|  | /* | 
|  | * rtc-ab-b5ze-s3 - Driver for Abracon AB-RTCMC-32.768Khz-B5ZE-S3 | 
|  | *                  I2C RTC / Alarm chip | 
|  | * | 
|  | * Copyright (C) 2014, Arnaud EBALARD <arno@natisbad.org> | 
|  | * | 
|  | * Detailed datasheet of the chip is available here: | 
|  | * | 
|  | *  http://www.abracon.com/realtimeclock/AB-RTCMC-32.768kHz-B5ZE-S3-Application-Manual.pdf | 
|  | * | 
|  | * This work is based on ISL12057 driver (drivers/rtc/rtc-isl12057.c). | 
|  | * | 
|  | * This program is free software; you can redistribute it and/or modify | 
|  | * it under the terms of the GNU General Public License as published by | 
|  | * the Free Software Foundation; either version 2 of the License, or | 
|  | * (at your option) any later version. | 
|  | * | 
|  | * This program is distributed in the hope that it will be useful, | 
|  | * but WITHOUT ANY WARRANTY; without even the implied warranty of | 
|  | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the | 
|  | * GNU General Public License for more details. | 
|  | */ | 
|  |  | 
|  | #include <linux/module.h> | 
|  | #include <linux/mutex.h> | 
|  | #include <linux/rtc.h> | 
|  | #include <linux/i2c.h> | 
|  | #include <linux/bcd.h> | 
|  | #include <linux/of.h> | 
|  | #include <linux/regmap.h> | 
|  | #include <linux/interrupt.h> | 
|  |  | 
|  | #define DRV_NAME "rtc-ab-b5ze-s3" | 
|  |  | 
|  | /* Control section */ | 
|  | #define ABB5ZES3_REG_CTRL1	   0x00	   /* Control 1 register */ | 
|  | #define ABB5ZES3_REG_CTRL1_CIE	   BIT(0)  /* Pulse interrupt enable */ | 
|  | #define ABB5ZES3_REG_CTRL1_AIE	   BIT(1)  /* Alarm interrupt enable */ | 
|  | #define ABB5ZES3_REG_CTRL1_SIE	   BIT(2)  /* Second interrupt enable */ | 
|  | #define ABB5ZES3_REG_CTRL1_PM	   BIT(3)  /* 24h/12h mode */ | 
|  | #define ABB5ZES3_REG_CTRL1_SR	   BIT(4)  /* Software reset */ | 
|  | #define ABB5ZES3_REG_CTRL1_STOP	   BIT(5)  /* RTC circuit enable */ | 
|  | #define ABB5ZES3_REG_CTRL1_CAP	   BIT(7) | 
|  |  | 
|  | #define ABB5ZES3_REG_CTRL2	   0x01	   /* Control 2 register */ | 
|  | #define ABB5ZES3_REG_CTRL2_CTBIE   BIT(0)  /* Countdown timer B int. enable */ | 
|  | #define ABB5ZES3_REG_CTRL2_CTAIE   BIT(1)  /* Countdown timer A int. enable */ | 
|  | #define ABB5ZES3_REG_CTRL2_WTAIE   BIT(2)  /* Watchdog timer A int. enable */ | 
|  | #define ABB5ZES3_REG_CTRL2_AF	   BIT(3)  /* Alarm interrupt status */ | 
|  | #define ABB5ZES3_REG_CTRL2_SF	   BIT(4)  /* Second interrupt status */ | 
|  | #define ABB5ZES3_REG_CTRL2_CTBF	   BIT(5)  /* Countdown timer B int. status */ | 
|  | #define ABB5ZES3_REG_CTRL2_CTAF	   BIT(6)  /* Countdown timer A int. status */ | 
|  | #define ABB5ZES3_REG_CTRL2_WTAF	   BIT(7)  /* Watchdog timer A int. status */ | 
|  |  | 
|  | #define ABB5ZES3_REG_CTRL3	   0x02	   /* Control 3 register */ | 
|  | #define ABB5ZES3_REG_CTRL3_PM2	   BIT(7)  /* Power Management bit 2 */ | 
