| /* cassini.c: Sun Microsystems Cassini(+) ethernet driver. |
| * |
| * Copyright (C) 2004 Sun Microsystems Inc. |
| * Copyright (C) 2003 Adrian Sun (asun@darksunrising.com) |
| * |
| * This program is free software; you can redistribute it and/or |
| * modify it under the terms of the GNU General Public License as |
| * published by the Free Software Foundation; either version 2 of the |
| * License, or (at your option) any later version. |
| * |
| * This program is distributed in the hope that it will be useful, |
| * but WITHOUT ANY WARRANTY; without even the implied warranty of |
| * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the |
| * GNU General Public License for more details. |
| * |
| * You should have received a copy of the GNU General Public License |
| * along with this program; if not, write to the Free Software |
| * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA |
| * 02111-1307, USA. |
| * |
| * This driver uses the sungem driver (c) David Miller |
| * (davem@redhat.com) as its basis. |
| * |
| * The cassini chip has a number of features that distinguish it from |
| * the gem chip: |
| * 4 transmit descriptor rings that are used for either QoS (VLAN) or |
| * load balancing (non-VLAN mode) |
| * batching of multiple packets |
| * multiple CPU dispatching |
| * page-based RX descriptor engine with separate completion rings |
| * Gigabit support (GMII and PCS interface) |
| * MIF link up/down detection works |
| * |
| * RX is handled by page sized buffers that are attached as fragments to |
| * the skb. here's what's done: |
| * -- driver allocates pages at a time and keeps reference counts |
| * on them. |
| * -- the upper protocol layers assume that the header is in the skb |
| * itself. as a result, cassini will copy a small amount (64 bytes) |
| * to make them happy. |
| * -- driver appends the rest of the data pages as frags to skbuffs |
| * and increments the reference count |
| * -- on page reclamation, the driver swaps the page with a spare page. |
| * if that page is still in use, it frees its reference to that page, |
| * and allocates a new page for use. otherwise, it just recycles the |
| * the page. |
| * |
| * NOTE: cassini can parse the header. however, it's not worth it |
| * as long as the network stack requires a header copy. |
| * |
| * TX has 4 queues. currently these queues are used in a round-robin |
| * fashion for load balancing. They can also be used for QoS. for that |
| * to work, however, QoS information needs to be exposed down to the driver |
| * level so that subqueues get targetted to particular transmit rings. |
| * alternatively, the queues can be configured via use of the all-purpose |
| * ioctl. |
| * |
| * RX DATA: the rx completion ring has all the info, but the rx desc |
| * ring has all of the data. RX can conceivably come in under multiple |
| * interrupts, but the INT# assignment needs to be set up properly by |
| * the BIOS and conveyed to the driver. PCI BIOSes don't know how to do |
| * that. also, the two descriptor rings are designed to distinguish between |
| * encrypted and non-encrypted packets, but we use them for buffering |
| * instead. |
| * |
| * by default, the selective clear mask is set up to process rx packets. |
| */ |
| |
| #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt |
| |
| #include <linux/module.h> |
| #include <linux/kernel.h> |
| #include <linux/types.h> |
| #include <linux/compiler.h> |
| #include <linux/slab.h> |
| #include <linux/delay.h> |
| #include <linux/init.h> |
| #include <linux/vmalloc.h> |
| #include <linux/ioport.h> |
| #include <linux/pci.h> |
| #include <linux/mm.h> |
| #include <linux/highmem.h> |
| #include <linux/list.h> |
| #include <linux/dma-mapping.h> |
| |
| #include <linux/netdevice.h> |
| #include <linux/etherdevice.h> |
| #include <linux/skbuff.h> |
| #include <linux/ethtool.h> |
| #include <linux/crc32.h> |
| #include <linux/random.h> |
| #include <linux/mii.h> |
| #include <linux/ip.h> |
| #include <linux/tcp.h> |
| #include <linux/mutex.h> |
| #include <linux/firmware.h> |
| |
| #include <net/checksum.h> |
| |
| #include <asm/atomic.h> |
| #include <asm/system.h> |
| #include <asm/io.h> |
| #include <asm/byteorder.h> |
| #include <asm/uaccess.h> |
| |
| #define cas_page_map(x) kmap_atomic((x), KM_SKB_DATA_SOFTIRQ) |
| #define cas_page_unmap(x) kunmap_atomic((x), KM_SKB_DATA_SOFTIRQ) |
| #define CAS_NCPUS num_online_cpus() |
| |
| #define cas_skb_release(x) netif_rx(x) |
| |
| /* select which firmware to use */ |
| #define USE_HP_WORKAROUND |
| #define HP_WORKAROUND_DEFAULT /* select which firmware to use as default */ |
| #define CAS_HP_ALT_FIRMWARE cas_prog_null /* alternate firmware */ |
| |
| #include "cassini.h" |
| |
| #define USE_TX_COMPWB /* use completion writeback registers */ |
| #define USE_CSMA_CD_PROTO /* standard CSMA/CD */ |
| #define USE_RX_BLANK /* hw interrupt mitigation */ |
| #undef USE_ENTROPY_DEV /* don't test for entropy device */ |
| |
| /* NOTE: these aren't useable unless PCI interrupts can be assigned. |
| * also, we need to make cp->lock finer-grained. |
| */ |
| #undef USE_PCI_INTB |
| #undef USE_PCI_INTC |
| #undef USE_PCI_INTD |
| #undef USE_QOS |
| |
| #undef USE_VPD_DEBUG /* debug vpd information if defined */ |
| |
| /* rx processing options */ |
| #define USE_PAGE_ORDER /* specify to allocate large rx pages */ |
| #define RX_DONT_BATCH 0 /* if 1, don't batch flows */ |
| #define RX_COPY_ALWAYS 0 /* if 0, use frags */ |
| #define RX_COPY_MIN 64 /* copy a little to make upper layers happy */ |
| #undef RX_COUNT_BUFFERS /* define to calculate RX buffer stats */ |
| |
| #define DRV_MODULE_NAME "cassini" |
| #define DRV_MODULE_VERSION "1.6" |
| #define DRV_MODULE_RELDATE "21 May 2008" |
| |
| #define CAS_DEF_MSG_ENABLE \ |
| (NETIF_MSG_DRV | \ |
| NETIF_MSG_PROBE | \ |
| NETIF_MSG_LINK | \ |
| NETIF_MSG_TIMER | \ |
| NETIF_MSG_IFDOWN | \ |
| NETIF_MSG_IFUP | \ |
| NETIF_MSG_RX_ERR | \ |
| NETIF_MSG_TX_ERR) |
| |
| /* length of time before we decide the hardware is borked, |
| * and dev->tx_timeout() should be called to fix the problem |
| */ |
| #define CAS_TX_TIMEOUT (HZ) |
| #define CAS_LINK_TIMEOUT (22*HZ/10) |
| #define CAS_LINK_FAST_TIMEOUT (1) |
| |
| /* timeout values for state changing. these specify the number |
| * of 10us delays to be used before giving up. |
| */ |
| #define STOP_TRIES_PHY 1000 |
| #define STOP_TRIES 5000 |
| |
| /* specify a minimum frame size to deal with some fifo issues |
| * max mtu == 2 * page size - ethernet header - 64 - swivel = |
| * 2 * page_size - 0x50 |
| */ |
| #define CAS_MIN_FRAME 97 |
| #define CAS_1000MB_MIN_FRAME 255 |
| #define CAS_MIN_MTU 60 |
| #define CAS_MAX_MTU min(((cp->page_size << 1) - 0x50), 9000) |
| |
| #if 1 |
| /* |
| * Eliminate these and use separate atomic counters for each, to |
| * avoid a race condition. |
| */ |
| #else |
| #define CAS_RESET_MTU 1 |
| #define CAS_RESET_ALL 2 |
| #define CAS_RESET_SPARE 3 |
| #endif |
| |
| static char version[] __devinitdata = |
| DRV_MODULE_NAME ".c:v" DRV_MODULE_VERSION " (" DRV_MODULE_RELDATE ")\n"; |
| |
| static int cassini_debug = -1; /* -1 == use CAS_DEF_MSG_ENABLE as value */ |
| static int link_mode; |
| |
| MODULE_AUTHOR("Adrian Sun (asun@darksunrising.com)"); |
| MODULE_DESCRIPTION("Sun Cassini(+) ethernet driver"); |
| MODULE_LICENSE("GPL"); |
| MODULE_FIRMWARE("sun/cassini.bin"); |
| module_param(cassini_debug, int, 0); |
| MODULE_PARM_DESC(cassini_debug, "Cassini bitmapped debugging message enable value"); |
| module_param(link_mode, int, 0); |
| MODULE_PARM_DESC(link_mode, "default link mode"); |
| |
| /* |
| * Work around for a PCS bug in which the link goes down due to the chip |
| * being confused and never showing a link status of "up." |
| */ |
| #define DEFAULT_LINKDOWN_TIMEOUT 5 |
| /* |
| * Value in seconds, for user input. |
| */ |
| static int linkdown_timeout = DEFAULT_LINKDOWN_TIMEOUT; |
| module_param(linkdown_timeout, int, 0); |
| MODULE_PARM_DESC(linkdown_timeout, |
| "min reset interval in sec. for PCS linkdown issue; disabled if not positive"); |
| |
| /* |
| * value in 'ticks' (units used by jiffies). Set when we init the |
| * module because 'HZ' in actually a function call on some flavors of |
| * Linux. This will default to DEFAULT_LINKDOWN_TIMEOUT * HZ. |
| */ |
| static int link_transition_timeout; |
| |
| |
| |
| static u16 link_modes[] __devinitdata = { |
| BMCR_ANENABLE, /* 0 : autoneg */ |
| 0, /* 1 : 10bt half duplex */ |
| BMCR_SPEED100, /* 2 : 100bt half duplex */ |
| BMCR_FULLDPLX, /* 3 : 10bt full duplex */ |
| BMCR_SPEED100|BMCR_FULLDPLX, /* 4 : 100bt full duplex */ |
| CAS_BMCR_SPEED1000|BMCR_FULLDPLX /* 5 : 1000bt full duplex */ |
| }; |
| |
| static DEFINE_PCI_DEVICE_TABLE(cas_pci_tbl) = { |
| { PCI_VENDOR_ID_SUN, PCI_DEVICE_ID_SUN_CASSINI, |
| PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0UL }, |
| { PCI_VENDOR_ID_NS, PCI_DEVICE_ID_NS_SATURN, |
| PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0UL }, |
| { 0, } |
| }; |
| |
| MODULE_DEVICE_TABLE(pci, cas_pci_tbl); |
| |
| static void cas_set_link_modes(struct cas *cp); |
| |
| static inline void cas_lock_tx(struct cas *cp) |
| { |
| int i; |
| |
| for (i = 0; i < N_TX_RINGS; i++) |
| spin_lock(&cp->tx_lock[i]); |
| } |
| |
| static inline void cas_lock_all(struct cas *cp) |
| { |
| spin_lock_irq(&cp->lock); |
| cas_lock_tx(cp); |
| } |
| |
| /* WTZ: QA was finding deadlock problems with the previous |
| * versions after long test runs with multiple cards per machine. |
| * See if replacing cas_lock_all with safer versions helps. The |
| * symptoms QA is reporting match those we'd expect if interrupts |
| * aren't being properly restored, and we fixed a previous deadlock |
| * with similar symptoms by using save/restore versions in other |
| * places. |
| */ |
| #define cas_lock_all_save(cp, flags) \ |
| do { \ |
| struct cas *xxxcp = (cp); \ |
| spin_lock_irqsave(&xxxcp->lock, flags); \ |
| cas_lock_tx(xxxcp); \ |
| } while (0) |
| |
| static inline void cas_unlock_tx(struct cas *cp) |
| { |
| int i; |
| |
| for (i = N_TX_RINGS; i > 0; i--) |
| spin_unlock(&cp->tx_lock[i - 1]); |
| } |
| |
| static inline void cas_unlock_all(struct cas *cp) |
| { |
| cas_unlock_tx(cp); |
| spin_unlock_irq(&cp->lock); |
| } |
| |
| #define cas_unlock_all_restore(cp, flags) \ |
| do { \ |
| struct cas *xxxcp = (cp); \ |
| cas_unlock_tx(xxxcp); \ |
| spin_unlock_irqrestore(&xxxcp->lock, flags); \ |
| } while (0) |
| |
| static void cas_disable_irq(struct cas *cp, const int ring) |
| { |
| /* Make sure we won't get any more interrupts */ |
| if (ring == 0) { |
| writel(0xFFFFFFFF, cp->regs + REG_INTR_MASK); |
| return; |
| } |
| |
| /* disable completion interrupts and selectively mask */ |
| if (cp->cas_flags & CAS_FLAG_REG_PLUS) { |
| switch (ring) { |
| #if defined (USE_PCI_INTB) || defined(USE_PCI_INTC) || defined(USE_PCI_INTD) |
| #ifdef USE_PCI_INTB |
| case 1: |
| #endif |
| #ifdef USE_PCI_INTC |
| case 2: |
| #endif |
| #ifdef USE_PCI_INTD |
| case 3: |
| #endif |
| writel(INTRN_MASK_CLEAR_ALL | INTRN_MASK_RX_EN, |
| cp->regs + REG_PLUS_INTRN_MASK(ring)); |
| break; |
| #endif |
| default: |
