)
{
const unsigned char *pa_ftrs;
int tablelen;
pa_ftrs = of_get_flat_dt_prop(node, "ibm,pa-features", &tablelen);
if (pa_ftrs == NULL)
return;
scan_features(node, pa_ftrs, tablelen,
ibm_pa_features, ARRAY_SIZE(ibm_pa_features));
}
#ifdef CONFIG_PPC_STD_MMU_64
static void __init check_cpu_slb_size(unsigned long node)
{
const __be32 *slb_size_ptr;
slb_size_ptr = of_get_flat_dt_prop(node, "slb-size", NULL);
if (slb_size_ptr != NULL) {
mmu_slb_size = be32_to_cpup(slb_size_ptr);
return;
}
slb_size_ptr = of_get_flat_dt_prop(node, "ibm,slb-size", NULL);
if (slb_size_ptr != NULL) {
mmu_slb_size = be32_to_cpup(slb_size_ptr);
}
}
#else
#define check_cpu_slb_size(node) do { } while(0)
#endif
static struct feature_property {
const char *name;
u32 min_value;
unsigned long cpu_feature;
unsigned long cpu_user_ftr;
} feature_properties[] __initdata = {
#ifdef CONFIG_ALTIVEC
{"altivec", 0, CPU_FTR_ALTIVEC, PPC_FEATURE_HAS_ALTIVEC},
{"ibm,vmx", 1, CPU_FTR_ALTIVEC, PPC_FEATURE_HAS_ALTIVEC},
#endif /* CONFIG_ALTIVEC */
#ifdef CONFIG_VSX
/* Yes, this _really_ is ibm,vmx == 2 to enable VSX */
{"ibm,vmx", 2, CPU_FTR_VSX, PPC_FEATURE_HAS_VSX},
#endif /* CONFIG_VSX */
#ifdef CONFIG_PPC64
{"ibm,dfp", 1, 0, PPC_FEATURE_HAS_DFP},
{"ibm,purr", 1, CPU_FTR_PURR, 0},
{"ibm,spurr", 1, CPU_FTR_SPURR, 0},
#endif /* CONFIG_PPC64 */
};
#if defined(CONFIG_44x) && defined(CONFIG_PPC_FPU)
static inline void identical_pvr_fixup(unsigned long node)
{
unsigned int pvr;
const char *model = of_get_flat_dt_prop(node, "model", NULL);
/*
* Since 440GR(x)/440EP(x) processors have the same pvr,
* we check the node path and set bit 28 in the cur_cpu_spec
* pvr for EP(x) processor version. This bit is always 0 in
* the "real" pvr. Then we call identify_cpu again with
* the new logical pvr to enable FPU support.
*/
if (model && strstr(model, "440EP")) {
pvr = cur_cpu_spec->pvr_value | 0x8;
identify_cpu(0, pvr);
DBG("Using logical pvr %x for %s\n", pvr, model);
}
}
#else
#define identical_pvr_fixup(node) do { } while(0)
#endif
static void __init check_cpu_feature_properties(unsigned long node)
{
unsigned long i;
struct feature_property *fp = feature_properties;
const __be32 *prop;
for (i = 0; i < ARRAY_SIZE(feature_properties); ++i, ++fp) {
prop = of_get_flat_dt_prop(node, fp->name, NULL);
if (prop && be32_to_cpup(prop) >= fp->min_value) {
cur_cpu_spec->cpu_features |= fp->cpu_feature;
cur_cpu_spec->cpu_user_features |= fp->cpu_user_ftr;
}
}
}
static int __init early_init_dt_scan_cpus(unsigned long node,
const char *uname, int depth,
void *data)
{
const char *type = of_get_flat_dt_prop(node, "device_type", NULL);
const __be32 *prop;
const __be32 *intserv;
int i, nthreads;
int len;
int found = -1;
int found_thread = 0;
/* We are scanning "cpu" nodes only */
if (type == NULL || strcmp(type, "cpu") != 0)
return 0;
/* Get physical cpuid */
intserv = of_get_flat_dt_prop(node, "ibm,ppc-interrupt-server#s", &len);
if (!intserv)
intserv = of_get_flat_dt_prop(node, "reg", &len);
nthreads = len / sizeof(int);
/*
* Now see if any of these threads match our boot cpu.