|  | #define ABB5ZES3_REG_CTRL3_PM1	   BIT(6)  /* Power Management bit 1 */ | 
|  | #define ABB5ZES3_REG_CTRL3_PM0	   BIT(5)  /* Power Management bit 0 */ | 
|  | #define ABB5ZES3_REG_CTRL3_BSF	   BIT(3)  /* Battery switchover int. status */ | 
|  | #define ABB5ZES3_REG_CTRL3_BLF	   BIT(2)  /* Battery low int. status */ | 
|  | #define ABB5ZES3_REG_CTRL3_BSIE	   BIT(1)  /* Battery switchover int. enable */ | 
|  | #define ABB5ZES3_REG_CTRL3_BLIE	   BIT(0)  /* Battery low int. enable */ | 
|  |  | 
|  | #define ABB5ZES3_CTRL_SEC_LEN	   3 | 
|  |  | 
|  | /* RTC section */ | 
|  | #define ABB5ZES3_REG_RTC_SC	   0x03	   /* RTC Seconds register */ | 
|  | #define ABB5ZES3_REG_RTC_SC_OSC	   BIT(7)  /* Clock integrity status */ | 
|  | #define ABB5ZES3_REG_RTC_MN	   0x04	   /* RTC Minutes register */ | 
|  | #define ABB5ZES3_REG_RTC_HR	   0x05	   /* RTC Hours register */ | 
|  | #define ABB5ZES3_REG_RTC_HR_PM	   BIT(5)  /* RTC Hours PM bit */ | 
|  | #define ABB5ZES3_REG_RTC_DT	   0x06	   /* RTC Date register */ | 
|  | #define ABB5ZES3_REG_RTC_DW	   0x07	   /* RTC Day of the week register */ | 
|  | #define ABB5ZES3_REG_RTC_MO	   0x08	   /* RTC Month register */ | 
|  | #define ABB5ZES3_REG_RTC_YR	   0x09	   /* RTC Year register */ | 
|  |  | 
|  | #define ABB5ZES3_RTC_SEC_LEN	   7 | 
|  |  | 
|  | /* Alarm section (enable bits are all active low) */ | 
|  | #define ABB5ZES3_REG_ALRM_MN	   0x0A	   /* Alarm - minute register */ | 
|  | #define ABB5ZES3_REG_ALRM_MN_AE	   BIT(7)  /* Minute enable */ | 
|  | #define ABB5ZES3_REG_ALRM_HR	   0x0B	   /* Alarm - hours register */ | 
|  | #define ABB5ZES3_REG_ALRM_HR_AE	   BIT(7)  /* Hour enable */ | 
|  | #define ABB5ZES3_REG_ALRM_DT	   0x0C	   /* Alarm - date register */ | 
|  | #define ABB5ZES3_REG_ALRM_DT_AE	   BIT(7)  /* Date (day of the month) enable */ | 
|  | #define ABB5ZES3_REG_ALRM_DW	   0x0D	   /* Alarm - day of the week reg. */ | 
|  | #define ABB5ZES3_REG_ALRM_DW_AE	   BIT(7)  /* Day of the week enable */ | 
|  |  | 
|  | #define ABB5ZES3_ALRM_SEC_LEN	   4 | 
|  |  | 
|  | /* Frequency offset section */ | 
|  | #define ABB5ZES3_REG_FREQ_OF	   0x0E	   /* Frequency offset register */ | 
|  | #define ABB5ZES3_REG_FREQ_OF_MODE  0x0E	   /* Offset mode: 2 hours / minute */ | 
|  |  | 
|  | /* CLOCKOUT section */ | 
|  | #define ABB5ZES3_REG_TIM_CLK	   0x0F	   /* Timer & Clockout register */ | 
|  | #define ABB5ZES3_REG_TIM_CLK_TAM   BIT(7)  /* Permanent/pulsed timer A/int. 2 */ | 
|  | #define ABB5ZES3_REG_TIM_CLK_TBM   BIT(6)  /* Permanent/pulsed timer B */ | 
|  | #define ABB5ZES3_REG_TIM_CLK_COF2  BIT(5)  /* Clkout Freq bit 2 */ | 
|  | #define ABB5ZES3_REG_TIM_CLK_COF1  BIT(4)  /* Clkout Freq bit 1 */ | 
|  | #define ABB5ZES3_REG_TIM_CLK_COF0  BIT(3)  /* Clkout Freq bit 0 */ | 
|  | #define ABB5ZES3_REG_TIM_CLK_TAC1  BIT(2)  /* Timer A: - 01 : countdown */ | 
|  | #define ABB5ZES3_REG_TIM_CLK_TAC0  BIT(1)  /*	       - 10 : timer	*/ | 