| writel(INTRN_MASK_CLEAR_ALL, cp->regs + |
| REG_PLUS_INTRN_MASK(ring)); |
| break; |
| } |
| } |
| } |
| |
| static inline void cas_mask_intr(struct cas *cp) |
| { |
| int i; |
| |
| for (i = 0; i < N_RX_COMP_RINGS; i++) |
| cas_disable_irq(cp, i); |
| } |
| |
| static void cas_enable_irq(struct cas *cp, const int ring) |
| { |
| if (ring == 0) { /* all but TX_DONE */ |
| writel(INTR_TX_DONE, cp->regs + REG_INTR_MASK); |
| return; |
| } |
| |
| if (cp->cas_flags & CAS_FLAG_REG_PLUS) { |
| switch (ring) { |
| #if defined (USE_PCI_INTB) || defined(USE_PCI_INTC) || defined(USE_PCI_INTD) |
| #ifdef USE_PCI_INTB |
| case 1: |
| #endif |
| #ifdef USE_PCI_INTC |
| case 2: |
| #endif |
| #ifdef USE_PCI_INTD |
| case 3: |
| #endif |
| writel(INTRN_MASK_RX_EN, cp->regs + |
| REG_PLUS_INTRN_MASK(ring)); |
| break; |
| #endif |
| default: |
| break; |
| } |
| } |
| } |
| |
| static inline void cas_unmask_intr(struct cas *cp) |
| { |
| int i; |
| |
| for (i = 0; i < N_RX_COMP_RINGS; i++) |
| cas_enable_irq(cp, i); |
| } |
| |
| static inline void cas_entropy_gather(struct cas *cp) |
| { |
| #ifdef USE_ENTROPY_DEV |
| if ((cp->cas_flags & CAS_FLAG_ENTROPY_DEV) == 0) |
| return; |
| |
| batch_entropy_store(readl(cp->regs + REG_ENTROPY_IV), |
| readl(cp->regs + REG_ENTROPY_IV), |
| sizeof(uint64_t)*8); |
| #endif |
| } |
| |
| static inline void cas_entropy_reset(struct cas *cp) |
| { |
| #ifdef USE_ENTROPY_DEV |
| if ((cp->cas_flags & CAS_FLAG_ENTROPY_DEV) == 0) |
| return; |
| |
| writel(BIM_LOCAL_DEV_PAD | BIM_LOCAL_DEV_PROM | BIM_LOCAL_DEV_EXT, |
| cp->regs + REG_BIM_LOCAL_DEV_EN); |
| writeb(ENTROPY_RESET_STC_MODE, cp->regs + REG_ENTROPY_RESET); |
| writeb(0x55, cp->regs + REG_ENTROPY_RAND_REG); |
| |
| /* if we read back 0x0, we don't have an entropy device */ |
| if (readb(cp->regs + REG_ENTROPY_RAND_REG) == 0) |
| cp->cas_flags &= ~CAS_FLAG_ENTROPY_DEV; |
| #endif |
| } |
| |
| /* access to the phy. the following assumes that we've initialized the MIF to |
| * be in frame rather than bit-bang mode |
| */ |
| static u16 cas_phy_read(struct cas *cp, int reg) |
| { |
| u32 cmd; |
| int limit = STOP_TRIES_PHY; |
| |
| cmd = MIF_FRAME_ST | MIF_FRAME_OP_READ; |
| cmd |= CAS_BASE(MIF_FRAME_PHY_ADDR, cp->phy_addr); |
| cmd |= CAS_BASE(MIF_FRAME_REG_ADDR, reg); |
| cmd |= MIF_FRAME_TURN_AROUND_MSB; |
| writel(cmd, cp->regs + REG_MIF_FRAME); |
| |
| /* poll for completion */ |
| while (limit-- > 0) { |
| udelay(10); |
| cmd = readl(cp->regs + REG_MIF_FRAME); |
| if (cmd & MIF_FRAME_TURN_AROUND_LSB) |
| return cmd & MIF_FRAME_DATA_MASK; |
| } |
| return 0xFFFF; /* -1 */ |
| } |
| |
| static int cas_phy_write(struct cas *cp, int reg, u16 val) |
| { |
| int limit = STOP_TRIES_PHY; |
| u32 cmd; |
| |
| cmd = MIF_FRAME_ST | MIF_FRAME_OP_WRITE; |
| cmd |= CAS_BASE(MIF_FRAME_PHY_ADDR, cp->phy_addr); |
| cmd |= CAS_BASE(MIF_FRAME_REG_ADDR, reg); |
| cmd |= MIF_FRAME_TURN_AROUND_MSB; |
| cmd |= val & MIF_FRAME_DATA_MASK; |
| writel(cmd, cp->regs + REG_MIF_FRAME); |
| |
| /* poll for completion */ |
| while (limit-- > 0) { |
| udelay(10); |
| cmd = readl(cp->regs + REG_MIF_FRAME); |
| if (cmd & MIF_FRAME_TURN_AROUND_LSB) |
| return 0; |
| } |
| return -1; |
| } |
| |
| static void cas_phy_powerup(struct cas *cp) |
| { |
| u16 ctl = cas_phy_read(cp, MII_BMCR); |
| |
| if ((ctl & BMCR_PDOWN) == 0) |
| return; |
| ctl &= ~BMCR_PDOWN; |
| cas_phy_write(cp, MII_BMCR, ctl); |
| } |
| |
| static void cas_phy_powerdown(struct cas *cp) |
| { |
| u16 ctl = cas_phy_read(cp, MII_BMCR); |
| |
| if (ctl & BMCR_PDOWN) |
| return; |
| ctl |= BMCR_PDOWN; |
| cas_phy_write(cp, MII_BMCR, ctl); |
| } |
| |
| /* cp->lock held. note: the last put_page will free the buffer */ |
| static int cas_page_free(struct cas *cp, cas_page_t *page) |
| { |
| pci_unmap_page(cp->pdev, page->dma_addr, cp->page_size, |
| PCI_DMA_FROMDEVICE); |
| __free_pages(page->buffer, cp->page_order); |
| kfree(page); |
| return 0; |
| } |
| |
| #ifdef RX_COUNT_BUFFERS |
| #define RX_USED_ADD(x, y) ((x)->used += (y)) |
| #define RX_USED_SET(x, y) ((x)->used = (y)) |
| #else |
| #define RX_USED_ADD(x, y) |
| #define RX_USED_SET(x, y) |
| #endif |
| |
| /* local page allocation routines for the receive buffers. jumbo pages |
| * require at least 8K contiguous and 8K aligned buffers. |
| */ |
| static cas_page_t *cas_page_alloc(struct cas *cp, const gfp_t flags) |
| { |
| cas_page_t *page; |
| |
| page = kmalloc(sizeof(cas_page_t), flags); |
| if (!page) |
| return NULL; |
| |
| INIT_LIST_HEAD(&page->list); |
| RX_USED_SET(page, 0); |
| page->buffer = alloc_pages(flags, cp->page_order); |
| if (!page->buffer) |
| goto page_err; |
| page->dma_addr = pci_map_page(cp->pdev, page->buffer, 0, |
| cp->page_size, PCI_DMA_FROMDEVICE); |
| return page; |
| |
| page_err: |
| kfree(page); |
| return NULL; |
| } |
| |
| /* initialize spare pool of rx buffers, but allocate during the open */ |
| static void cas_spare_init(struct cas *cp) |
| { |
| spin_lock(&cp->rx_inuse_lock); |
| INIT_LIST_HEAD(&cp->rx_inuse_list); |
| spin_unlock(&cp->rx_inuse_lock); |
| |
| spin_lock(&cp->rx_spare_lock); |
| INIT_LIST_HEAD(&cp->rx_spare_list); |
| cp->rx_spares_needed = RX_SPARE_COUNT; |
| spin_unlock(&cp->rx_spare_lock); |
| } |
| |
| /* used on close. free all the spare buffers. */ |
| static void cas_spare_free(struct cas *cp) |
| { |
| struct list_head list, *elem, *tmp; |
| |
| /* free spare buffers */ |
| INIT_LIST_HEAD(&list); |
| spin_lock(&cp->rx_spare_lock); |
| list_splice_init(&cp->rx_spare_list, &list); |
| spin_unlock(&cp->rx_spare_lock); |
| list_for_each_safe(elem, tmp, &list) { |
| cas_page_free(cp, list_entry(elem, cas_page_t, list)); |
| } |
| |
| INIT_LIST_HEAD(&list); |
| #if 1 |
| /* |
| * Looks like Adrian had protected this with a different |
| * lock than used everywhere else to manipulate this list. |
| */ |
| spin_lock(&cp->rx_inuse_lock); |
| list_splice_init(&cp->rx_inuse_list, &list); |
| spin_unlock(&cp->rx_inuse_lock); |
| #else |
| spin_lock(&cp->rx_spare_lock); |
| list_splice_init(&cp->rx_inuse_list, &list); |
| spin_unlock(&cp->rx_spare_lock); |
| #endif |
| list_for_each_safe(elem, tmp, &list) { |
| cas_page_free(cp, list_entry(elem, cas_page_t, list)); |
| } |
| } |
| |
| /* replenish spares if needed */ |
| static void cas_spare_recover(struct cas *cp, const gfp_t flags) |
| { |
| struct list_head list, *elem, *tmp; |
| int needed, i; |
| |
| /* check inuse list. if we don't need any more free buffers, |
| * just free it |
| */ |
| |
| /* make a local copy of the list */ |
| INIT_LIST_HEAD(&list); |
| spin_lock(&cp->rx_inuse_lock); |
| list_splice_init(&cp->rx_inuse_list, &list); |
| spin_unlock(&cp->rx_inuse_lock); |
| |
| list_for_each_safe(elem, tmp, &list) { |
| cas_page_t *page = list_entry(elem, cas_page_t, list); |
| |
| /* |
| * With the lockless pagecache, cassini buffering scheme gets |
| * slightly less accurate: we might find that a page has an |
| * elevated reference count here, due to a speculative ref, |
| * and skip it as in-use. Ideally we would be able to reclaim |
| * it. However this would be such a rare case, it doesn't |
| * matter too much as we should pick it up the next time round. |
| * |
| * Importantly, if we find that the page has a refcount of 1 |
| * here (our refcount), then we know it is definitely not inuse |
| * so we can reuse it. |
| */ |
| if (page_count(page->buffer) > 1) |
| continue; |
| |
| list_del(elem); |
| spin_lock(&cp->rx_spare_lock); |
| if (cp->rx_spares_needed > 0) { |
| list_add(elem, &cp->rx_spare_list); |
| cp->rx_spares_needed--; |
| spin_unlock(&cp->rx_spare_lock); |
| } else { |
| spin_unlock(&cp->rx_spare_lock); |
| cas_page_free(cp, page); |
| } |
| } |
| |
| /* put any inuse buffers back on the list */ |
| if (!list_empty(&list)) { |
| spin_lock(&cp->rx_inuse_lock); |
| list_splice(&list, &cp->rx_inuse_list); |
| spin_unlock(&cp->rx_inuse_lock); |
| } |
| |
| spin_lock(&cp->rx_spare_lock); |
| needed = cp->rx_spares_needed; |
| spin_unlock(&cp->rx_spare_lock); |
| if (!needed) |
| return; |
| |
| /* we still need spares, so try to allocate some */ |
| INIT_LIST_HEAD(&list); |
| i = 0; |
| while (i < needed) { |
| cas_page_t *spare = cas_page_alloc(cp, flags); |
| if (!spare) |
| break; |
| list_add(&spare->list, &list); |
| i++; |
| } |
| |
| spin_lock(&cp->rx_spare_lock); |
| list_splice(&list, &cp->rx_spare_list); |
| cp->rx_spares_needed -= i; |
| spin_unlock(&cp->rx_spare_lock); |
| } |
| |
| /* pull a page from the list. */ |
| static cas_page_t *cas_page_dequeue(struct cas *cp) |
| { |
| struct list_head *entry; |
| int recover; |
| |
| spin_lock(&cp->rx_spare_lock); |
| if (list_empty(&cp->rx_spare_list)) { |
| /* try to do a quick recovery */ |
| spin_unlock(&cp->rx_spare_lock); |
| cas_spare_recover(cp, GFP_ATOMIC); |
| spin_lock(&cp->rx_spare_lock); |
| if (list_empty(&cp->rx_spare_list)) { |
| netif_err(cp, rx_err, cp->dev, |
| "no spare buffers available\n"); |
| spin_unlock(&cp->rx_spare_lock); |
| return NULL; |
| } |
| } |
| |
| entry = cp->rx_spare_list.next; |
| list_del(entry); |
| recover = ++cp->rx_spares_needed; |
| spin_unlock(&cp->rx_spare_lock); |
| |
| /* trigger the timer to do the recovery */ |
| if ((recover & (RX_SPARE_RECOVER_VAL - 1)) == 0) { |
| #if 1 |
| atomic_inc(&cp->reset_task_pending); |
| atomic_inc(&cp->reset_task_pending_spare); |
| schedule_work(&cp->reset_task); |
| #else |
| atomic_set(&cp->reset_task_pending, CAS_RESET_SPARE); |
| schedule_work(&cp->reset_task); |
| #endif |
| } |
| return list_entry(entry, cas_page_t, list); |
| } |
| |
| |
| static void cas_mif_poll(struct cas *cp, const int enable) |
| { |
| u32 cfg; |
| |
| cfg = readl(cp->regs + REG_MIF_CFG); |
| cfg &= (MIF_CFG_MDIO_0 | MIF_CFG_MDIO_1); |
| |
| if (cp->phy_type & CAS_PHY_MII_MDIO1) |
| cfg |= MIF_CFG_PHY_SELECT; |
| |
| /* poll and interrupt on link status change. */ |
| if (enable) { |
| cfg |= MIF_CFG_POLL_EN; |
| cfg |= CAS_BASE(MIF_CFG_POLL_REG, MII_BMSR); |
| cfg |= CAS_BASE(MIF_CFG_POLL_PHY, cp->phy_addr); |
| } |
| writel((enable) ? ~(BMSR_LSTATUS | BMSR_ANEGCOMPLETE) : 0xFFFF, |
| cp->regs + REG_MIF_MASK); |
| writel(cfg, cp->regs + REG_MIF_CFG); |
| } |
| |
| /* Must be invoked under cp->lock */ |
| static void cas_begin_auto_negotiation(struct cas *cp, struct ethtool_cmd *ep) |
| { |
| u16 ctl; |
| #if 1 |
| int lcntl; |
| int changed = 0; |
| int oldstate = cp->lstate; |
| int link_was_not_down = !(oldstate == link_down); |
| #endif |
| /* Setup link parameters */ |
| if (!ep) |
| goto start_aneg; |
| lcntl = cp->link_cntl; |
| if (ep->autoneg == AUTONEG_ENABLE) |
| cp->link_cntl = BMCR_ANENABLE; |
| else { |
| cp->link_cntl = 0; |
| if (ep->speed == SPEED_100) |
| cp->link_cntl |= BMCR_SPEED100; |
| else if (ep->speed == SPEED_1000) |
| cp->link_cntl |= CAS_BMCR_SPEED1000; |
| if (ep->duplex == DUPLEX_FULL) |
| cp->link_cntl |= BMCR_FULLDPLX; |
| } |
| #if 1 |
| changed = (lcntl != cp->link_cntl); |
| #endif |
| start_aneg: |
| if (cp->lstate == link_up) { |
| netdev_info(cp->dev, "PCS link down\n"); |
| } else { |
| if (changed) { |
| netdev_info(cp->dev, "link configuration changed\n"); |
| } |
| } |
| cp->lstate = link_down; |
| cp->link_transition = LINK_TRANSITION_LINK_DOWN; |