* NOTE: This must match the parsing done in smp_setup_cpu_maps.
*/
for (i = 0; i < nthreads; i++) {
/*
* version 2 of the kexec param format adds the phys cpuid of
* booted proc.
*/
if (fdt_version(initial_boot_params) >= 2) {
if (be32_to_cpu(intserv[i]) ==
fdt_boot_cpuid_phys(initial_boot_params)) {
found = boot_cpu_count;
found_thread = i;
}
} else {
/*
* Check if it's the boot-cpu, set it's hw index now,
* unfortunately this format did not support booting
* off secondary threads.
*/
if (of_get_flat_dt_prop(node,
"linux,boot-cpu", NULL) != NULL)
found = boot_cpu_count;
}
#ifdef CONFIG_SMP
/* logical cpu id is always 0 on UP kernels */
boot_cpu_count++;
#endif
}
/* Not the boot CPU */
if (found < 0)
return 0;
DBG("boot cpu: logical %d physical %d\n", found,
be32_to_cpu(intserv[found_thread]));
boot_cpuid = found;
set_hard_smp_processor_id(found, be32_to_cpu(intserv[found_thread]));
/*
* PAPR defines "logical" PVR values for cpus that
* meet various levels of the architecture:
* 0x0f000001 Architecture version 2.04
* 0x0f000002 Architecture version 2.05
* If the cpu-version property in the cpu node contains
* such a value, we call identify_cpu again with the
* logical PVR value in order to use the cpu feature
* bits appropriate for the architecture level.
*
* A POWER6 partition in "POWER6 architected" mode
* uses the 0x0f000002 PVR value; in POWER5+ mode
* it uses 0x0f000001.
*/
prop = of_get_flat_dt_prop(node, "cpu-version", NULL);
if (prop && (be32_to_cpup(prop) & 0xff000000) == 0x0f000000)
identify_cpu(0, be32_to_cpup(prop));
identical_pvr_fixup(node);
check_cpu_feature_properties(node);
check_cpu_pa_features(node);
check_cpu_slb_size(node);
#ifdef CONFIG_PPC64
if (nthreads > 1)
cur_cpu_spec->cpu_features |= CPU_FTR_SMT;
else
cur_cpu_spec->cpu_features &= ~CPU_FTR_SMT;
#endif
return 0;
}
static int __init early_init_dt_scan_chosen_ppc(unsigned long node,
const char *uname,
int depth, void *data)
{
const unsigned long *lprop; /* All these set by kernel, so no need to convert endian */
/* Use common scan routine to determine if this is the chosen node */
if (early_init_dt_scan_chosen(node, uname, depth, data) == 0)
return 0;
#ifdef CONFIG_PPC64
/* check if iommu is forced on or off */
if (of_get_flat_dt_prop(node, "linux,iommu-off", NULL) != NULL)
iommu_is_off = 1;
if (of_get_flat_dt_prop(node, "linux,iommu-force-on", NULL) != NULL)
iommu_force_on = 1;
#endif
/* mem=x on the command line is the preferred mechanism */
lprop = of_get_flat_dt_prop(node, "linux,memory-limit", NULL);
if (lprop)
memory_limit = *lprop;
#ifdef CONFIG_PPC64
lprop = of_get_flat_dt_prop(node, "linux,tce-alloc-start", NULL);
if (lprop)
tce_alloc_start = *lprop;
lprop = of_get_flat_dt_prop(node, "linux,tce-alloc-end", NULL);
if (lprop)
tce_alloc_end = *lprop;
#endif
#ifdef CONFIG_KEXEC
lprop = of_get_flat_dt_prop(node, "linux,crashkernel-base", NULL);
if (lprop)
crashk_res.start = *lprop;
lprop = of_get_flat_dt_prop(node, "linux,crashkernel-size", NULL);
if (lprop)
crashk_res.end = crashk_res.start + *lprop - 1;
#endif
/* break now */
return 1;
}
#ifdef CONFIG_PPC_PSERIES
/*
* Interpret the ibm,dynamic-memory property in the
* /ibm,dynamic-reconfiguration-memory node.