|  | #define ABB5ZES3_REG_TIM_CLK_TBC   BIT(0)  /* Timer B enable */ | 
|  |  | 
|  | /* Timer A Section */ | 
|  | #define ABB5ZES3_REG_TIMA_CLK	   0x10	   /* Timer A clock register */ | 
|  | #define ABB5ZES3_REG_TIMA_CLK_TAQ2 BIT(2)  /* Freq bit 2 */ | 
|  | #define ABB5ZES3_REG_TIMA_CLK_TAQ1 BIT(1)  /* Freq bit 1 */ | 
|  | #define ABB5ZES3_REG_TIMA_CLK_TAQ0 BIT(0)  /* Freq bit 0 */ | 
|  | #define ABB5ZES3_REG_TIMA	   0x11	   /* Timer A register */ | 
|  |  | 
|  | #define ABB5ZES3_TIMA_SEC_LEN	   2 | 
|  |  | 
|  | /* Timer B Section */ | 
|  | #define ABB5ZES3_REG_TIMB_CLK	   0x12	   /* Timer B clock register */ | 
|  | #define ABB5ZES3_REG_TIMB_CLK_TBW2 BIT(6) | 
|  | #define ABB5ZES3_REG_TIMB_CLK_TBW1 BIT(5) | 
|  | #define ABB5ZES3_REG_TIMB_CLK_TBW0 BIT(4) | 
|  | #define ABB5ZES3_REG_TIMB_CLK_TAQ2 BIT(2) | 
|  | #define ABB5ZES3_REG_TIMB_CLK_TAQ1 BIT(1) | 
|  | #define ABB5ZES3_REG_TIMB_CLK_TAQ0 BIT(0) | 
|  | #define ABB5ZES3_REG_TIMB	   0x13	   /* Timer B register */ | 
|  | #define ABB5ZES3_TIMB_SEC_LEN	   2 | 
|  |  | 
|  | #define ABB5ZES3_MEM_MAP_LEN	   0x14 | 
|  |  | 
|  | struct abb5zes3_rtc_data { | 
|  | struct rtc_device *rtc; | 
|  | struct regmap *regmap; | 
|  | struct mutex lock; | 
|  |  | 
|  | int irq; | 
|  |  | 
|  | bool battery_low; | 
|  | bool timer_alarm; /* current alarm is via timer A */ | 
|  | }; | 
|  |  | 
|  | /* | 
|  | * Try and match register bits w/ fixed null values to see whether we | 
|  | * are dealing with an ABB5ZES3. Note: this function is called early | 
|  | * during init and hence does need mutex protection. | 
|  | */ | 
|  | static int abb5zes3_i2c_validate_chip(struct regmap *regmap) | 
|  | { | 
|  | u8 regs[ABB5ZES3_MEM_MAP_LEN]; | 
|  | static const u8 mask[ABB5ZES3_MEM_MAP_LEN] = { 0x00, 0x00, 0x10, 0x00, | 
|  | 0x80, 0xc0, 0xc0, 0xf8, | 
|  | 0xe0, 0x00, 0x00, 0x40, | 
|  | 0x40, 0x78, 0x00, 0x00, | 
|  | 0xf8, 0x00, 0x88, 0x00 }; | 
|  | int ret, i; | 
|  |  | 
|  | ret = regmap_bulk_read(regmap, 0, regs, ABB5ZES3_MEM_MAP_LEN); | 
|  | if (ret) | 
|  | return ret; | 
|  |  | 
|  | for (i = 0; i < ABB5ZES3_MEM_MAP_LEN; ++i) { | 
|  | if (regs[i] & mask[i]) /* check if bits are cleared */ | 
|  | return -ENODEV; | 
|  | } | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* Clear alarm status bit. */ | 
|  | static int _abb5zes3_rtc_clear_alarm(struct device *dev) | 
|  | { | 
|  | struct abb5zes3_rtc_data *data = dev_get_drvdata(dev); | 
|  | int ret; | 
|  |  | 
|  | ret = regmap_update_bits(data->regmap, ABB5ZES3_REG_CTRL2, | 
|  | ABB5ZES3_REG_CTRL2_AF, 0); | 
|  | if (ret) | 
|  | dev_err(dev, "%s: clearing alarm failed (%d)\n", __func__, ret); | 
|  |  | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | /* Enable or disable alarm (i.e. alarm interrupt generation) */ | 
|  | static int _abb5zes3_rtc_update_alarm(struct device *dev, bool enable) | 
|  | { | 