| if (!cp->hw_running) |
| return; |
| #if 1 |
| /* |
| * WTZ: If the old state was link_up, we turn off the carrier |
| * to replicate everything we do elsewhere on a link-down |
| * event when we were already in a link-up state.. |
| */ |
| if (oldstate == link_up) |
| netif_carrier_off(cp->dev); |
| if (changed && link_was_not_down) { |
| /* |
| * WTZ: This branch will simply schedule a full reset after |
| * we explicitly changed link modes in an ioctl. See if this |
| * fixes the link-problems we were having for forced mode. |
| */ |
| atomic_inc(&cp->reset_task_pending); |
| atomic_inc(&cp->reset_task_pending_all); |
| schedule_work(&cp->reset_task); |
| cp->timer_ticks = 0; |
| mod_timer(&cp->link_timer, jiffies + CAS_LINK_TIMEOUT); |
| return; |
| } |
| #endif |
| if (cp->phy_type & CAS_PHY_SERDES) { |
| u32 val = readl(cp->regs + REG_PCS_MII_CTRL); |
| |
| if (cp->link_cntl & BMCR_ANENABLE) { |
| val |= (PCS_MII_RESTART_AUTONEG | PCS_MII_AUTONEG_EN); |
| cp->lstate = link_aneg; |
| } else { |
| if (cp->link_cntl & BMCR_FULLDPLX) |
| val |= PCS_MII_CTRL_DUPLEX; |
| val &= ~PCS_MII_AUTONEG_EN; |
| cp->lstate = link_force_ok; |
| } |
| cp->link_transition = LINK_TRANSITION_LINK_CONFIG; |
| writel(val, cp->regs + REG_PCS_MII_CTRL); |
| |
| } else { |
| cas_mif_poll(cp, 0); |
| ctl = cas_phy_read(cp, MII_BMCR); |
| ctl &= ~(BMCR_FULLDPLX | BMCR_SPEED100 | |
| CAS_BMCR_SPEED1000 | BMCR_ANENABLE); |
| ctl |= cp->link_cntl; |
| if (ctl & BMCR_ANENABLE) { |
| ctl |= BMCR_ANRESTART; |
| cp->lstate = link_aneg; |
| } else { |
| cp->lstate = link_force_ok; |
| } |
| cp->link_transition = LINK_TRANSITION_LINK_CONFIG; |
| cas_phy_write(cp, MII_BMCR, ctl); |
| cas_mif_poll(cp, 1); |
| } |
| |
| cp->timer_ticks = 0; |
| mod_timer(&cp->link_timer, jiffies + CAS_LINK_TIMEOUT); |
| } |
| |
| /* Must be invoked under cp->lock. */ |
| static int cas_reset_mii_phy(struct cas *cp) |
| { |
| int limit = STOP_TRIES_PHY; |
| u16 val; |
| |
| cas_phy_write(cp, MII_BMCR, BMCR_RESET); |
| udelay(100); |
| while (--limit) { |
| val = cas_phy_read(cp, MII_BMCR); |
| if ((val & BMCR_RESET) == 0) |
| break; |
| udelay(10); |
| } |
| return limit <= 0; |
| } |
| |
| static int cas_saturn_firmware_init(struct cas *cp) |
| { |
| const struct firmware *fw; |
| const char fw_name[] = "sun/cassini.bin"; |
| int err; |
| |
| if (PHY_NS_DP83065 != cp->phy_id) |
| return 0; |
| |
| err = request_firmware(&fw, fw_name, &cp->pdev->dev); |
| if (err) { |
| pr_err("Failed to load firmware \"%s\"\n", |
| fw_name); |
| return err; |
| } |
| if (fw->size < 2) { |
| pr_err("bogus length %zu in \"%s\"\n", |
| fw->size, fw_name); |
| err = -EINVAL; |
| goto out; |
| } |
| cp->fw_load_addr= fw->data[1] << 8 | fw->data[0]; |
| cp->fw_size = fw->size - 2; |
| cp->fw_data = vmalloc(cp->fw_size); |
| if (!cp->fw_data) { |
| err = -ENOMEM; |
| pr_err("\"%s\" Failed %d\n", fw_name, err); |
| goto out; |
| } |
| memcpy(cp->fw_data, &fw->data[2], cp->fw_size); |
| out: |
| release_firmware(fw); |
| return err; |
| } |
| |
| static void cas_saturn_firmware_load(struct cas *cp) |
| { |
| int i; |
| |
| cas_phy_powerdown(cp); |
| |
| /* expanded memory access mode */ |
| cas_phy_write(cp, DP83065_MII_MEM, 0x0); |
| |
| /* pointer configuration for new firmware */ |
| cas_phy_write(cp, DP83065_MII_REGE, 0x8ff9); |
| cas_phy_write(cp, DP83065_MII_REGD, 0xbd); |
| cas_phy_write(cp, DP83065_MII_REGE, 0x8ffa); |
| cas_phy_write(cp, DP83065_MII_REGD, 0x82); |
| cas_phy_write(cp, DP83065_MII_REGE, 0x8ffb); |
| cas_phy_write(cp, DP83065_MII_REGD, 0x0); |
| cas_phy_write(cp, DP83065_MII_REGE, 0x8ffc); |
| cas_phy_write(cp, DP83065_MII_REGD, 0x39); |
| |
| /* download new firmware */ |
| cas_phy_write(cp, DP83065_MII_MEM, 0x1); |
| cas_phy_write(cp, DP83065_MII_REGE, cp->fw_load_addr); |
| for (i = 0; i < cp->fw_size; i++) |
| cas_phy_write(cp, DP83065_MII_REGD, cp->fw_data[i]); |
| |
| /* enable firmware */ |
| cas_phy_write(cp, DP83065_MII_REGE, 0x8ff8); |
| cas_phy_write(cp, DP83065_MII_REGD, 0x1); |
| } |
| |
| |
| /* phy initialization */ |
| static void cas_phy_init(struct cas *cp) |
| { |
| u16 val; |
| |
| /* if we're in MII/GMII mode, set up phy */ |
| if (CAS_PHY_MII(cp->phy_type)) { |
| writel(PCS_DATAPATH_MODE_MII, |
| cp->regs + REG_PCS_DATAPATH_MODE); |
| |
| cas_mif_poll(cp, 0); |
| cas_reset_mii_phy(cp); /* take out of isolate mode */ |
| |
| if (PHY_LUCENT_B0 == cp->phy_id) { |
| /* workaround link up/down issue with lucent */ |
| cas_phy_write(cp, LUCENT_MII_REG, 0x8000); |
| cas_phy_write(cp, MII_BMCR, 0x00f1); |
| cas_phy_write(cp, LUCENT_MII_REG, 0x0); |
| |
| } else if (PHY_BROADCOM_B0 == (cp->phy_id & 0xFFFFFFFC)) { |
| /* workarounds for broadcom phy */ |
| cas_phy_write(cp, BROADCOM_MII_REG8, 0x0C20); |
| cas_phy_write(cp, BROADCOM_MII_REG7, 0x0012); |
| cas_phy_write(cp, BROADCOM_MII_REG5, 0x1804); |
| cas_phy_write(cp, BROADCOM_MII_REG7, 0x0013); |
| cas_phy_write(cp, BROADCOM_MII_REG5, 0x1204); |
| cas_phy_write(cp, BROADCOM_MII_REG7, 0x8006); |
| cas_phy_write(cp, BROADCOM_MII_REG5, 0x0132); |
| cas_phy_write(cp, BROADCOM_MII_REG7, 0x8006); |
| cas_phy_write(cp, BROADCOM_MII_REG5, 0x0232); |
| cas_phy_write(cp, BROADCOM_MII_REG7, 0x201F); |
| cas_phy_write(cp, BROADCOM_MII_REG5, 0x0A20); |
| |
| } else if (PHY_BROADCOM_5411 == cp->phy_id) { |
| val = cas_phy_read(cp, BROADCOM_MII_REG4); |
| val = cas_phy_read(cp, BROADCOM_MII_REG4); |
| if (val & 0x0080) { |
| /* link workaround */ |
| cas_phy_write(cp, BROADCOM_MII_REG4, |
| val & ~0x0080); |
| } |
| |
| } else if (cp->cas_flags & CAS_FLAG_SATURN) { |
| writel((cp->phy_type & CAS_PHY_MII_MDIO0) ? |
| SATURN_PCFG_FSI : 0x0, |
| cp->regs + REG_SATURN_PCFG); |
| |
| /* load firmware to address 10Mbps auto-negotiation |
| * issue. NOTE: this will need to be changed if the |
| * default firmware gets fixed. |
| */ |
| if (PHY_NS_DP83065 == cp->phy_id) { |
| cas_saturn_firmware_load(cp); |
| } |
| cas_phy_powerup(cp); |
| } |
| |
| /* advertise capabilities */ |
| val = cas_phy_read(cp, MII_BMCR); |
| val &= ~BMCR_ANENABLE; |
| cas_phy_write(cp, MII_BMCR, val); |
| udelay(10); |
| |
| cas_phy_write(cp, MII_ADVERTISE, |
| cas_phy_read(cp, MII_ADVERTISE) | |
| (ADVERTISE_10HALF | ADVERTISE_10FULL | |
| ADVERTISE_100HALF | ADVERTISE_100FULL | |
| CAS_ADVERTISE_PAUSE | |
| CAS_ADVERTISE_ASYM_PAUSE)); |
| |
| if (cp->cas_flags & CAS_FLAG_1000MB_CAP) { |
| /* make sure that we don't advertise half |
| * duplex to avoid a chip issue |
| */ |
| val = cas_phy_read(cp, CAS_MII_1000_CTRL); |
| val &= ~CAS_ADVERTISE_1000HALF; |
| val |= CAS_ADVERTISE_1000FULL; |
| cas_phy_write(cp, CAS_MII_1000_CTRL, val); |
| } |
| |
| } else { |
| /* reset pcs for serdes */ |
| u32 val; |
| int limit; |
| |
| writel(PCS_DATAPATH_MODE_SERDES, |
| cp->regs + REG_PCS_DATAPATH_MODE); |
| |
| /* enable serdes pins on saturn */ |
| if (cp->cas_flags & CAS_FLAG_SATURN) |
| writel(0, cp->regs + REG_SATURN_PCFG); |
| |
| /* Reset PCS unit. */ |
| val = readl(cp->regs + REG_PCS_MII_CTRL); |
| val |= PCS_MII_RESET; |
| writel(val, cp->regs + REG_PCS_MII_CTRL); |
| |
| limit = STOP_TRIES; |
| while (--limit > 0) { |
| udelay(10); |
| if ((readl(cp->regs + REG_PCS_MII_CTRL) & |
| PCS_MII_RESET) == 0) |
| break; |
| } |
| if (limit <= 0) |
| netdev_warn(cp->dev, "PCS reset bit would not clear [%08x]\n", |
| readl(cp->regs + REG_PCS_STATE_MACHINE)); |
| |
| /* Make sure PCS is disabled while changing advertisement |
| * configuration. |
| */ |
| writel(0x0, cp->regs + REG_PCS_CFG); |
| |
| /* Advertise all capabilities except half-duplex. */ |
| val = readl(cp->regs + REG_PCS_MII_ADVERT); |
| val &= ~PCS_MII_ADVERT_HD; |
| val |= (PCS_MII_ADVERT_FD | PCS_MII_ADVERT_SYM_PAUSE | |
| PCS_MII_ADVERT_ASYM_PAUSE); |
| writel(val, cp->regs + REG_PCS_MII_ADVERT); |
| |
| /* enable PCS */ |
| writel(PCS_CFG_EN, cp->regs + REG_PCS_CFG); |
| |
| /* pcs workaround: enable sync detect */ |
| writel(PCS_SERDES_CTRL_SYNCD_EN, |
| cp->regs + REG_PCS_SERDES_CTRL); |
| } |
| } |
| |
| |
| static int cas_pcs_link_check(struct cas *cp) |
| { |
| u32 stat, state_machine; |
| int retval = 0; |
| |
| /* The link status bit latches on zero, so you must |
| * read it twice in such a case to see a transition |
| * to the link being up. |
| */ |
| stat = readl(cp->regs + REG_PCS_MII_STATUS); |
| if ((stat & PCS_MII_STATUS_LINK_STATUS) == 0) |
| stat = readl(cp->regs + REG_PCS_MII_STATUS); |
| |
| /* The remote-fault indication is only valid |
| * when autoneg has completed. |
| */ |
| if ((stat & (PCS_MII_STATUS_AUTONEG_COMP | |
| PCS_MII_STATUS_REMOTE_FAULT)) == |
| (PCS_MII_STATUS_AUTONEG_COMP | PCS_MII_STATUS_REMOTE_FAULT)) |
| netif_info(cp, link, cp->dev, "PCS RemoteFault\n"); |
| |
| /* work around link detection issue by querying the PCS state |
| * machine directly. |
| */ |
| state_machine = readl(cp->regs + REG_PCS_STATE_MACHINE); |
| if ((state_machine & PCS_SM_LINK_STATE_MASK) != SM_LINK_STATE_UP) { |
| stat &= ~PCS_MII_STATUS_LINK_STATUS; |
| } else if (state_machine & PCS_SM_WORD_SYNC_STATE_MASK) { |
| stat |= PCS_MII_STATUS_LINK_STATUS; |
| } |
| |
| if (stat & PCS_MII_STATUS_LINK_STATUS) { |
| if (cp->lstate != link_up) { |
| if (cp->opened) { |
| cp->lstate = link_up; |
| cp->link_transition = LINK_TRANSITION_LINK_UP; |
| |
| cas_set_link_modes(cp); |
| netif_carrier_on(cp->dev); |
| } |
| } |
| } else if (cp->lstate == link_up) { |
| cp->lstate = link_down; |
| if (link_transition_timeout != 0 && |
| cp->link_transition != LINK_TRANSITION_REQUESTED_RESET && |
| !cp->link_transition_jiffies_valid) { |
| /* |
| * force a reset, as a workaround for the |
| * link-failure problem. May want to move this to a |
| * point a bit earlier in the sequence. If we had |
| * generated a reset a short time ago, we'll wait for |
| * the link timer to check the status until a |
| * timer expires (link_transistion_jiffies_valid is |
| * true when the timer is running.) Instead of using |
| * a system timer, we just do a check whenever the |
| * link timer is running - this clears the flag after |
| * a suitable delay. |
| */ |
| retval = 1; |
| cp->link_transition = LINK_TRANSITION_REQUESTED_RESET; |
| cp->link_transition_jiffies = jiffies; |
| cp->link_transition_jiffies_valid = 1; |
| } else { |
| cp->link_transition = LINK_TRANSITION_ON_FAILURE; |
| } |
| netif_carrier_off(cp->dev); |
| if (cp->opened) |
| netif_info(cp, link, cp->dev, "PCS link down\n"); |
| |
| /* Cassini only: if you force a mode, there can be |
| * sync problems on link down. to fix that, the following |
| * things need to be checked: |
| * 1) read serialink state register |
| * 2) read pcs status register to verify link down. |
| * 3) if link down and serial link == 0x03, then you need |
| * to global reset the chip. |
| */ |
| if ((cp->cas_flags & CAS_FLAG_REG_PLUS) == 0) { |
| /* should check to see if we're in a forced mode */ |
| stat = readl(cp->regs + REG_PCS_SERDES_STATE); |
| if (stat == 0x03) |
| return 1; |
| } |
| } else if (cp->lstate == link_down) { |
| if (link_transition_timeout != 0 && |
| cp->link_transition != LINK_TRANSITION_REQUESTED_RESET && |
| !cp->link_transition_jiffies_valid) { |
| /* force a reset, as a workaround for the |