* This contains a list of memory blocks along with NUMA affinity
* information.
*/
static int __init early_init_dt_scan_drconf_memory(unsigned long node)
{
const __be32 *dm, *ls, *usm;
int l;
unsigned long n, flags;
u64 base, size, memblock_size;
unsigned int is_kexec_kdump = 0, rngs;
ls = of_get_flat_dt_prop(node, "ibm,lmb-size", &l);
if (ls == NULL || l < dt_root_size_cells * sizeof(__be32))
return 0;
memblock_size = dt_mem_next_cell(dt_root_size_cells, &ls);
dm = of_get_flat_dt_prop(node, "ibm,dynamic-memory", &l);
if (dm == NULL || l < sizeof(__be32))
return 0;
n = of_read_number(dm++, 1); /* number of entries */
if (l < (n * (dt_root_addr_cells + 4) + 1) * sizeof(__be32))
return 0;
/* check if this is a kexec/kdump kernel. */
usm = of_get_flat_dt_prop(node, "linux,drconf-usable-memory",
&l);
if (usm != NULL)
is_kexec_kdump = 1;
for (; n != 0; --n) {
base = dt_mem_next_cell(dt_root_addr_cells, &dm);
flags = of_read_number(&dm[3], 1);
/* skip DRC index, pad, assoc. list index, flags */
dm += 4;
/* skip this block if the reserved bit is set in flags (0x80)
or if the block is not assigned to this partition (0x8) */
if ((flags & 0x80) || !(flags & 0x8))
continue;
size = memblock_size;
rngs = 1;
if (is_kexec_kdump) {
/*
* For each memblock in ibm,dynamic-memory, a corresponding
* entry in linux,drconf-usable-memory property contains
* a counter 'p' followed by 'p' (base, size) duple.
* Now read the counter from
* linux,drconf-usable-memory property
*/
rngs = dt_mem_next_cell(dt_root_size_cells, &usm);
if (!rngs) /* there are no (base, size) duple */
continue;
}
do {
if (is_kexec_kdump) {
base = dt_mem_next_cell(dt_root_addr_cells,
&usm);
size = dt_mem_next_cell(dt_root_size_cells,
&usm);
}
if (iommu_is_off) {
if (base >= 0x80000000ul)
continue;
if ((base + size) > 0x80000000ul)
size = 0x80000000ul - base;
}
memblock_add(base, size);
} while (--rngs);
}
memblock_dump_all();
return 0;
}
#else
#define early_init_dt_scan_drconf_memory(node) 0
#endif /* CONFIG_PPC_PSERIES */
static int __init early_init_dt_scan_memory_ppc(unsigned long node,
const char *uname,
int depth, void *data)
{
if (depth == 1 &&
strcmp(uname, "ibm,dynamic-reconfiguration-memory") == 0)
return early_init_dt_scan_drconf_memory(node);
return early_init_dt_scan_memory(node, uname, depth, data);
}
/*
* For a relocatable kernel, we need to get the memstart_addr first,
* then use it to calculate the virtual kernel start address. This has
* to happen at a very early stage (before machine_init). In this case,
* we just want to get the memstart_address and would not like to mess the
* memblock at this stage. So introduce a variable to skip the memblock_add()
* for this reason.