|  | struct abb5zes3_rtc_data *data = dev_get_drvdata(dev); | 
|  | int ret; | 
|  |  | 
|  | ret = regmap_update_bits(data->regmap, ABB5ZES3_REG_CTRL1, | 
|  | ABB5ZES3_REG_CTRL1_AIE, | 
|  | enable ? ABB5ZES3_REG_CTRL1_AIE : 0); | 
|  | if (ret) | 
|  | dev_err(dev, "%s: writing alarm INT failed (%d)\n", | 
|  | __func__, ret); | 
|  |  | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | /* Enable or disable timer (watchdog timer A interrupt generation) */ | 
|  | static int _abb5zes3_rtc_update_timer(struct device *dev, bool enable) | 
|  | { | 
|  | struct abb5zes3_rtc_data *data = dev_get_drvdata(dev); | 
|  | int ret; | 
|  |  | 
|  | ret = regmap_update_bits(data->regmap, ABB5ZES3_REG_CTRL2, | 
|  | ABB5ZES3_REG_CTRL2_WTAIE, | 
|  | enable ? ABB5ZES3_REG_CTRL2_WTAIE : 0); | 
|  | if (ret) | 
|  | dev_err(dev, "%s: writing timer INT failed (%d)\n", | 
|  | __func__, ret); | 
|  |  | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Note: we only read, so regmap inner lock protection is sufficient, i.e. | 
|  | * we do not need driver's main lock protection. | 
|  | */ | 
|  | static int _abb5zes3_rtc_read_time(struct device *dev, struct rtc_time *tm) | 
|  | { | 
|  | struct abb5zes3_rtc_data *data = dev_get_drvdata(dev); | 
|  | u8 regs[ABB5ZES3_REG_RTC_SC + ABB5ZES3_RTC_SEC_LEN]; | 
|  | int ret; | 
|  |  | 
|  | /* | 
|  | * As we need to read CTRL1 register anyway to access 24/12h | 
|  | * mode bit, we do a single bulk read of both control and RTC | 
|  | * sections (they are consecutive). This also ease indexing | 
|  | * of register values after bulk read. | 
|  | */ | 
|  | ret = regmap_bulk_read(data->regmap, ABB5ZES3_REG_CTRL1, regs, | 
|  | sizeof(regs)); | 
|  | if (ret) { | 
|  | dev_err(dev, "%s: reading RTC time failed (%d)\n", | 
|  | __func__, ret); | 
|  | goto err; | 
|  | } | 
|  |  | 
|  | /* If clock integrity is not guaranteed, do not return a time value */ | 
|  | if (regs[ABB5ZES3_REG_RTC_SC] & ABB5ZES3_REG_RTC_SC_OSC) { | 
|  | ret = -ENODATA; | 
|  | goto err; | 
|  | } | 
|  |  | 
|  | tm->tm_sec = bcd2bin(regs[ABB5ZES3_REG_RTC_SC] & 0x7F); | 
|  | tm->tm_min = bcd2bin(regs[ABB5ZES3_REG_RTC_MN]); | 
|  |  | 
|  | if (regs[ABB5ZES3_REG_CTRL1] & ABB5ZES3_REG_CTRL1_PM) { /* 12hr mode */ | 
|  | tm->tm_hour = bcd2bin(regs[ABB5ZES3_REG_RTC_HR] & 0x1f); | 
|  | if (regs[ABB5ZES3_REG_RTC_HR] & ABB5ZES3_REG_RTC_HR_PM) /* PM */ | 
|  | tm->tm_hour += 12; | 
|  | } else {						/* 24hr mode */ | 
|  | tm->tm_hour = bcd2bin(regs[ABB5ZES3_REG_RTC_HR]); | 
|  | } | 
|  |  | 
|  | tm->tm_mday = bcd2bin(regs[ABB5ZES3_REG_RTC_DT]); | 
|  | tm->tm_wday = bcd2bin(regs[ABB5ZES3_REG_RTC_DW]); | 
|  | tm->tm_mon  = bcd2bin(regs[ABB5ZES3_REG_RTC_MO]) - 1; /* starts at 1 */ | 
|  | tm->tm_year = bcd2bin(regs[ABB5ZES3_REG_RTC_YR]) + 100; | 
|  |  | 
|  | ret = rtc_valid_tm(tm); | 
|  |  | 