| * link-failure problem. May want to move |
| * this to a point a bit earlier in the |
| * sequence. |
| */ |
| retval = 1; |
| cp->link_transition = LINK_TRANSITION_REQUESTED_RESET; |
| cp->link_transition_jiffies = jiffies; |
| cp->link_transition_jiffies_valid = 1; |
| } else { |
| cp->link_transition = LINK_TRANSITION_STILL_FAILED; |
| } |
| } |
| |
| return retval; |
| } |
| |
| static int cas_pcs_interrupt(struct net_device *dev, |
| struct cas *cp, u32 status) |
| { |
| u32 stat = readl(cp->regs + REG_PCS_INTR_STATUS); |
| |
| if ((stat & PCS_INTR_STATUS_LINK_CHANGE) == 0) |
| return 0; |
| return cas_pcs_link_check(cp); |
| } |
| |
| static int cas_txmac_interrupt(struct net_device *dev, |
| struct cas *cp, u32 status) |
| { |
| u32 txmac_stat = readl(cp->regs + REG_MAC_TX_STATUS); |
| |
| if (!txmac_stat) |
| return 0; |
| |
| netif_printk(cp, intr, KERN_DEBUG, cp->dev, |
| "txmac interrupt, txmac_stat: 0x%x\n", txmac_stat); |
| |
| /* Defer timer expiration is quite normal, |
| * don't even log the event. |
| */ |
| if ((txmac_stat & MAC_TX_DEFER_TIMER) && |
| !(txmac_stat & ~MAC_TX_DEFER_TIMER)) |
| return 0; |
| |
| spin_lock(&cp->stat_lock[0]); |
| if (txmac_stat & MAC_TX_UNDERRUN) { |
| netdev_err(dev, "TX MAC xmit underrun\n"); |
| cp->net_stats[0].tx_fifo_errors++; |
| } |
| |
| if (txmac_stat & MAC_TX_MAX_PACKET_ERR) { |
| netdev_err(dev, "TX MAC max packet size error\n"); |
| cp->net_stats[0].tx_errors++; |
| } |
| |
| /* The rest are all cases of one of the 16-bit TX |
| * counters expiring. |
| */ |
| if (txmac_stat & MAC_TX_COLL_NORMAL) |
| cp->net_stats[0].collisions += 0x10000; |
| |
| if (txmac_stat & MAC_TX_COLL_EXCESS) { |
| cp->net_stats[0].tx_aborted_errors += 0x10000; |
| cp->net_stats[0].collisions += 0x10000; |
| } |
| |
| if (txmac_stat & MAC_TX_COLL_LATE) { |
| cp->net_stats[0].tx_aborted_errors += 0x10000; |
| cp->net_stats[0].collisions += 0x10000; |
| } |
| spin_unlock(&cp->stat_lock[0]); |
| |
| /* We do not keep track of MAC_TX_COLL_FIRST and |
| * MAC_TX_PEAK_ATTEMPTS events. |
| */ |
| return 0; |
| } |
| |
| static void cas_load_firmware(struct cas *cp, cas_hp_inst_t *firmware) |
| { |
| cas_hp_inst_t *inst; |
| u32 val; |
| int i; |
| |
| i = 0; |
| while ((inst = firmware) && inst->note) { |
| writel(i, cp->regs + REG_HP_INSTR_RAM_ADDR); |
| |
| val = CAS_BASE(HP_INSTR_RAM_HI_VAL, inst->val); |
| val |= CAS_BASE(HP_INSTR_RAM_HI_MASK, inst->mask); |
| writel(val, cp->regs + REG_HP_INSTR_RAM_DATA_HI); |
| |
| val = CAS_BASE(HP_INSTR_RAM_MID_OUTARG, inst->outarg >> 10); |
| val |= CAS_BASE(HP_INSTR_RAM_MID_OUTOP, inst->outop); |
| val |= CAS_BASE(HP_INSTR_RAM_MID_FNEXT, inst->fnext); |
| val |= CAS_BASE(HP_INSTR_RAM_MID_FOFF, inst->foff); |
| val |= CAS_BASE(HP_INSTR_RAM_MID_SNEXT, inst->snext); |
| val |= CAS_BASE(HP_INSTR_RAM_MID_SOFF, inst->soff); |
| val |= CAS_BASE(HP_INSTR_RAM_MID_OP, inst->op); |
| writel(val, cp->regs + REG_HP_INSTR_RAM_DATA_MID); |
| |
| val = CAS_BASE(HP_INSTR_RAM_LOW_OUTMASK, inst->outmask); |
| val |= CAS_BASE(HP_INSTR_RAM_LOW_OUTSHIFT, inst->outshift); |
| val |= CAS_BASE(HP_INSTR_RAM_LOW_OUTEN, inst->outenab); |
| val |= CAS_BASE(HP_INSTR_RAM_LOW_OUTARG, inst->outarg); |
| writel(val, cp->regs + REG_HP_INSTR_RAM_DATA_LOW); |
| ++firmware; |
| ++i; |
| } |
| } |
| |
| static void cas_init_rx_dma(struct cas *cp) |
| { |
| u64 desc_dma = cp->block_dvma; |
| u32 val; |
| int i, size; |
| |
| /* rx free descriptors */ |
| val = CAS_BASE(RX_CFG_SWIVEL, RX_SWIVEL_OFF_VAL); |
| val |= CAS_BASE(RX_CFG_DESC_RING, RX_DESC_RINGN_INDEX(0)); |
| val |= CAS_BASE(RX_CFG_COMP_RING, RX_COMP_RINGN_INDEX(0)); |
| if ((N_RX_DESC_RINGS > 1) && |
| (cp->cas_flags & CAS_FLAG_REG_PLUS)) /* do desc 2 */ |
| val |= CAS_BASE(RX_CFG_DESC_RING1, RX_DESC_RINGN_INDEX(1)); |
| writel(val, cp->regs + REG_RX_CFG); |
| |
| val = (unsigned long) cp->init_rxds[0] - |
| (unsigned long) cp->init_block; |
| writel((desc_dma + val) >> 32, cp->regs + REG_RX_DB_HI); |
| writel((desc_dma + val) & 0xffffffff, cp->regs + REG_RX_DB_LOW); |
| writel(RX_DESC_RINGN_SIZE(0) - 4, cp->regs + REG_RX_KICK); |
| |
| if (cp->cas_flags & CAS_FLAG_REG_PLUS) { |
| /* rx desc 2 is for IPSEC packets. however, |
| * we don't it that for that purpose. |
| */ |
| val = (unsigned long) cp->init_rxds[1] - |
| (unsigned long) cp->init_block; |
| writel((desc_dma + val) >> 32, cp->regs + REG_PLUS_RX_DB1_HI); |
| writel((desc_dma + val) & 0xffffffff, cp->regs + |
| REG_PLUS_RX_DB1_LOW); |
| writel(RX_DESC_RINGN_SIZE(1) - 4, cp->regs + |
| REG_PLUS_RX_KICK1); |
| } |
| |
| /* rx completion registers */ |
| val = (unsigned long) cp->init_rxcs[0] - |
| (unsigned long) cp->init_block; |
| writel((desc_dma + val) >> 32, cp->regs + REG_RX_CB_HI); |
| writel((desc_dma + val) & 0xffffffff, cp->regs + REG_RX_CB_LOW); |
| |
| if (cp->cas_flags & CAS_FLAG_REG_PLUS) { |
| /* rx comp 2-4 */ |
| for (i = 1; i < MAX_RX_COMP_RINGS; i++) { |
| val = (unsigned long) cp->init_rxcs[i] - |
| (unsigned long) cp->init_block; |
| writel((desc_dma + val) >> 32, cp->regs + |
| REG_PLUS_RX_CBN_HI(i)); |
| writel((desc_dma + val) & 0xffffffff, cp->regs + |
| REG_PLUS_RX_CBN_LOW(i)); |
| } |
| } |
| |
| /* read selective clear regs to prevent spurious interrupts |
| * on reset because complete == kick. |
| * selective clear set up to prevent interrupts on resets |
| */ |
| readl(cp->regs + REG_INTR_STATUS_ALIAS); |
| writel(INTR_RX_DONE | INTR_RX_BUF_UNAVAIL, cp->regs + REG_ALIAS_CLEAR); |
| if (cp->cas_flags & CAS_FLAG_REG_PLUS) { |
| for (i = 1; i < N_RX_COMP_RINGS; i++) |
| readl(cp->regs + REG_PLUS_INTRN_STATUS_ALIAS(i)); |
| |
| /* 2 is different from 3 and 4 */ |
| if (N_RX_COMP_RINGS > 1) |
| writel(INTR_RX_DONE_ALT | INTR_RX_BUF_UNAVAIL_1, |
| cp->regs + REG_PLUS_ALIASN_CLEAR(1)); |
| |
| for (i = 2; i < N_RX_COMP_RINGS; i++) |
| writel(INTR_RX_DONE_ALT, |
| cp->regs + REG_PLUS_ALIASN_CLEAR(i)); |
| } |
| |
| /* set up pause thresholds */ |
| val = CAS_BASE(RX_PAUSE_THRESH_OFF, |
| cp->rx_pause_off / RX_PAUSE_THRESH_QUANTUM); |
| val |= CAS_BASE(RX_PAUSE_THRESH_ON, |
| cp->rx_pause_on / RX_PAUSE_THRESH_QUANTUM); |
| writel(val, cp->regs + REG_RX_PAUSE_THRESH); |
| |
| /* zero out dma reassembly buffers */ |
| for (i = 0; i < 64; i++) { |
| writel(i, cp->regs + REG_RX_TABLE_ADDR); |
| writel(0x0, cp->regs + REG_RX_TABLE_DATA_LOW); |
| writel(0x0, cp->regs + REG_RX_TABLE_DATA_MID); |
| writel(0x0, cp->regs + REG_RX_TABLE_DATA_HI); |
| } |
| |
| /* make sure address register is 0 for normal operation */ |
| writel(0x0, cp->regs + REG_RX_CTRL_FIFO_ADDR); |
| writel(0x0, cp->regs + REG_RX_IPP_FIFO_ADDR); |
| |
| /* interrupt mitigation */ |
| #ifdef USE_RX_BLANK |
| val = CAS_BASE(RX_BLANK_INTR_TIME, RX_BLANK_INTR_TIME_VAL); |
| val |= CAS_BASE(RX_BLANK_INTR_PKT, RX_BLANK_INTR_PKT_VAL); |
| writel(val, cp->regs + REG_RX_BLANK); |
| #else |
| writel(0x0, cp->regs + REG_RX_BLANK); |
| #endif |
| |
| /* interrupt generation as a function of low water marks for |
| * free desc and completion entries. these are used to trigger |
| * housekeeping for rx descs. we don't use the free interrupt |
| * as it's not very useful |
| */ |
| /* val = CAS_BASE(RX_AE_THRESH_FREE, RX_AE_FREEN_VAL(0)); */ |
| val = CAS_BASE(RX_AE_THRESH_COMP, RX_AE_COMP_VAL); |
| writel(val, cp->regs + REG_RX_AE_THRESH); |
| if (cp->cas_flags & CAS_FLAG_REG_PLUS) { |
| val = CAS_BASE(RX_AE1_THRESH_FREE, RX_AE_FREEN_VAL(1)); |
| writel(val, cp->regs + REG_PLUS_RX_AE1_THRESH); |
| } |
| |
| /* Random early detect registers. useful for congestion avoidance. |
| * this should be tunable. |
| */ |
| writel(0x0, cp->regs + REG_RX_RED); |
| |
| /* receive page sizes. default == 2K (0x800) */ |
| val = 0; |
| if (cp->page_size == 0x1000) |
| val = 0x1; |
| else if (cp->page_size == 0x2000) |
| val = 0x2; |
| else if (cp->page_size == 0x4000) |
| val = 0x3; |
| |
| /* round mtu + offset. constrain to page size. */ |
| size = cp->dev->mtu + 64; |
| if (size > cp->page_size) |
| size = cp->page_size; |
| |
| if (size <= 0x400) |
| i = 0x0; |
| else if (size <= 0x800) |
| i = 0x1; |
| else if (size <= 0x1000) |
| i = 0x2; |
| else |
| i = 0x3; |
| |
| cp->mtu_stride = 1 << (i + 10); |
| val = CAS_BASE(RX_PAGE_SIZE, val); |
| val |= CAS_BASE(RX_PAGE_SIZE_MTU_STRIDE, i); |
| val |= CAS_BASE(RX_PAGE_SIZE_MTU_COUNT, cp->page_size >> (i + 10)); |
| val |= CAS_BASE(RX_PAGE_SIZE_MTU_OFF, 0x1); |
| writel(val, cp->regs + REG_RX_PAGE_SIZE); |
| |
| /* enable the header parser if desired */ |
| if (CAS_HP_FIRMWARE == cas_prog_null) |
| return; |
| |
| val = CAS_BASE(HP_CFG_NUM_CPU, CAS_NCPUS > 63 ? 0 : CAS_NCPUS); |
| val |= HP_CFG_PARSE_EN | HP_CFG_SYN_INC_MASK; |
| val |= CAS_BASE(HP_CFG_TCP_THRESH, HP_TCP_THRESH_VAL); |
| writel(val, cp->regs + REG_HP_CFG); |
| } |
| |
| static inline void cas_rxc_init(struct cas_rx_comp *rxc) |
| { |
| memset(rxc, 0, sizeof(*rxc)); |
| rxc->word4 = cpu_to_le64(RX_COMP4_ZERO); |
| } |
| |
| /* NOTE: we use the ENC RX DESC ring for spares. the rx_page[0,1] |
| * flipping is protected by the fact that the chip will not |
| * hand back the same page index while it's being processed. |
| */ |
| static inline cas_page_t *cas_page_spare(struct cas *cp, const int index) |
| { |
| cas_page_t *page = cp->rx_pages[1][index]; |
| cas_page_t *new; |
| |
| if (page_count(page->buffer) == 1) |
| return page; |
| |
| new = cas_page_dequeue(cp); |
| if (new) { |
| spin_lock(&cp->rx_inuse_lock); |
| list_add(&page->list, &cp->rx_inuse_list); |
| spin_unlock(&cp->rx_inuse_lock); |
| } |
| return new; |
| } |
| |
| /* this needs to be changed if we actually use the ENC RX DESC ring */ |
| static cas_page_t *cas_page_swap(struct cas *cp, const int ring, |
| const int index) |
| { |
| cas_page_t **page0 = cp->rx_pages[0]; |
| cas_page_t **page1 = cp->rx_pages[1]; |
| |
| /* swap if buffer is in use */ |
| if (page_count(page0[index]->buffer) > 1) { |
| cas_page_t *new = cas_page_spare(cp, index); |
| if (new) { |
| page1[index] = page0[index]; |
| page0[index] = new; |
| } |
| } |
| RX_USED_SET(page0[index], 0); |
| return page0[index]; |
| } |
| |
| static void cas_clean_rxds(struct cas *cp) |
| { |
| /* only clean ring 0 as ring 1 is used for spare buffers */ |
| struct cas_rx_desc *rxd = cp->init_rxds[0]; |
| int i, size; |
| |
| /* release all rx flows */ |
| for (i = 0; i < N_RX_FLOWS; i++) { |
| struct sk_buff *skb; |
| while ((skb = __skb_dequeue(&cp->rx_flows[i]))) { |
| cas_skb_release(skb); |
| } |
| } |
| |
| /* initialize descriptors */ |
| size = RX_DESC_RINGN_SIZE(0); |
| for (i = 0; i < size; i++) { |
| cas_page_t *page = cas_page_swap(cp, 0, i); |
| rxd[i].buffer = cpu_to_le64(page->dma_addr); |
| rxd[i].index = cpu_to_le64(CAS_BASE(RX_INDEX_NUM, i) | |
| CAS_BASE(RX_INDEX_RING, 0)); |
| } |
| |
| cp->rx_old[0] = RX_DESC_RINGN_SIZE(0) - 4; |
| cp->rx_last[0] = 0; |
| cp->cas_flags &= ~CAS_FLAG_RXD_POST(0); |
| } |
| |
| static void cas_clean_rxcs(struct cas *cp) |
| { |
| int i, j; |
| |
| /* take ownership of rx comp descriptors */ |
| memset(cp->rx_cur, 0, sizeof(*cp->rx_cur)*N_RX_COMP_RINGS); |
| memset(cp->rx_new, 0, sizeof(*cp->rx_new)*N_RX_COMP_RINGS); |
| for (i = 0; i < N_RX_COMP_RINGS; i++) { |
| struct cas_rx_comp *rxc = cp->init_rxcs[i]; |