*/
#ifdef CONFIG_RELOCATABLE
static int add_mem_to_memblock = 1;
#else
#define add_mem_to_memblock 1
#endif
void __init early_init_dt_add_memory_arch(u64 base, u64 size)
{
#ifdef CONFIG_PPC64
if (iommu_is_off) {
if (base >= 0x80000000ul)
return;
if ((base + size) > 0x80000000ul)
size = 0x80000000ul - base;
}
#endif
/* Keep track of the beginning of memory -and- the size of
* the very first block in the device-tree as it represents
* the RMA on ppc64 server
*/
if (base < memstart_addr) {
memstart_addr = base;
first_memblock_size = size;
}
/* Add the chunk to the MEMBLOCK list */
if (add_mem_to_memblock)
memblock_add(base, size);
}
static void __init early_reserve_mem_dt(void)
{
unsigned long i, dt_root;
int len;
const __be32 *prop;
early_init_fdt_scan_reserved_mem();
dt_root = of_get_flat_dt_root();
prop = of_get_flat_dt_prop(dt_root, "reserved-ranges", &len);
if (!prop)
return;
DBG("Found new-style reserved-ranges\n");
/* Each reserved range is an (address,size) pair, 2 cells each,
* totalling 4 cells per range. */
for (i = 0; i < len / (sizeof(*prop) * 4); i++) {
u64 base, size;
base = of_read_number(prop + (i * 4) + 0, 2);
size = of_read_number(prop + (i * 4) + 2, 2);
if (size) {
DBG("reserving: %llx -> %llx\n", base, size);
memblock_reserve(base, size);
}
}
}
static void __init early_reserve_mem(void)
{
__be64 *reserve_map;
reserve_map = (__be64 *)(((unsigned long)initial_boot_params) +
fdt_off_mem_rsvmap(initial_boot_params));
/* Look for the new "reserved-regions" property in the DT */
early_reserve_mem_dt();
#ifdef CONFIG_BLK_DEV_INITRD
/* Then reserve the initrd, if any */
if (initrd_start && (initrd_end > initrd_start)) {
memblock_reserve(_ALIGN_DOWN(__pa(initrd_start), PAGE_SIZE),
_ALIGN_UP(initrd_end, PAGE_SIZE) -
_ALIGN_DOWN(initrd_start, PAGE_SIZE));
}
#endif /* CONFIG_BLK_DEV_INITRD */
#ifdef CONFIG_PPC32
/*
* Handle the case where we might be booting from an old kexec
* image that setup the mem_rsvmap as pairs of 32-bit values
*/
if (be64_to_cpup(reserve_map) > 0xffffffffull) {
u32 base_32, size_32;
__be32 *reserve_map_32 = (__be32 *)reserve_map;
DBG("Found old 32-bit reserve map\n");
while (1) {
base_32 = be32_to_cpup(reserve_map_32++);
size_32 = be32_to_cpup(reserve_map_32++);
if (size_32 == 0)
break;
DBG("reserving: %x -> %x\n", base_32, size_32);
memblock_reserve(base_32, size_32);
}
return;
}
#endif
}
void __init early_init_devtree(void *params)
{
phys_addr_t limit;
DBG(" -> early_init_devtree(%p)\n", params);
/* Too early to BUG_ON(), do it by hand */
if (!early_init_dt_verify(params))
panic("BUG: Failed verifying flat device tree, bad version?");
#ifdef CONFIG_PPC_RTAS
/* Some machines might need RTAS info for debugging, grab it now. */
of_scan_flat_dt(early_init_dt_scan_rtas, NULL);
#endif
#ifdef CONFIG_PPC_POWERNV
/* Some machines might need OPAL info for debugging, grab it now. */
of_scan_flat_dt(early_init_dt_scan_opal, NULL);
#endif
#ifdef CONFIG_FA_DUMP
/* scan tree to see if dump is active during last boot */
of_scan_flat_dt(early_init_dt_scan_fw_dump, NULL);
#endif
/* Retrieve various informations from the /chosen node of the
* device-tree, including the platform type, initrd location and
* size, TCE reserve, and more ...
*/
of_scan_flat_dt(early_init_dt_scan_chosen_ppc, boot_command_line);
/* Scan memory nodes and rebuild MEMBLOCKs */
of_scan_flat_dt(early_init_dt_scan_root, NULL);
of_scan_flat_dt(early_init_dt_scan_memory_ppc, NULL);
parse_early_param();
/* make sure we've parsed cmdline for mem= before this */
if (memory_limit)
first_memblock_size = min_t(u64, first_memblock_size, memory_limit);
setup_initial_memory_limit(memstart_addr, first_memblock_size);
/* Reserve MEMBLOCK regions used by kernel, initrd, dt, etc... */
memblock_reserve(PHYSICAL_START, __pa(klimit) - PHYSICAL_START);
/* If relocatable, reserve first 32k for interrupt vectors etc. */
if (PHYSICAL_START > MEMORY_START)
memblock_reserve(MEMORY_START, 0x8000);
reserve_kdump_trampoline();
#ifdef CONFIG_FA_DUMP
/*
* If we fail to reserve memory for firmware-assisted dump then
* fallback to kexec based kdump.