|  | err: | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | static int abb5zes3_rtc_set_time(struct device *dev, struct rtc_time *tm) | 
|  | { | 
|  | struct abb5zes3_rtc_data *data = dev_get_drvdata(dev); | 
|  | u8 regs[ABB5ZES3_REG_RTC_SC + ABB5ZES3_RTC_SEC_LEN]; | 
|  | int ret; | 
|  |  | 
|  | /* | 
|  | * Year register is 8-bit wide and bcd-coded, i.e records values | 
|  | * between 0 and 99. tm_year is an offset from 1900 and we are | 
|  | * interested in the 2000-2099 range, so any value less than 100 | 
|  | * is invalid. | 
|  | */ | 
|  | if (tm->tm_year < 100) | 
|  | return -EINVAL; | 
|  |  | 
|  | regs[ABB5ZES3_REG_RTC_SC] = bin2bcd(tm->tm_sec); /* MSB=0 clears OSC */ | 
|  | regs[ABB5ZES3_REG_RTC_MN] = bin2bcd(tm->tm_min); | 
|  | regs[ABB5ZES3_REG_RTC_HR] = bin2bcd(tm->tm_hour); /* 24-hour format */ | 
|  | regs[ABB5ZES3_REG_RTC_DT] = bin2bcd(tm->tm_mday); | 
|  | regs[ABB5ZES3_REG_RTC_DW] = bin2bcd(tm->tm_wday); | 
|  | regs[ABB5ZES3_REG_RTC_MO] = bin2bcd(tm->tm_mon + 1); | 
|  | regs[ABB5ZES3_REG_RTC_YR] = bin2bcd(tm->tm_year - 100); | 
|  |  | 
|  | mutex_lock(&data->lock); | 
|  | ret = regmap_bulk_write(data->regmap, ABB5ZES3_REG_RTC_SC, | 
|  | regs + ABB5ZES3_REG_RTC_SC, | 
|  | ABB5ZES3_RTC_SEC_LEN); | 
|  | mutex_unlock(&data->lock); | 
|  |  | 
|  |  | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Set provided TAQ and Timer A registers (TIMA_CLK and TIMA) based on | 
|  | * given number of seconds. | 
|  | */ | 
|  | static inline void sec_to_timer_a(u8 secs, u8 *taq, u8 *timer_a) | 
|  | { | 
|  | *taq = ABB5ZES3_REG_TIMA_CLK_TAQ1; /* 1Hz */ | 
|  | *timer_a = secs; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Return current number of seconds in Timer A. As we only use | 
|  | * timer A with a 1Hz freq, this is what we expect to have. | 
|  | */ | 
|  | static inline int sec_from_timer_a(u8 *secs, u8 taq, u8 timer_a) | 
|  | { | 
|  | if (taq != ABB5ZES3_REG_TIMA_CLK_TAQ1) /* 1Hz */ | 
|  | return -EINVAL; | 
|  |  | 
|  | *secs = timer_a; | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Read alarm currently configured via a watchdog timer using timer A. This | 
|  | * is done by reading current RTC time and adding remaining timer time. | 
|  | */ | 
|  | static int _abb5zes3_rtc_read_timer(struct device *dev, | 
|  | struct rtc_wkalrm *alarm) | 
|  | { | 
|  | struct abb5zes3_rtc_data *data = dev_get_drvdata(dev); | 
|  | struct rtc_time rtc_tm, *alarm_tm = &alarm->time; | 
|  | u8 regs[ABB5ZES3_TIMA_SEC_LEN + 1]; | 
|  | unsigned long rtc_secs; | 
|  | unsigned int reg; | 
|  | u8 timer_secs; | 
|  | int ret; | 
|  |  | 
|  | /* | 
|  | * Instead of doing two separate calls, because they are consecutive, | 
|  | * we grab both clockout register and Timer A section. The latter is | 
|  | * used to decide if timer A is enabled (as a watchdog timer). | 
|  | */ | 
|  | ret = regmap_bulk_read(data->regmap, ABB5ZES3_REG_TIM_CLK, regs, | 