| for (j = 0; j < RX_COMP_RINGN_SIZE(i); j++) { |
| cas_rxc_init(rxc + j); |
| } |
| } |
| } |
| |
| #if 0 |
| /* When we get a RX fifo overflow, the RX unit is probably hung |
| * so we do the following. |
| * |
| * If any part of the reset goes wrong, we return 1 and that causes the |
| * whole chip to be reset. |
| */ |
| static int cas_rxmac_reset(struct cas *cp) |
| { |
| struct net_device *dev = cp->dev; |
| int limit; |
| u32 val; |
| |
| /* First, reset MAC RX. */ |
| writel(cp->mac_rx_cfg & ~MAC_RX_CFG_EN, cp->regs + REG_MAC_RX_CFG); |
| for (limit = 0; limit < STOP_TRIES; limit++) { |
| if (!(readl(cp->regs + REG_MAC_RX_CFG) & MAC_RX_CFG_EN)) |
| break; |
| udelay(10); |
| } |
| if (limit == STOP_TRIES) { |
| netdev_err(dev, "RX MAC will not disable, resetting whole chip\n"); |
| return 1; |
| } |
| |
| /* Second, disable RX DMA. */ |
| writel(0, cp->regs + REG_RX_CFG); |
| for (limit = 0; limit < STOP_TRIES; limit++) { |
| if (!(readl(cp->regs + REG_RX_CFG) & RX_CFG_DMA_EN)) |
| break; |
| udelay(10); |
| } |
| if (limit == STOP_TRIES) { |
| netdev_err(dev, "RX DMA will not disable, resetting whole chip\n"); |
| return 1; |
| } |
| |
| mdelay(5); |
| |
| /* Execute RX reset command. */ |
| writel(SW_RESET_RX, cp->regs + REG_SW_RESET); |
| for (limit = 0; limit < STOP_TRIES; limit++) { |
| if (!(readl(cp->regs + REG_SW_RESET) & SW_RESET_RX)) |
| break; |
| udelay(10); |
| } |
| if (limit == STOP_TRIES) { |
| netdev_err(dev, "RX reset command will not execute, resetting whole chip\n"); |
| return 1; |
| } |
| |
| /* reset driver rx state */ |
| cas_clean_rxds(cp); |
| cas_clean_rxcs(cp); |
| |
| /* Now, reprogram the rest of RX unit. */ |
| cas_init_rx_dma(cp); |
| |
| /* re-enable */ |
| val = readl(cp->regs + REG_RX_CFG); |
| writel(val | RX_CFG_DMA_EN, cp->regs + REG_RX_CFG); |
| writel(MAC_RX_FRAME_RECV, cp->regs + REG_MAC_RX_MASK); |
| val = readl(cp->regs + REG_MAC_RX_CFG); |
| writel(val | MAC_RX_CFG_EN, cp->regs + REG_MAC_RX_CFG); |
| return 0; |
| } |
| #endif |
| |
| static int cas_rxmac_interrupt(struct net_device *dev, struct cas *cp, |
| u32 status) |
| { |
| u32 stat = readl(cp->regs + REG_MAC_RX_STATUS); |
| |
| if (!stat) |
| return 0; |
| |
| netif_dbg(cp, intr, cp->dev, "rxmac interrupt, stat: 0x%x\n", stat); |
| |
| /* these are all rollovers */ |
| spin_lock(&cp->stat_lock[0]); |
| if (stat & MAC_RX_ALIGN_ERR) |
| cp->net_stats[0].rx_frame_errors += 0x10000; |
| |
| if (stat & MAC_RX_CRC_ERR) |
| cp->net_stats[0].rx_crc_errors += 0x10000; |
| |
| if (stat & MAC_RX_LEN_ERR) |
| cp->net_stats[0].rx_length_errors += 0x10000; |
| |
| if (stat & MAC_RX_OVERFLOW) { |
| cp->net_stats[0].rx_over_errors++; |
| cp->net_stats[0].rx_fifo_errors++; |
| } |
| |
| /* We do not track MAC_RX_FRAME_COUNT and MAC_RX_VIOL_ERR |
| * events. |
| */ |
| spin_unlock(&cp->stat_lock[0]); |
| return 0; |
| } |
| |
| static int cas_mac_interrupt(struct net_device *dev, struct cas *cp, |
| u32 status) |
| { |
| u32 stat = readl(cp->regs + REG_MAC_CTRL_STATUS); |
| |
| if (!stat) |
| return 0; |
| |
| netif_printk(cp, intr, KERN_DEBUG, cp->dev, |
| "mac interrupt, stat: 0x%x\n", stat); |
| |
| /* This interrupt is just for pause frame and pause |
| * tracking. It is useful for diagnostics and debug |
| * but probably by default we will mask these events. |
| */ |
| if (stat & MAC_CTRL_PAUSE_STATE) |
| cp->pause_entered++; |
| |
| if (stat & MAC_CTRL_PAUSE_RECEIVED) |
| cp->pause_last_time_recvd = (stat >> 16); |
| |
| return 0; |
| } |
| |
| |
| /* Must be invoked under cp->lock. */ |
| static inline int cas_mdio_link_not_up(struct cas *cp) |
| { |
| u16 val; |
| |
| switch (cp->lstate) { |
| case link_force_ret: |
| netif_info(cp, link, cp->dev, "Autoneg failed again, keeping forced mode\n"); |
| cas_phy_write(cp, MII_BMCR, cp->link_fcntl); |
| cp->timer_ticks = 5; |
| cp->lstate = link_force_ok; |
| cp->link_transition = LINK_TRANSITION_LINK_CONFIG; |
| break; |
| |
| case link_aneg: |
| val = cas_phy_read(cp, MII_BMCR); |
| |
| /* Try forced modes. we try things in the following order: |
| * 1000 full -> 100 full/half -> 10 half |
| */ |
| val &= ~(BMCR_ANRESTART | BMCR_ANENABLE); |
| val |= BMCR_FULLDPLX; |
| val |= (cp->cas_flags & CAS_FLAG_1000MB_CAP) ? |
| CAS_BMCR_SPEED1000 : BMCR_SPEED100; |
| cas_phy_write(cp, MII_BMCR, val); |
| cp->timer_ticks = 5; |
| cp->lstate = link_force_try; |
| cp->link_transition = LINK_TRANSITION_LINK_CONFIG; |
| break; |
| |
| case link_force_try: |
| /* Downgrade from 1000 to 100 to 10 Mbps if necessary. */ |
| val = cas_phy_read(cp, MII_BMCR); |
| cp->timer_ticks = 5; |
| if (val & CAS_BMCR_SPEED1000) { /* gigabit */ |
| val &= ~CAS_BMCR_SPEED1000; |
| val |= (BMCR_SPEED100 | BMCR_FULLDPLX); |
| cas_phy_write(cp, MII_BMCR, val); |
| break; |
| } |
| |
| if (val & BMCR_SPEED100) { |
| if (val & BMCR_FULLDPLX) /* fd failed */ |
| val &= ~BMCR_FULLDPLX; |
| else { /* 100Mbps failed */ |
| val &= ~BMCR_SPEED100; |
| } |
| cas_phy_write(cp, MII_BMCR, val); |
| break; |
| } |
| default: |
| break; |
| } |
| return 0; |
| } |
| |
| |
| /* must be invoked with cp->lock held */ |
| static int cas_mii_link_check(struct cas *cp, const u16 bmsr) |
| { |
| int restart; |
| |
| if (bmsr & BMSR_LSTATUS) { |
| /* Ok, here we got a link. If we had it due to a forced |
| * fallback, and we were configured for autoneg, we |
| * retry a short autoneg pass. If you know your hub is |
| * broken, use ethtool ;) |
| */ |
| if ((cp->lstate == link_force_try) && |
| (cp->link_cntl & BMCR_ANENABLE)) { |
| cp->lstate = link_force_ret; |
| cp->link_transition = LINK_TRANSITION_LINK_CONFIG; |
| cas_mif_poll(cp, 0); |
| cp->link_fcntl = cas_phy_read(cp, MII_BMCR); |
| cp->timer_ticks = 5; |
| if (cp->opened) |
| netif_info(cp, link, cp->dev, |
| "Got link after fallback, retrying autoneg once...\n"); |
| cas_phy_write(cp, MII_BMCR, |
| cp->link_fcntl | BMCR_ANENABLE | |
| BMCR_ANRESTART); |
| cas_mif_poll(cp, 1); |
| |
| } else if (cp->lstate != link_up) { |
| cp->lstate = link_up; |
| cp->link_transition = LINK_TRANSITION_LINK_UP; |
| |
| if (cp->opened) { |
| cas_set_link_modes(cp); |
| netif_carrier_on(cp->dev); |
| } |
| } |
| return 0; |
| } |
| |
| /* link not up. if the link was previously up, we restart the |
| * whole process |
| */ |
| restart = 0; |
| if (cp->lstate == link_up) { |
| cp->lstate = link_down; |
| cp->link_transition = LINK_TRANSITION_LINK_DOWN; |
| |
| netif_carrier_off(cp->dev); |
| if (cp->opened) |
| netif_info(cp, link, cp->dev, "Link down\n"); |
| restart = 1; |
| |
| } else if (++cp->timer_ticks > 10) |
| cas_mdio_link_not_up(cp); |
| |
| return restart; |
| } |
| |
| static int cas_mif_interrupt(struct net_device *dev, struct cas *cp, |
| u32 status) |
| { |
| u32 stat = readl(cp->regs + REG_MIF_STATUS); |
| u16 bmsr; |
| |
| /* check for a link change */ |
| if (CAS_VAL(MIF_STATUS_POLL_STATUS, stat) == 0) |
| return 0; |
| |
| bmsr = CAS_VAL(MIF_STATUS_POLL_DATA, stat); |
| return cas_mii_link_check(cp, bmsr); |
| } |
| |
| static int cas_pci_interrupt(struct net_device *dev, struct cas *cp, |
| u32 status) |
| { |
| u32 stat = readl(cp->regs + REG_PCI_ERR_STATUS); |
| |
| if (!stat) |
| return 0; |
| |
| netdev_err(dev, "PCI error [%04x:%04x]", |
| stat, readl(cp->regs + REG_BIM_DIAG)); |
| |
| /* cassini+ has this reserved */ |
| if ((stat & PCI_ERR_BADACK) && |
| ((cp->cas_flags & CAS_FLAG_REG_PLUS) == 0)) |
| pr_cont(" <No ACK64# during ABS64 cycle>"); |
| |
| if (stat & PCI_ERR_DTRTO) |
| pr_cont(" <Delayed transaction timeout>"); |
| if (stat & PCI_ERR_OTHER) |
| pr_cont(" <other>"); |
| if (stat & PCI_ERR_BIM_DMA_WRITE) |
| pr_cont(" <BIM DMA 0 write req>"); |
| if (stat & PCI_ERR_BIM_DMA_READ) |
| pr_cont(" <BIM DMA 0 read req>"); |
| pr_cont("\n"); |
| |
| if (stat & PCI_ERR_OTHER) { |
| u16 cfg; |
| |
| /* Interrogate PCI config space for the |
| * true cause. |
| */ |
| pci_read_config_word(cp->pdev, PCI_STATUS, &cfg); |
| netdev_err(dev, "Read PCI cfg space status [%04x]\n", cfg); |
| if (cfg & PCI_STATUS_PARITY) |
| netdev_err(dev, "PCI parity error detected\n"); |
| if (cfg & PCI_STATUS_SIG_TARGET_ABORT) |
| netdev_err(dev, "PCI target abort\n"); |
| if (cfg & PCI_STATUS_REC_TARGET_ABORT) |
| netdev_err(dev, "PCI master acks target abort\n"); |
| if (cfg & PCI_STATUS_REC_MASTER_ABORT) |
| netdev_err(dev, "PCI master abort\n"); |
| if (cfg & PCI_STATUS_SIG_SYSTEM_ERROR) |
| netdev_err(dev, "PCI system error SERR#\n"); |
| if (cfg & PCI_STATUS_DETECTED_PARITY) |
| netdev_err(dev, "PCI parity error\n"); |
| |
| /* Write the error bits back to clear them. */ |
| cfg &= (PCI_STATUS_PARITY | |
| PCI_STATUS_SIG_TARGET_ABORT | |
| PCI_STATUS_REC_TARGET_ABORT | |
| PCI_STATUS_REC_MASTER_ABORT | |
| PCI_STATUS_SIG_SYSTEM_ERROR | |
| PCI_STATUS_DETECTED_PARITY); |
| pci_write_config_word(cp->pdev, PCI_STATUS, cfg); |
| } |
| |
| /* For all PCI errors, we should reset the chip. */ |
| return 1; |
| } |
| |
| /* All non-normal interrupt conditions get serviced here. |
| * Returns non-zero if we should just exit the interrupt |
| * handler right now (ie. if we reset the card which invalidates |
| * all of the other original irq status bits). |
| */ |
| static int cas_abnormal_irq(struct net_device *dev, struct cas *cp, |
| u32 status) |
| { |
| if (status & INTR_RX_TAG_ERROR) { |
| /* corrupt RX tag framing */ |
| netif_printk(cp, rx_err, KERN_DEBUG, cp->dev, |
| "corrupt rx tag framing\n"); |
| spin_lock(&cp->stat_lock[0]); |
| cp->net_stats[0].rx_errors++; |
| spin_unlock(&cp->stat_lock[0]); |
| goto do_reset; |
| } |
| |
| if (status & INTR_RX_LEN_MISMATCH) { |
| /* length mismatch. */ |
| netif_printk(cp, rx_err, KERN_DEBUG, cp->dev, |
| "length mismatch for rx frame\n"); |
| spin_lock(&cp->stat_lock[0]); |
| cp->net_stats[0].rx_errors++; |
| spin_unlock(&cp->stat_lock[0]); |
| goto do_reset; |
| } |
| |
| if (status & INTR_PCS_STATUS) { |
| if (cas_pcs_interrupt(dev, cp, status)) |
| goto do_reset; |
| } |
| |
| if (status & INTR_TX_MAC_STATUS) { |
| if (cas_txmac_interrupt(dev, cp, status)) |
| goto do_reset; |
| } |
| |
| if (status & INTR_RX_MAC_STATUS) { |
| if (cas_rxmac_interrupt(dev, cp, status)) |
| goto do_reset; |
| } |
| |
| if (status & INTR_MAC_CTRL_STATUS) { |
| if (cas_mac_interrupt(dev, cp, status)) |
| goto do_reset; |
| } |
| |
| if (status & INTR_MIF_STATUS) { |
| if (cas_mif_interrupt(dev, cp, status)) |
| goto do_reset; |
| } |
| |
| if (status & INTR_PCI_ERROR_STATUS) { |
| if (cas_pci_interrupt(dev, cp, status)) |
| goto do_reset; |
| } |
| return 0; |
| |
| do_reset: |
| #if 1 |
| atomic_inc(&cp->reset_task_pending); |
| atomic_inc(&cp->reset_task_pending_all); |
| netdev_err(dev, "reset called in cas_abnormal_irq [0x%x]\n", status); |
| schedule_work(&cp->reset_task); |
| #else |
| atomic_set(&cp->reset_task_pending, CAS_RESET_ALL); |
| netdev_err(dev, "reset called in cas_abnormal_irq\n"); |
| schedule_work(&cp->reset_task); |
| #endif |
| return 1; |
| } |
| |
| /* NOTE: CAS_TABORT returns 1 or 2 so that it can be used when |
| * determining whether to do a netif_stop/wakeup |
| */ |
| #define CAS_TABORT(x) (((x)->cas_flags & CAS_FLAG_TARGET_ABORT) ? 2 : 1) |