*/
if (fadump_reserve_mem() == 0)
#endif
reserve_crashkernel();
early_reserve_mem();
/* Ensure that total memory size is page-aligned. */
limit = ALIGN(memory_limit ?: memblock_phys_mem_size(), PAGE_SIZE);
memblock_enforce_memory_limit(limit);
memblock_allow_resize();
memblock_dump_all();
DBG("Phys. mem: %llx\n", memblock_phys_mem_size());
/* We may need to relocate the flat tree, do it now.
* FIXME .. and the initrd too? */
move_device_tree();
allocate_pacas();
DBG("Scanning CPUs ...\n");
/* Retrieve CPU related informations from the flat tree
* (altivec support, boot CPU ID, ...)
*/
of_scan_flat_dt(early_init_dt_scan_cpus, NULL);
if (boot_cpuid < 0) {
printk("Failed to identify boot CPU !\n");
BUG();
}
#if defined(CONFIG_SMP) && defined(CONFIG_PPC64)
/* We'll later wait for secondaries to check in; there are
* NCPUS-1 non-boot CPUs :-)
*/
spinning_secondaries = boot_cpu_count - 1;
#endif
#ifdef CONFIG_PPC_POWERNV
/* Scan and build the list of machine check recoverable ranges */
of_scan_flat_dt(early_init_dt_scan_recoverable_ranges, NULL);
#endif
DBG(" <- early_init_devtree()\n");
}
#ifdef CONFIG_RELOCATABLE
/*
* This function run before early_init_devtree, so we have to init
* initial_boot_params.
*/
void __init early_get_first_memblock_info(void *params, phys_addr_t *size)
{
/* Setup flat device-tree pointer */
initial_boot_params = params;
/*
* Scan the memory nodes and set add_mem_to_memblock to 0 to avoid
* mess the memblock.
*/
add_mem_to_memblock = 0;
of_scan_flat_dt(early_init_dt_scan_root, NULL);
of_scan_flat_dt(early_init_dt_scan_memory_ppc, NULL);
add_mem_to_memblock = 1;
if (size)
*size = first_memblock_size;
}
#endif
/*******
*
* New implementation of the OF "find" APIs, return a refcounted
* object, call of_node_put() when done. The device tree and list
* are protected by a rw_lock.
*
* Note that property management will need some locking as well,
* this isn't dealt with yet.
*
*******/
/**
* of_get_ibm_chip_id - Returns the IBM "chip-id" of a device
* @np: device node of the device
*
* This looks for a property "ibm,chip-id" in the node or any
* of its parents and returns its content, or -1 if it cannot
* be found.
*/
int of_get_ibm_chip_id(struct device_node *np)
{
of_node_get(np);
while(np) {
struct device_node *old = np;
const __be32 *prop;
prop = of_get_property(np, "ibm,chip-id", NULL);
if (prop) {
of_node_put(np);
return be32_to_cpup(prop);
}
np = of_get_parent(np);
of_node_put(old);
}
return -1;
}
/**
* cpu_to_chip_id - Return the cpus chip-id
* @cpu: The logical cpu number.
*
* Return the value of the ibm,chip-id property corresponding to the given
* logical cpu number. If the chip-id can not be found, returns -1.
*/
int cpu_to_chip_id(int cpu)
{
struct device_node *np;
np = of_get_cpu_node(cpu, NULL);
if (!np)
return -1;
of_node_put(np);
return of_get_ibm_chip_id(np);
}
EXPORT_SYMBOL(cpu_to_chip_id);
bool arch_match_cpu_phys_id(int cpu, u64 phys_id)
{
return (int)phys_id == get_hard_smp_processor_id(cpu);
}