|  | ABB5ZES3_TIMA_SEC_LEN + 1); | 
|  | if (ret) { | 
|  | dev_err(dev, "%s: reading Timer A section failed (%d)\n", | 
|  | __func__, ret); | 
|  | goto err; | 
|  | } | 
|  |  | 
|  | /* get current time ... */ | 
|  | ret = _abb5zes3_rtc_read_time(dev, &rtc_tm); | 
|  | if (ret) | 
|  | goto err; | 
|  |  | 
|  | /* ... convert to seconds ... */ | 
|  | ret = rtc_tm_to_time(&rtc_tm, &rtc_secs); | 
|  | if (ret) | 
|  | goto err; | 
|  |  | 
|  | /* ... add remaining timer A time ... */ | 
|  | ret = sec_from_timer_a(&timer_secs, regs[1], regs[2]); | 
|  | if (ret) | 
|  | goto err; | 
|  |  | 
|  | /* ... and convert back. */ | 
|  | rtc_time_to_tm(rtc_secs + timer_secs, alarm_tm); | 
|  |  | 
|  | ret = regmap_read(data->regmap, ABB5ZES3_REG_CTRL2, ®); | 
|  | if (ret) { | 
|  | dev_err(dev, "%s: reading ctrl reg failed (%d)\n", | 
|  | __func__, ret); | 
|  | goto err; | 
|  | } | 
|  |  | 
|  | alarm->enabled = !!(reg & ABB5ZES3_REG_CTRL2_WTAIE); | 
|  |  | 
|  | err: | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | /* Read alarm currently configured via a RTC alarm registers. */ | 
|  | static int _abb5zes3_rtc_read_alarm(struct device *dev, | 
|  | struct rtc_wkalrm *alarm) | 
|  | { | 
|  | struct abb5zes3_rtc_data *data = dev_get_drvdata(dev); | 
|  | struct rtc_time rtc_tm, *alarm_tm = &alarm->time; | 
|  | unsigned long rtc_secs, alarm_secs; | 
|  | u8 regs[ABB5ZES3_ALRM_SEC_LEN]; | 
|  | unsigned int reg; | 
|  | int ret; | 
|  |  | 
|  | ret = regmap_bulk_read(data->regmap, ABB5ZES3_REG_ALRM_MN, regs, | 
|  | ABB5ZES3_ALRM_SEC_LEN); | 
|  | if (ret) { | 
|  | dev_err(dev, "%s: reading alarm section failed (%d)\n", | 
|  | __func__, ret); | 
|  | goto err; | 
|  | } | 
|  |  | 
|  | alarm_tm->tm_sec  = 0; | 
|  | alarm_tm->tm_min  = bcd2bin(regs[0] & 0x7f); | 
|  | alarm_tm->tm_hour = bcd2bin(regs[1] & 0x3f); | 
|  | alarm_tm->tm_mday = bcd2bin(regs[2] & 0x3f); | 
|  | alarm_tm->tm_wday = -1; | 
|  |  | 
|  | /* | 
|  | * The alarm section does not store year/month. We use the ones in rtc | 
|  | * section as a basis and increment month and then year if needed to get | 
|  | * alarm after current time. | 
|  | */ | 
|  | ret = _abb5zes3_rtc_read_time(dev, &rtc_tm); | 
|  | if (ret) | 
|  | goto err; | 
|  |  | 
|  | alarm_tm->tm_year = rtc_tm.tm_year; | 
|  | alarm_tm->tm_mon = rtc_tm.tm_mon; | 
|  |  | 
|  | ret = rtc_tm_to_time(&rtc_tm, &rtc_secs); | 
|  | if (ret) | 
|  | goto err; | 
|  |  | 
|  | ret = rtc_tm_to_time(alarm_tm, &alarm_secs); | 
|  | if (ret) | 
|  | goto err; | 
|  |  | 
|  | if (alarm_secs < rtc_secs) { | 
|  | if (alarm_tm->tm_mon == 11) { | 
|  | alarm_tm->tm_mon = 0; | 
|  | alarm_tm->tm_year += 1; | 
|  | } else { | 
|  | alarm_tm->tm_mon += 1; | 
|  | } | 
|  | } | 
|  |  | 
|  | ret = regmap_read(data->regmap, ABB5ZES3_REG_CTRL1, ®); | 
|  | if (ret) { | 
|  | dev_err(dev, "%s: reading ctrl reg failed (%d)\n", | 