| #define CAS_ROUND_PAGE(x) (((x) + PAGE_SIZE - 1) & PAGE_MASK) |
| static inline int cas_calc_tabort(struct cas *cp, const unsigned long addr, |
| const int len) |
| { |
| unsigned long off = addr + len; |
| |
| if (CAS_TABORT(cp) == 1) |
| return 0; |
| if ((CAS_ROUND_PAGE(off) - off) > TX_TARGET_ABORT_LEN) |
| return 0; |
| return TX_TARGET_ABORT_LEN; |
| } |
| |
| static inline void cas_tx_ringN(struct cas *cp, int ring, int limit) |
| { |
| struct cas_tx_desc *txds; |
| struct sk_buff **skbs; |
| struct net_device *dev = cp->dev; |
| int entry, count; |
| |
| spin_lock(&cp->tx_lock[ring]); |
| txds = cp->init_txds[ring]; |
| skbs = cp->tx_skbs[ring]; |
| entry = cp->tx_old[ring]; |
| |
| count = TX_BUFF_COUNT(ring, entry, limit); |
| while (entry != limit) { |
| struct sk_buff *skb = skbs[entry]; |
| dma_addr_t daddr; |
| u32 dlen; |
| int frag; |
| |
| if (!skb) { |
| /* this should never occur */ |
| entry = TX_DESC_NEXT(ring, entry); |
| continue; |
| } |
| |
| /* however, we might get only a partial skb release. */ |
| count -= skb_shinfo(skb)->nr_frags + |
| + cp->tx_tiny_use[ring][entry].nbufs + 1; |
| if (count < 0) |
| break; |
| |
| netif_printk(cp, tx_done, KERN_DEBUG, cp->dev, |
| "tx[%d] done, slot %d\n", ring, entry); |
| |
| skbs[entry] = NULL; |
| cp->tx_tiny_use[ring][entry].nbufs = 0; |
| |
| for (frag = 0; frag <= skb_shinfo(skb)->nr_frags; frag++) { |
| struct cas_tx_desc *txd = txds + entry; |
| |
| daddr = le64_to_cpu(txd->buffer); |
| dlen = CAS_VAL(TX_DESC_BUFLEN, |
| le64_to_cpu(txd->control)); |
| pci_unmap_page(cp->pdev, daddr, dlen, |
| PCI_DMA_TODEVICE); |
| entry = TX_DESC_NEXT(ring, entry); |
| |
| /* tiny buffer may follow */ |
| if (cp->tx_tiny_use[ring][entry].used) { |
| cp->tx_tiny_use[ring][entry].used = 0; |
| entry = TX_DESC_NEXT(ring, entry); |
| } |
| } |
| |
| spin_lock(&cp->stat_lock[ring]); |
| cp->net_stats[ring].tx_packets++; |
| cp->net_stats[ring].tx_bytes += skb->len; |
| spin_unlock(&cp->stat_lock[ring]); |
| dev_kfree_skb_irq(skb); |
| } |
| cp->tx_old[ring] = entry; |
| |
| /* this is wrong for multiple tx rings. the net device needs |
| * multiple queues for this to do the right thing. we wait |
| * for 2*packets to be available when using tiny buffers |
| */ |
| if (netif_queue_stopped(dev) && |
| (TX_BUFFS_AVAIL(cp, ring) > CAS_TABORT(cp)*(MAX_SKB_FRAGS + 1))) |
| netif_wake_queue(dev); |
| spin_unlock(&cp->tx_lock[ring]); |
| } |
| |
| static void cas_tx(struct net_device *dev, struct cas *cp, |
| u32 status) |
| { |
| int limit, ring; |
| #ifdef USE_TX_COMPWB |
| u64 compwb = le64_to_cpu(cp->init_block->tx_compwb); |
| #endif |
| netif_printk(cp, intr, KERN_DEBUG, cp->dev, |
| "tx interrupt, status: 0x%x, %llx\n", |
| status, (unsigned long long)compwb); |
| /* process all the rings */ |
| for (ring = 0; ring < N_TX_RINGS; ring++) { |
| #ifdef USE_TX_COMPWB |
| /* use the completion writeback registers */ |
| limit = (CAS_VAL(TX_COMPWB_MSB, compwb) << 8) | |
| CAS_VAL(TX_COMPWB_LSB, compwb); |
| compwb = TX_COMPWB_NEXT(compwb); |
| #else |
| limit = readl(cp->regs + REG_TX_COMPN(ring)); |
| #endif |
| if (cp->tx_old[ring] != limit) |
| cas_tx_ringN(cp, ring, limit); |
| } |
| } |
| |
| |
| static int cas_rx_process_pkt(struct cas *cp, struct cas_rx_comp *rxc, |
| int entry, const u64 *words, |
| struct sk_buff **skbref) |
| { |
| int dlen, hlen, len, i, alloclen; |
| int off, swivel = RX_SWIVEL_OFF_VAL; |
| struct cas_page *page; |
| struct sk_buff *skb; |
| void *addr, *crcaddr; |
| __sum16 csum; |
| char *p; |
| |
| hlen = CAS_VAL(RX_COMP2_HDR_SIZE, words[1]); |
| dlen = CAS_VAL(RX_COMP1_DATA_SIZE, words[0]); |
| len = hlen + dlen; |
| |
| if (RX_COPY_ALWAYS || (words[2] & RX_COMP3_SMALL_PKT)) |
| alloclen = len; |
| else |
| alloclen = max(hlen, RX_COPY_MIN); |
| |
| skb = dev_alloc_skb(alloclen + swivel + cp->crc_size); |
| if (skb == NULL) |
| return -1; |
| |
| *skbref = skb; |
| skb_reserve(skb, swivel); |
| |
| p = skb->data; |
| addr = crcaddr = NULL; |
| if (hlen) { /* always copy header pages */ |
| i = CAS_VAL(RX_COMP2_HDR_INDEX, words[1]); |
| page = cp->rx_pages[CAS_VAL(RX_INDEX_RING, i)][CAS_VAL(RX_INDEX_NUM, i)]; |
| off = CAS_VAL(RX_COMP2_HDR_OFF, words[1]) * 0x100 + |
| swivel; |
| |
| i = hlen; |
| if (!dlen) /* attach FCS */ |
| i += cp->crc_size; |
| pci_dma_sync_single_for_cpu(cp->pdev, page->dma_addr + off, i, |
| PCI_DMA_FROMDEVICE); |
| addr = cas_page_map(page->buffer); |
| memcpy(p, addr + off, i); |
| pci_dma_sync_single_for_device(cp->pdev, page->dma_addr + off, i, |
| PCI_DMA_FROMDEVICE); |
| cas_page_unmap(addr); |
| RX_USED_ADD(page, 0x100); |
| p += hlen; |
| swivel = 0; |
| } |
| |
| |
| if (alloclen < (hlen + dlen)) { |
| skb_frag_t *frag = skb_shinfo(skb)->frags; |
| |
| /* normal or jumbo packets. we use frags */ |
| i = CAS_VAL(RX_COMP1_DATA_INDEX, words[0]); |
| page = cp->rx_pages[CAS_VAL(RX_INDEX_RING, i)][CAS_VAL(RX_INDEX_NUM, i)]; |
| off = CAS_VAL(RX_COMP1_DATA_OFF, words[0]) + swivel; |
| |
| hlen = min(cp->page_size - off, dlen); |
| if (hlen < 0) { |
| netif_printk(cp, rx_err, KERN_DEBUG, cp->dev, |
| "rx page overflow: %d\n", hlen); |
| dev_kfree_skb_irq(skb); |
| return -1; |
| } |
| i = hlen; |
| if (i == dlen) /* attach FCS */ |
| i += cp->crc_size; |
| pci_dma_sync_single_for_cpu(cp->pdev, page->dma_addr + off, i, |
| PCI_DMA_FROMDEVICE); |
| |
| /* make sure we always copy a header */ |
| swivel = 0; |
| if (p == (char *) skb->data) { /* not split */ |
| addr = cas_page_map(page->buffer); |
| memcpy(p, addr + off, RX_COPY_MIN); |
| pci_dma_sync_single_for_device(cp->pdev, page->dma_addr + off, i, |
| PCI_DMA_FROMDEVICE); |
| cas_page_unmap(addr); |
| off += RX_COPY_MIN; |
| swivel = RX_COPY_MIN; |
| RX_USED_ADD(page, cp->mtu_stride); |
| } else { |
| RX_USED_ADD(page, hlen); |
| } |
| skb_put(skb, alloclen); |
| |
| skb_shinfo(skb)->nr_frags++; |
| skb->data_len += hlen - swivel; |
| skb->truesize += hlen - swivel; |
| skb->len += hlen - swivel; |
| |
| get_page(page->buffer); |
| frag->page = page->buffer; |
| frag->page_offset = off; |
| frag->size = hlen - swivel; |
| |
| /* any more data? */ |
| if ((words[0] & RX_COMP1_SPLIT_PKT) && ((dlen -= hlen) > 0)) { |
| hlen = dlen; |
| off = 0; |
| |
| i = CAS_VAL(RX_COMP2_NEXT_INDEX, words[1]); |
| page = cp->rx_pages[CAS_VAL(RX_INDEX_RING, i)][CAS_VAL(RX_INDEX_NUM, i)]; |
| pci_dma_sync_single_for_cpu(cp->pdev, page->dma_addr, |
| hlen + cp->crc_size, |
| PCI_DMA_FROMDEVICE); |
| pci_dma_sync_single_for_device(cp->pdev, page->dma_addr, |
| hlen + cp->crc_size, |
| PCI_DMA_FROMDEVICE); |
| |
| skb_shinfo(skb)->nr_frags++; |
| skb->data_len += hlen; |
| skb->len += hlen; |
| frag++; |
| |
| get_page(page->buffer); |
| frag->page = page->buffer; |
| frag->page_offset = 0; |
| frag->size = hlen; |
| RX_USED_ADD(page, hlen + cp->crc_size); |
| } |
| |
| if (cp->crc_size) { |
| addr = cas_page_map(page->buffer); |
| crcaddr = addr + off + hlen; |
| } |
| |
| } else { |
| /* copying packet */ |
| if (!dlen) |
| goto end_copy_pkt; |
| |
| i = CAS_VAL(RX_COMP1_DATA_INDEX, words[0]); |
| page = cp->rx_pages[CAS_VAL(RX_INDEX_RING, i)][CAS_VAL(RX_INDEX_NUM, i)]; |
| off = CAS_VAL(RX_COMP1_DATA_OFF, words[0]) + swivel; |
| hlen = min(cp->page_size - off, dlen); |
| if (hlen < 0) { |
| netif_printk(cp, rx_err, KERN_DEBUG, cp->dev, |
| "rx page overflow: %d\n", hlen); |
| dev_kfree_skb_irq(skb); |
| return -1; |
| } |
| i = hlen; |
| if (i == dlen) /* attach FCS */ |
| i += cp->crc_size; |
| pci_dma_sync_single_for_cpu(cp->pdev, page->dma_addr + off, i, |
| PCI_DMA_FROMDEVICE); |
| addr = cas_page_map(page->buffer); |
| memcpy(p, addr + off, i); |
| pci_dma_sync_single_for_device(cp->pdev, page->dma_addr + off, i, |
| PCI_DMA_FROMDEVICE); |
| cas_page_unmap(addr); |
| if (p == (char *) skb->data) /* not split */ |
| RX_USED_ADD(page, cp->mtu_stride); |
| else |
| RX_USED_ADD(page, i); |
| |
| /* any more data? */ |
| if ((words[0] & RX_COMP1_SPLIT_PKT) && ((dlen -= hlen) > 0)) { |
| p += hlen; |
| i = CAS_VAL(RX_COMP2_NEXT_INDEX, words[1]); |
| page = cp->rx_pages[CAS_VAL(RX_INDEX_RING, i)][CAS_VAL(RX_INDEX_NUM, i)]; |
| pci_dma_sync_single_for_cpu(cp->pdev, page->dma_addr, |
| dlen + cp->crc_size, |
| PCI_DMA_FROMDEVICE); |
| addr = cas_page_map(page->buffer); |
| memcpy(p, addr, dlen + cp->crc_size); |
| pci_dma_sync_single_for_device(cp->pdev, page->dma_addr, |
| dlen + cp->crc_size, |
| PCI_DMA_FROMDEVICE); |
| cas_page_unmap(addr); |
| RX_USED_ADD(page, dlen + cp->crc_size); |
| } |
| end_copy_pkt: |
| if (cp->crc_size) { |
| addr = NULL; |
| crcaddr = skb->data + alloclen; |
| } |
| skb_put(skb, alloclen); |
| } |
| |
| csum = (__force __sum16)htons(CAS_VAL(RX_COMP4_TCP_CSUM, words[3])); |
| if (cp->crc_size) { |
| /* checksum includes FCS. strip it out. */ |
| csum = csum_fold(csum_partial(crcaddr, cp->crc_size, |
| csum_unfold(csum))); |
| if (addr) |
| cas_page_unmap(addr); |
| } |
| skb->protocol = eth_type_trans(skb, cp->dev); |
| if (skb->protocol == htons(ETH_P_IP)) { |
| skb->csum = csum_unfold(~csum); |
| skb->ip_summed = CHECKSUM_COMPLETE; |
| } else |
| skb_checksum_none_assert(skb); |
| return len; |
| } |
| |
| |
| /* we can handle up to 64 rx flows at a time. we do the same thing |
| * as nonreassm except that we batch up the buffers. |
| * NOTE: we currently just treat each flow as a bunch of packets that |
| * we pass up. a better way would be to coalesce the packets |
| * into a jumbo packet. to do that, we need to do the following: |
| * 1) the first packet will have a clean split between header and |
| * data. save both. |
| * 2) each time the next flow packet comes in, extend the |
| * data length and merge the checksums. |
| * 3) on flow release, fix up the header. |
| * 4) make sure the higher layer doesn't care. |
| * because packets get coalesced, we shouldn't run into fragment count |
| * issues. |
| */ |
| static inline void cas_rx_flow_pkt(struct cas *cp, const u64 *words, |
| struct sk_buff *skb) |
| { |
| int flowid = CAS_VAL(RX_COMP3_FLOWID, words[2]) & (N_RX_FLOWS - 1); |
| struct sk_buff_head *flow = &cp->rx_flows[flowid]; |
| |
| /* this is protected at a higher layer, so no need to |
| * do any additional locking here. stick the buffer |
| * at the end. |
| */ |
| __skb_queue_tail(flow, skb); |
| if (words[0] & RX_COMP1_RELEASE_FLOW) { |
| while ((skb = __skb_dequeue(flow))) { |
| cas_skb_release(skb); |
| } |
| } |
| } |
| |
| /* put rx descriptor back on ring. if a buffer is in use by a higher |
| * layer, this will need to put in a replacement. |
| */ |
| static void cas_post_page(struct cas *cp, const int ring, const int index) |
| { |
| cas_page_t *new; |
| int entry; |
| |
| entry = cp->rx_old[ring]; |
| |
| new = cas_page_swap(cp, ring, index); |
| cp->init_rxds[ring][entry].buffer = cpu_to_le64(new->dma_addr); |
| cp->init_rxds[ring][entry].index = |
| cpu_to_le64(CAS_BASE(RX_INDEX_NUM, index) | |
| CAS_BASE(RX_INDEX_RING, ring)); |
| |
| entry = RX_DESC_ENTRY(ring, entry + 1); |
| cp->rx_old[ring] = entry; |
| |
| if (entry % 4) |
| return; |
| |
| if (ring == 0) |
| writel(entry, cp->regs + REG_RX_KICK); |
| else if ((N_RX_DESC_RINGS > 1) && |
| (cp->cas_flags & CAS_FLAG_REG_PLUS)) |