|  | __func__, ret); | 
|  | goto err; | 
|  | } | 
|  |  | 
|  | alarm->enabled = !!(reg & ABB5ZES3_REG_CTRL1_AIE); | 
|  |  | 
|  | err: | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * As the Alarm mechanism supported by the chip is only accurate to the | 
|  | * minute, we use the watchdog timer mechanism provided by timer A | 
|  | * (up to 256 seconds w/ a second accuracy) for low alarm values (below | 
|  | * 4 minutes). Otherwise, we use the common alarm mechanism provided | 
|  | * by the chip. In order for that to work, we keep track of currently | 
|  | * configured timer type via 'timer_alarm' flag in our private data | 
|  | * structure. | 
|  | */ | 
|  | static int abb5zes3_rtc_read_alarm(struct device *dev, struct rtc_wkalrm *alarm) | 
|  | { | 
|  | struct abb5zes3_rtc_data *data = dev_get_drvdata(dev); | 
|  | int ret; | 
|  |  | 
|  | mutex_lock(&data->lock); | 
|  | if (data->timer_alarm) | 
|  | ret = _abb5zes3_rtc_read_timer(dev, alarm); | 
|  | else | 
|  | ret = _abb5zes3_rtc_read_alarm(dev, alarm); | 
|  | mutex_unlock(&data->lock); | 
|  |  | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Set alarm using chip alarm mechanism. It is only accurate to the | 
|  | * minute (not the second). The function expects alarm interrupt to | 
|  | * be disabled. | 
|  | */ | 
|  | static int _abb5zes3_rtc_set_alarm(struct device *dev, struct rtc_wkalrm *alarm) | 
|  | { | 
|  | struct abb5zes3_rtc_data *data = dev_get_drvdata(dev); | 
|  | struct rtc_time *alarm_tm = &alarm->time; | 
|  | unsigned long rtc_secs, alarm_secs; | 
|  | u8 regs[ABB5ZES3_ALRM_SEC_LEN]; | 
|  | struct rtc_time rtc_tm; | 
|  | int ret, enable = 1; | 
|  |  | 
|  | ret = _abb5zes3_rtc_read_time(dev, &rtc_tm); | 
|  | if (ret) | 
|  | goto err; | 
|  |  | 
|  | ret = rtc_tm_to_time(&rtc_tm, &rtc_secs); | 
|  | if (ret) | 
|  | goto err; | 
|  |  | 
|  | ret = rtc_tm_to_time(alarm_tm, &alarm_secs); | 
|  | if (ret) | 
|  | goto err; | 
|  |  | 
|  | /* If alarm time is before current time, disable the alarm */ | 
|  | if (!alarm->enabled || alarm_secs <= rtc_secs) { | 
|  | enable = 0; | 
|  | } else { | 
|  | /* | 
|  | * Chip only support alarms up to one month in the future. Let's | 
|  | * return an error if we get something after that limit. | 
|  | * Comparison is done by incrementing rtc_tm month field by one | 
|  | * and checking alarm value is still below. | 
|  | */ | 
|  | if (rtc_tm.tm_mon == 11) { /* handle year wrapping */ | 
|  | rtc_tm.tm_mon = 0; | 
|  | rtc_tm.tm_year += 1; | 
|  | } else { | 
|  | rtc_tm.tm_mon += 1; | 
|  | } | 
|  |  | 
|  | ret = rtc_tm_to_time(&rtc_tm, &rtc_secs); | 
|  | if (ret) | 
|  | goto err; | 
|  |  | 
|  | if (alarm_secs > rtc_secs) { | 
|  | dev_err(dev, "%s: alarm maximum is one month in the " | 
|  | "future (%d)\n", __func__, ret); | 
|  | ret = -EINVAL; | 
|  | goto err; | 