| writel(entry, cp->regs + REG_PLUS_RX_KICK1); |
| } |
| |
| |
| /* only when things are bad */ |
| static int cas_post_rxds_ringN(struct cas *cp, int ring, int num) |
| { |
| unsigned int entry, last, count, released; |
| int cluster; |
| cas_page_t **page = cp->rx_pages[ring]; |
| |
| entry = cp->rx_old[ring]; |
| |
| netif_printk(cp, intr, KERN_DEBUG, cp->dev, |
| "rxd[%d] interrupt, done: %d\n", ring, entry); |
| |
| cluster = -1; |
| count = entry & 0x3; |
| last = RX_DESC_ENTRY(ring, num ? entry + num - 4: entry - 4); |
| released = 0; |
| while (entry != last) { |
| /* make a new buffer if it's still in use */ |
| if (page_count(page[entry]->buffer) > 1) { |
| cas_page_t *new = cas_page_dequeue(cp); |
| if (!new) { |
| /* let the timer know that we need to |
| * do this again |
| */ |
| cp->cas_flags |= CAS_FLAG_RXD_POST(ring); |
| if (!timer_pending(&cp->link_timer)) |
| mod_timer(&cp->link_timer, jiffies + |
| CAS_LINK_FAST_TIMEOUT); |
| cp->rx_old[ring] = entry; |
| cp->rx_last[ring] = num ? num - released : 0; |
| return -ENOMEM; |
| } |
| spin_lock(&cp->rx_inuse_lock); |
| list_add(&page[entry]->list, &cp->rx_inuse_list); |
| spin_unlock(&cp->rx_inuse_lock); |
| cp->init_rxds[ring][entry].buffer = |
| cpu_to_le64(new->dma_addr); |
| page[entry] = new; |
| |
| } |
| |
| if (++count == 4) { |
| cluster = entry; |
| count = 0; |
| } |
| released++; |
| entry = RX_DESC_ENTRY(ring, entry + 1); |
| } |
| cp->rx_old[ring] = entry; |
| |
| if (cluster < 0) |
| return 0; |
| |
| if (ring == 0) |
| writel(cluster, cp->regs + REG_RX_KICK); |
| else if ((N_RX_DESC_RINGS > 1) && |
| (cp->cas_flags & CAS_FLAG_REG_PLUS)) |
| writel(cluster, cp->regs + REG_PLUS_RX_KICK1); |
| return 0; |
| } |
| |
| |
| /* process a completion ring. packets are set up in three basic ways: |
| * small packets: should be copied header + data in single buffer. |
| * large packets: header and data in a single buffer. |
| * split packets: header in a separate buffer from data. |
| * data may be in multiple pages. data may be > 256 |
| * bytes but in a single page. |
| * |
| * NOTE: RX page posting is done in this routine as well. while there's |
| * the capability of using multiple RX completion rings, it isn't |
| * really worthwhile due to the fact that the page posting will |
| * force serialization on the single descriptor ring. |
| */ |
| static int cas_rx_ringN(struct cas *cp, int ring, int budget) |
| { |
| struct cas_rx_comp *rxcs = cp->init_rxcs[ring]; |
| int entry, drops; |
| int npackets = 0; |
| |
| netif_printk(cp, intr, KERN_DEBUG, cp->dev, |
| "rx[%d] interrupt, done: %d/%d\n", |
| ring, |
| readl(cp->regs + REG_RX_COMP_HEAD), cp->rx_new[ring]); |
| |
| entry = cp->rx_new[ring]; |
| drops = 0; |
| while (1) { |
| struct cas_rx_comp *rxc = rxcs + entry; |
| struct sk_buff *uninitialized_var(skb); |
| int type, len; |
| u64 words[4]; |
| int i, dring; |
| |
| words[0] = le64_to_cpu(rxc->word1); |
| words[1] = le64_to_cpu(rxc->word2); |
| words[2] = le64_to_cpu(rxc->word3); |
| words[3] = le64_to_cpu(rxc->word4); |
| |
| /* don't touch if still owned by hw */ |
| type = CAS_VAL(RX_COMP1_TYPE, words[0]); |
| if (type == 0) |
| break; |
| |
| /* hw hasn't cleared the zero bit yet */ |
| if (words[3] & RX_COMP4_ZERO) { |
| break; |
| } |
| |
| /* get info on the packet */ |
| if (words[3] & (RX_COMP4_LEN_MISMATCH | RX_COMP4_BAD)) { |
| spin_lock(&cp->stat_lock[ring]); |
| cp->net_stats[ring].rx_errors++; |
| if (words[3] & RX_COMP4_LEN_MISMATCH) |
| cp->net_stats[ring].rx_length_errors++; |
| if (words[3] & RX_COMP4_BAD) |
| cp->net_stats[ring].rx_crc_errors++; |
| spin_unlock(&cp->stat_lock[ring]); |
| |
| /* We'll just return it to Cassini. */ |
| drop_it: |
| spin_lock(&cp->stat_lock[ring]); |
| ++cp->net_stats[ring].rx_dropped; |
| spin_unlock(&cp->stat_lock[ring]); |
| goto next; |
| } |
| |
| len = cas_rx_process_pkt(cp, rxc, entry, words, &skb); |
| if (len < 0) { |
| ++drops; |
| goto drop_it; |
| } |
| |
| /* see if it's a flow re-assembly or not. the driver |
| * itself handles release back up. |
| */ |
| if (RX_DONT_BATCH || (type == 0x2)) { |
| /* non-reassm: these always get released */ |
| cas_skb_release(skb); |
| } else { |
| cas_rx_flow_pkt(cp, words, skb); |
| } |
| |
| spin_lock(&cp->stat_lock[ring]); |
| cp->net_stats[ring].rx_packets++; |
| cp->net_stats[ring].rx_bytes += len; |
| spin_unlock(&cp->stat_lock[ring]); |
| |
| next: |
| npackets++; |
| |
| /* should it be released? */ |
| if (words[0] & RX_COMP1_RELEASE_HDR) { |
| i = CAS_VAL(RX_COMP2_HDR_INDEX, words[1]); |
| dring = CAS_VAL(RX_INDEX_RING, i); |
| i = CAS_VAL(RX_INDEX_NUM, i); |
| cas_post_page(cp, dring, i); |
| } |
| |
| if (words[0] & RX_COMP1_RELEASE_DATA) { |
| i = CAS_VAL(RX_COMP1_DATA_INDEX, words[0]); |
| dring = CAS_VAL(RX_INDEX_RING, i); |
| i = CAS_VAL(RX_INDEX_NUM, i); |
| cas_post_page(cp, dring, i); |
| } |
| |
| if (words[0] & RX_COMP1_RELEASE_NEXT) { |
| i = CAS_VAL(RX_COMP2_NEXT_INDEX, words[1]); |
| dring = CAS_VAL(RX_INDEX_RING, i); |
| i = CAS_VAL(RX_INDEX_NUM, i); |
| cas_post_page(cp, dring, i); |
| } |
| |
| /* skip to the next entry */ |
| entry = RX_COMP_ENTRY(ring, entry + 1 + |
| CAS_VAL(RX_COMP1_SKIP, words[0])); |
| #ifdef USE_NAPI |
| if (budget && (npackets >= budget)) |
| break; |
| #endif |
| } |
| cp->rx_new[ring] = entry; |
| |
| if (drops) |
| netdev_info(cp->dev, "Memory squeeze, deferring packet\n"); |
| return npackets; |
| } |
| |
| |
| /* put completion entries back on the ring */ |
| static void cas_post_rxcs_ringN(struct net_device *dev, |
| struct cas *cp, int ring) |
| { |
| struct cas_rx_comp *rxc = cp->init_rxcs[ring]; |
| int last, entry; |
| |
| last = cp->rx_cur[ring]; |
| entry = cp->rx_new[ring]; |
| netif_printk(cp, intr, KERN_DEBUG, dev, |
| "rxc[%d] interrupt, done: %d/%d\n", |
| ring, readl(cp->regs + REG_RX_COMP_HEAD), entry); |
| |
| /* zero and re-mark descriptors */ |
| while (last != entry) { |
| cas_rxc_init(rxc + last); |
| last = RX_COMP_ENTRY(ring, last + 1); |
| } |
| cp->rx_cur[ring] = last; |
| |
| if (ring == 0) |
| writel(last, cp->regs + REG_RX_COMP_TAIL); |
| else if (cp->cas_flags & CAS_FLAG_REG_PLUS) |
| writel(last, cp->regs + REG_PLUS_RX_COMPN_TAIL(ring)); |
| } |
| |
| |
| |
| /* cassini can use all four PCI interrupts for the completion ring. |
| * rings 3 and 4 are identical |
| */ |
| #if defined(USE_PCI_INTC) || defined(USE_PCI_INTD) |
| static inline void cas_handle_irqN(struct net_device *dev, |
| struct cas *cp, const u32 status, |
| const int ring) |
| { |
| if (status & (INTR_RX_COMP_FULL_ALT | INTR_RX_COMP_AF_ALT)) |
| cas_post_rxcs_ringN(dev, cp, ring); |
| } |
| |
| static irqreturn_t cas_interruptN(int irq, void *dev_id) |
| { |
| struct net_device *dev = dev_id; |
| struct cas *cp = netdev_priv(dev); |
| unsigned long flags; |
| int ring; |
| u32 status = readl(cp->regs + REG_PLUS_INTRN_STATUS(ring)); |
| |
| /* check for shared irq */ |
| if (status == 0) |
| return IRQ_NONE; |
| |
| ring = (irq == cp->pci_irq_INTC) ? 2 : 3; |
| spin_lock_irqsave(&cp->lock, flags); |
| if (status & INTR_RX_DONE_ALT) { /* handle rx separately */ |
| #ifdef USE_NAPI |
| cas_mask_intr(cp); |
| napi_schedule(&cp->napi); |
| #else |
| cas_rx_ringN(cp, ring, 0); |
| #endif |
| status &= ~INTR_RX_DONE_ALT; |
| } |
| |
| if (status) |
| cas_handle_irqN(dev, cp, status, ring); |
| spin_unlock_irqrestore(&cp->lock, flags); |
| return IRQ_HANDLED; |
| } |
| #endif |
| |
| #ifdef USE_PCI_INTB |
| /* everything but rx packets */ |
| static inline void cas_handle_irq1(struct cas *cp, const u32 status) |
| { |
| if (status & INTR_RX_BUF_UNAVAIL_1) { |
| /* Frame arrived, no free RX buffers available. |
| * NOTE: we can get this on a link transition. */ |
| cas_post_rxds_ringN(cp, 1, 0); |
| spin_lock(&cp->stat_lock[1]); |
| cp->net_stats[1].rx_dropped++; |
| spin_unlock(&cp->stat_lock[1]); |
| } |
| |
| if (status & INTR_RX_BUF_AE_1) |
| cas_post_rxds_ringN(cp, 1, RX_DESC_RINGN_SIZE(1) - |
| RX_AE_FREEN_VAL(1)); |
| |
| if (status & (INTR_RX_COMP_AF | INTR_RX_COMP_FULL)) |
| cas_post_rxcs_ringN(cp, 1); |
| } |
| |
| /* ring 2 handles a few more events than 3 and 4 */ |
| static irqreturn_t cas_interrupt1(int irq, void *dev_id) |
| { |
| struct net_device *dev = dev_id; |
| struct cas *cp = netdev_priv(dev); |
| unsigned long flags; |
| u32 status = readl(cp->regs + REG_PLUS_INTRN_STATUS(1)); |
| |
| /* check for shared interrupt */ |
| if (status == 0) |
| return IRQ_NONE; |
| |
| spin_lock_irqsave(&cp->lock, flags); |
| if (status & INTR_RX_DONE_ALT) { /* handle rx separately */ |
| #ifdef USE_NAPI |
| cas_mask_intr(cp); |
| napi_schedule(&cp->napi); |
| #else |
| cas_rx_ringN(cp, 1, 0); |
| #endif |
| status &= ~INTR_RX_DONE_ALT; |
| } |
| if (status) |
| cas_handle_irq1(cp, status); |
| spin_unlock_irqrestore(&cp->lock, flags); |
| return IRQ_HANDLED; |
| } |
| #endif |
| |
| static inline void cas_handle_irq(struct net_device *dev, |
| struct cas *cp, const u32 status) |
| { |
| /* housekeeping interrupts */ |
| if (status & INTR_ERROR_MASK) |
| cas_abnormal_irq(dev, cp, status); |
| |
| if (status & INTR_RX_BUF_UNAVAIL) { |
| /* Frame arrived, no free RX buffers available. |
| * NOTE: we can get this on a link transition. |
| */ |
| cas_post_rxds_ringN(cp, 0, 0); |
| spin_lock(&cp->stat_lock[0]); |
| cp->net_stats[0].rx_dropped++; |
| spin_unlock(&cp->stat_lock[0]); |
| } else if (status & INTR_RX_BUF_AE) { |
| cas_post_rxds_ringN(cp, 0, RX_DESC_RINGN_SIZE(0) - |
| RX_AE_FREEN_VAL(0)); |
| } |
| |
| if (status & (INTR_RX_COMP_AF | INTR_RX_COMP_FULL)) |
| cas_post_rxcs_ringN(dev, cp, 0); |
| } |
| |
| static irqreturn_t cas_interrupt(int irq, void *dev_id) |
| { |
| struct net_device *dev = dev_id; |
| struct cas *cp = netdev_priv(dev); |
| unsigned long flags; |
| u32 status = readl(cp->regs + REG_INTR_STATUS); |
| |
| if (status == 0) |
| return IRQ_NONE; |
| |
| spin_lock_irqsave(&cp->lock, flags); |
| if (status & (INTR_TX_ALL | INTR_TX_INTME)) { |
| cas_tx(dev, cp, status); |
| status &= ~(INTR_TX_ALL | INTR_TX_INTME); |
| } |
| |
| if (status & INTR_RX_DONE) { |
| #ifdef USE_NAPI |
| cas_mask_intr(cp); |
| napi_schedule(&cp->napi); |
| #else |
| cas_rx_ringN(cp, 0, 0); |
| #endif |
| status &= ~INTR_RX_DONE; |
| } |
| |
| if (status) |
| cas_handle_irq(dev, cp, status); |
| spin_unlock_irqrestore(&cp->lock, flags); |
| return IRQ_HANDLED; |
| } |
| |
| |
| #ifdef USE_NAPI |
| static int cas_poll(struct napi_struct *napi, int budget) |
| { |
| struct cas *cp = container_of(napi, struct cas, napi); |
| struct net_device *dev = cp->dev; |
| int i, enable_intr, credits; |
| u32 status = readl(cp->regs + REG_INTR_STATUS); |
| unsigned long flags; |
| |
| spin_lock_irqsave(&cp->lock, flags); |
| cas_tx(dev, cp, status); |
| spin_unlock_irqrestore(&cp->lock, flags); |
| |
| /* NAPI rx packets. we spread the credits across all of the |
| * rxc rings |
| * |
| * to make sure we're fair with the work we loop through each |
| * ring N_RX_COMP_RING times with a request of |
| * budget / N_RX_COMP_RINGS |
| */ |
| enable_intr = 1; |
| credits = 0; |
| for (i = 0; i < N_RX_COMP_RINGS; i++) { |
| int j; |
| for (j = 0; j < N_RX_COMP_RINGS; j++) { |
| credits += cas_rx_ringN(cp, j, budget / N_RX_COMP_RINGS); |
| if (credits >= budget) { |
| enable_intr = 0; |
| goto rx_comp; |
| } |
| } |
| } |
| |
| rx_comp: |
| /* final rx completion */ |
| spin_lock_irqsave(&cp->lock, flags); |
| if (status) |
| cas_handle_irq(dev, cp, status); |
| |
| #ifdef USE_PCI_INTB |
| if (N_RX_COMP_RINGS > 1) { |
| status = readl(cp->regs + REG_PLUS_INTRN_STATUS(1)); |
| if (status) |
| cas_handle_irq1(dev, cp, status); |
| } |
| #endif |
| |
| #ifdef USE_PCI_INTC |
| if (N_RX_COMP_RINGS > 2) { |
| status = readl(cp->regs + REG_PLUS_INTRN_STATUS(2)); |
| if (status) |
| cas_handle_irqN(dev, cp, status, 2); |
| } |
| #endif |
| |
| #ifdef USE_PCI_INTD |
| if (N_RX_COMP_RINGS > 3) { |
| status = readl(cp->regs + REG_PLUS_INTRN_STATUS(3)); |
| if (status) |
| cas_handle_irqN(dev, cp, status, 3); |
| } |
| #endif |
| spin_unlock_irqrestore(&cp->lock, flags); |
| if (enable_intr) { |
| napi_complete(napi); |
| cas_unmask_intr(cp); |
| } |
| return credits; |
| } |
| #endif |
| |
| #ifdef CONFIG_NET_POLL_CONTROLLER |
| static void cas_netpoll(struct net_device *dev) |
| { |
| struct cas *cp = netdev_priv(dev); |
| |
| cas_disable_irq(cp, 0); |
| cas_interrupt(cp->pdev->irq, dev); |
| cas_enable_irq(cp, 0); |
| |
| #ifdef USE_PCI_INTB |
| if (N_RX_COMP_RINGS > 1) { |
| /* cas_interrupt1(); */ |
| } |
| #endif |
| #ifdef USE_PCI_INTC |
| if (N_RX_COMP_RINGS > 2) { |
| /* cas_interruptN(); */ |
| } |
| #endif |
| #ifdef USE_PCI_INTD |
| if (N_RX_COMP_RINGS > 3) { |
| /* cas_interruptN(); */ |
| } |
| #endif |
| } |
| #endif |
| |
| static void cas_tx_timeout(struct net_device *dev) |
| { |
| struct cas *cp = netdev_priv(dev); |
| |
| netdev_err(dev, "transmit timed out, resetting\n"); |
| if (!cp->hw_running) { |
| netdev_err(dev, "hrm.. hw not running!\n"); |
| return; |
| } |
| |
| netdev_err(dev, "MIF_STATE[%08x]\n", |
| readl(cp->regs + REG_MIF_STATE_MACHINE)); |
| |
| netdev_err(dev, "MAC_STATE[%08x]\n", |
| readl(cp->regs + REG_MAC_STATE_MACHINE)); |
| |
| netdev_err(dev, "TX_STATE[%08x:%08x:%08x] FIFO[%08x:%08x:%08x] SM1[%08x] SM2[%08x]\n", |
| readl(cp->regs + REG_TX_CFG), |
| readl(cp->regs + REG_MAC_TX_STATUS), |
| readl(cp->regs + REG_MAC_TX_CFG), |
| readl(cp->regs + REG_TX_FIFO_PKT_CNT), |
| readl(cp->regs + REG_TX_FIFO_WRITE_PTR), |
| readl(cp->regs + REG_TX_FIFO_READ_PTR), |
| readl(cp->regs + REG_TX_SM_1), |
| readl(cp->regs + REG_TX_SM_2)); |
| |
| netdev_err(dev, "RX_STATE[%08x:%08x:%08x]\n", |
| readl(cp->regs + REG_RX_CFG), |
| readl(cp->regs + REG_MAC_RX_STATUS), |
| readl(cp->regs + REG_MAC_RX_CFG)); |
| |
| netdev_err(dev, "HP_STATE[%08x:%08x:%08x:%08x]\n", |
| readl(cp->regs + REG_HP_STATE_MACHINE), |
| readl(cp->regs + REG_HP_STATUS0), |
| readl(cp->regs + REG_HP_STATUS1), |
| readl(cp->regs + REG_HP_STATUS2)); |
| |
| #if 1 |
| atomic_inc(&cp->reset_task_pending); |
| atomic_inc(&cp->reset_task_pending_all); |
| schedule_work(&cp->reset_task); |
| #else |
| atomic_set(&cp->reset_task_pending, CAS_RESET_ALL); |
| schedule_work(&cp->reset_task); |
| #endif |
| } |
| |
| static inline int cas_intme(int ring, int entry) |
| { |
| /* Algorithm: IRQ every 1/2 of descriptors. */ |
| if (!(entry & ((TX_DESC_RINGN_SIZE(ring) >> 1) - 1))) |
| return 1; |
| return 0; |
| } |
| |
| |
| static void cas_write_txd(struct cas *cp, int ring, int entry, |
| dma_addr_t mapping, int len, u64 ctrl, int last) |
| { |
| struct cas_tx_desc *txd = cp->init_txds[ring] + entry; |
| |
| ctrl |= CAS_BASE(TX_DESC_BUFLEN, len); |
| if (cas_intme(ring, entry)) |
| ctrl |= TX_DESC_INTME; |
| if (last) |
| ctrl |= TX_DESC_EOF; |
| txd->control = cpu_to_le64(ctrl); |
| txd->buffer = cpu_to_le64(mapping); |
| } |
| |
| static inline void *tx_tiny_buf(struct cas *cp, const int ring, |
| const int entry) |
| { |
| return cp->tx_tiny_bufs[ring] + TX_TINY_BUF_LEN*entry; |
| } |
| |
| static inline dma_addr_t tx_tiny_map(struct cas *cp, const int ring, |
| const int entry, const int tentry) |
| { |
| cp->tx_tiny_use[ring][tentry].nbufs++; |
| cp->tx_tiny_use[ring][entry].used = 1; |
| return cp->tx_tiny_dvma[ring] + TX_TINY_BUF_LEN*entry; |
| } |
| |
| static inline int cas_xmit_tx_ringN(struct cas *cp, int ring, |
| struct sk_buff *skb) |
| { |
| struct net_device *dev = cp->dev; |
| int entry, nr_frags, frag, tabort, tentry; |
| dma_addr_t mapping; |
| unsigned long flags; |
| u64 ctrl; |
| u32 len; |
| |
| spin_lock_irqsave(&cp->tx_lock[ring], flags); |
| |
| /* This is a hard error, log it. */ |
| if (TX_BUFFS_AVAIL(cp, ring) <= |
| CAS_TABORT(cp)*(skb_shinfo(skb)->nr_frags + 1)) { |
| netif_stop_queue(dev); |
| spin_unlock_irqrestore(&cp->tx_lock[ring], flags); |
| netdev_err(dev, "BUG! Tx Ring full when queue awake!\n"); |
| return 1; |
| } |
| |
| ctrl = 0; |
| if (skb->ip_summed == CHECKSUM_PARTIAL) { |
| const u64 csum_start_off = skb_transport_offset(skb); |
| const u64 csum_stuff_off = csum_start_off + skb->csum_offset; |
| |
| ctrl = TX_DESC_CSUM_EN | |
| CAS_BASE(TX_DESC_CSUM_START, csum_start_off) | |
| CAS_BASE(TX_DESC_CSUM_STUFF, csum_stuff_off); |
| } |
| |
| entry = cp->tx_new[ring]; |
| cp->tx_skbs[ring][entry] = skb; |
| |
| nr_frags = skb_shinfo(skb)->nr_frags; |
| len = skb_headlen(skb); |
| mapping = pci_map_page(cp->pdev, virt_to_page(skb->data), |
| offset_in_page(skb->data), len, |
| PCI_DMA_TODEVICE); |
| |
| tentry = entry; |
| tabort = cas_calc_tabort(cp, (unsigned long) skb->data, len); |
| if (unlikely(tabort)) { |
| /* NOTE: len is always > tabort */ |
| cas_write_txd(cp, ring, entry, mapping, len - tabort, |
| ctrl | TX_DESC_SOF, 0); |
| entry = TX_DESC_NEXT(ring, entry); |
| |
| skb_copy_from_linear_data_offset(skb, len - tabort, |
| tx_tiny_buf(cp, ring, entry), tabort); |
| mapping = tx_tiny_map(cp, ring, entry, tentry); |
| cas_write_txd(cp, ring, entry, mapping, tabort, ctrl, |
| (nr_frags == 0)); |
| } else { |
| cas_write_txd(cp, ring, entry, mapping, len, ctrl | |
| TX_DESC_SOF, (nr_frags == 0)); |
| } |
| entry = TX_DESC_NEXT(ring, entry); |
| |
| for (frag = 0; frag < nr_frags; frag++) { |
| skb_frag_t *fragp = &skb_shinfo(skb)->frags[frag]; |
| |
| len = fragp->size; |
| mapping = pci_map_page(cp->pdev, fragp->page, |
| fragp->page_offset, len, |
| PCI_DMA_TODEVICE); |
| |
| tabort = cas_calc_tabort(cp, fragp->page_offset, len); |
| if (unlikely(tabort)) { |
| void *addr; |
| |
| /* NOTE: len is always > tabort */ |
| cas_write_txd(cp, ring, entry, mapping, len - tabort, |
| ctrl, 0); |
| entry = TX_DESC_NEXT(ring, entry); |
| |
| addr = cas_page_map(fragp->page); |
| memcpy(tx_tiny_buf(cp, ring, entry), |
| addr + fragp->page_offset + len - tabort, |
| tabort); |
| cas_page_unmap(addr); |
| mapping = tx_tiny_map(cp, ring, entry, tentry); |
| len = tabort; |
| } |
| |
| cas_write_txd(cp, ring, entry, mapping, len, ctrl, |
| (frag + 1 == nr_frags)); |
| entry = TX_DESC_NEXT(ring, entry); |
| } |
| |
| cp->tx_new[ring] = entry; |
| if (TX_BUFFS_AVAIL(cp, ring) <= CAS_TABORT(cp)*(MAX_SKB_FRAGS + 1)) |
| netif_stop_queue(dev); |
| |
| netif_printk(cp, tx_queued, KERN_DEBUG, dev, |
| "tx[%d] queued, slot %d, skblen %d, avail %d\n", |
| ring, entry, skb->len, TX_BUFFS_AVAIL(cp, ring)); |
| writel(entry, cp->regs + REG_TX_KICKN(ring)); |
| spin_unlock_irqrestore(&cp->tx_lock[ring], flags); |
| return 0; |
| } |
| |
| static netdev_tx_t cas_start_xmit(struct sk_buff *skb, struct net_device *dev) |
| { |
| struct cas *cp = netdev_priv(dev); |
| |
| /* this is only used as a load-balancing hint, so it doesn't |
| * need to be SMP safe |
| */ |
| static int ring; |
| |
| if (skb_padto(skb, cp->min_frame_size)) |
| return NETDEV_TX_OK; |
| |
| /* XXX: we need some higher-level QoS hooks to steer packets to |
| * individual queues. |
| */ |
| if (cas_xmit_tx_ringN(cp, ring++ & N_TX_RINGS_MASK, skb)) |
| return NETDEV_TX_BUSY; |
| return NETDEV_TX_OK; |
| } |
| |
| static void cas_init_tx_dma(struct cas *cp) |
| { |
| u64 desc_dma = cp->block_dvma; |
| unsigned long off; |
| u32 val; |
| int i; |
| |
| /* set up tx completion writeback registers. must be 8-byte aligned */ |
| #ifdef USE_TX_COMPWB |
| off = offsetof(struct cas_init_block, tx_compwb); |
| writel((desc_dma + off) >> 32, cp->regs + REG_TX_COMPWB_DB_HI); |
| writel((desc_dma + off) & 0xffffffff, cp->regs + REG_TX_COMPWB_DB_LOW); |
| #endif |
| |
| /* enable completion writebacks, enable paced mode, |
| * disable read pipe, and disable pre-interrupt compwbs |
| */ |
| val = TX_CFG_COMPWB_Q1 | TX_CFG_COMPWB_Q2 | |
| TX_CFG_COMPWB_Q3 | TX_CFG_COMPWB_Q4 | |
| TX_CFG_DMA_RDPIPE_DIS | TX_CFG_PACED_MODE | |
| TX_CFG_INTR_COMPWB_DIS; |
| |
| /* write out tx ring info and tx desc bases */ |
| for (i = 0; i < MAX_TX_RINGS; i++) { |
| off = (unsigned long) cp->init_txds[i] - |
| (unsigned long) cp->init_block; |
| |
| val |= CAS_TX_RINGN_BASE(i); |
| writel((desc_dma + off) >> 32, cp->regs + REG_TX_DBN_HI(i)); |
| writel((desc_dma + off) & 0xffffffff, cp->regs + |
| REG_TX_DBN_LOW(i)); |
| /* don't zero out the kick register here as the system |
| * will wedge |
| */ |
| } |
| writel(val, cp->regs + REG_TX_CFG); |
| |
| /* program max burst sizes. these numbers should be different |
| * if doing QoS. |
| */ |
| #ifdef USE_QOS |
| writel(0x800, cp->regs + REG_TX_MAXBURST_0); |
| writel(0x1600, cp->regs + REG_TX_MAXBURST_1); |
| writel(0x2400, cp->regs + REG_TX_MAXBURST_2); |
| writel(0x4800, cp->regs + REG_TX_MAXBURST_3); |
| #else |
| writel(0x800, cp->regs + REG_TX_MAXBURST_0); |
| writel(0x800, cp->regs + REG_TX_MAXBURST_1); |
| writel(0x800, cp->regs + REG_TX_MAXBURST_2); |
| writel(0x800, cp->regs + REG_TX_MAXBURST_3); |
| #endif |
| } |
| |
| /* Must be invoked under cp->lock. */ |
| static inline void cas_init_dma(struct cas *cp) |
| { |
| cas_init_tx_dma(cp); |
| cas_init_rx_dma(cp); |
| } |
| |
| static void cas_process_mc_list(struct cas *cp) |
| { |
| u16 hash_table[16]; |
| u32 crc; |
| struct netdev_hw_addr *ha; |
| int i = 1; |
| |
| memset(hash_table, 0, sizeof(hash_table)); |
| netdev_for_each_mc_addr(ha, cp->dev) { |
| if (i <= CAS_MC_EXACT_MATCH_SIZE) { |
| /* use the alternate mac address registers for the |
| * first 15 multicast addresses |
| */ |
| writel((ha->addr[4] << 8) | ha->addr[5], |
| cp->regs + REG_MAC_ADDRN(i*3 + 0)); |
| writel((ha->addr[2] << 8) | ha->addr[3], |
| cp->regs + REG_MAC_ADDRN(i*3 + 1)); |
| writel((ha->addr[0] << 8) | ha->addr[1], |
| cp->regs + REG_MAC_ADDRN(i*3 + 2)); |
| i++; |
| } |
| else { |
| /* use hw hash table for the next series of |
| * multicast addresses |
| */ |
| crc = ether_crc_le(ETH_ALEN, ha->addr); |
| crc >>= 24; |
| hash_table[crc >> 4] |= 1 << (15 - (crc & 0xf)); |
| } |
| } |
| for (i = 0; i < 16; i++) |
| writel(hash_table[i], cp->regs + REG_MAC_HASH_TABLEN(i)); |
| } |
| |
| /* Must be invoked under cp->lock. */ |
| static u32 cas_setup_multicast(struct cas *cp) |
| { |
| u32 rxcfg = 0; |
| int i; |
| |
| if (cp->dev->flags & IFF_PROMISC) { |
| rxcfg |= MAC_RX_CFG_PROMISC_EN; |
| |
| } else if (cp->dev->flags & IFF_ALLMULTI) { |
| for (i=0; i < 16; i++) |
| writel(0xFFFF, cp->regs + REG_MAC_HASH_TABLEN(i)); |
| rxcfg |= MAC_RX_CFG_HASH_FILTER_EN; |
| |
| } else { |
| cas_process_mc_list(cp); |
| rxcfg |= MAC_RX_CFG_HASH_FILTER_EN; |
| } |
| |
|