|  | } | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Program all alarm registers but DW one. For each register, setting | 
|  | * MSB to 0 enables associated alarm. | 
|  | */ | 
|  | regs[0] = bin2bcd(alarm_tm->tm_min) & 0x7f; | 
|  | regs[1] = bin2bcd(alarm_tm->tm_hour) & 0x3f; | 
|  | regs[2] = bin2bcd(alarm_tm->tm_mday) & 0x3f; | 
|  | regs[3] = ABB5ZES3_REG_ALRM_DW_AE; /* do not match day of the week */ | 
|  |  | 
|  | ret = regmap_bulk_write(data->regmap, ABB5ZES3_REG_ALRM_MN, regs, | 
|  | ABB5ZES3_ALRM_SEC_LEN); | 
|  | if (ret < 0) { | 
|  | dev_err(dev, "%s: writing ALARM section failed (%d)\n", | 
|  | __func__, ret); | 
|  | goto err; | 
|  | } | 
|  |  | 
|  | /* Record currently configured alarm is not a timer */ | 
|  | data->timer_alarm = 0; | 
|  |  | 
|  | /* Enable or disable alarm interrupt generation */ | 
|  | ret = _abb5zes3_rtc_update_alarm(dev, enable); | 
|  |  | 
|  | err: | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Set alarm using timer watchdog (via timer A) mechanism. The function expects | 
|  | * timer A interrupt to be disabled. | 
|  | */ | 
|  | static int _abb5zes3_rtc_set_timer(struct device *dev, struct rtc_wkalrm *alarm, | 
|  | u8 secs) | 
|  | { | 
|  | struct abb5zes3_rtc_data *data = dev_get_drvdata(dev); | 
|  | u8 regs[ABB5ZES3_TIMA_SEC_LEN]; | 
|  | u8 mask = ABB5ZES3_REG_TIM_CLK_TAC0 | ABB5ZES3_REG_TIM_CLK_TAC1; | 
|  | int ret = 0; | 
|  |  | 
|  | /* Program given number of seconds to Timer A registers */ | 
|  | sec_to_timer_a(secs, ®s[0], ®s[1]); | 
|  | ret = regmap_bulk_write(data->regmap, ABB5ZES3_REG_TIMA_CLK, regs, | 
|  | ABB5ZES3_TIMA_SEC_LEN); | 
|  | if (ret < 0) { | 
|  | dev_err(dev, "%s: writing timer section failed\n", __func__); | 
|  | goto err; | 
|  | } | 
|  |  | 
|  | /* Configure Timer A as a watchdog timer */ | 
|  | ret = regmap_update_bits(data->regmap, ABB5ZES3_REG_TIM_CLK, | 
|  | mask, ABB5ZES3_REG_TIM_CLK_TAC1); | 
|  | if (ret) | 
|  | dev_err(dev, "%s: failed to update timer\n", __func__); | 
|  |  | 
|  | /* Record currently configured alarm is a timer */ | 
|  | data->timer_alarm = 1; | 
|  |  | 
|  | /* Enable or disable timer interrupt generation */ | 
|  | ret = _abb5zes3_rtc_update_timer(dev, alarm->enabled); | 
|  |  | 
|  | err: | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * The chip has an alarm which is only accurate to the minute. In order to | 
|  | * handle alarms below that limit, we use the watchdog timer function of | 
|  | * timer A. More precisely, the timer method is used for alarms below 240 | 
|  | * seconds. | 
|  | */ | 
|  | static int abb5zes3_rtc_set_alarm(struct device *dev, struct rtc_wkalrm *alarm) | 
|  | { | 
|  | struct abb5zes3_rtc_data *data = dev_get_drvdata(dev); | 
|  | struct rtc_time *alarm_tm = &alarm->time; | 
|  | unsigned long rtc_secs, alarm_secs; | 
|  | struct rtc_time rtc_tm; | 
|  | int ret; | 
|  |  | 
|  | mutex_lock(&data->lock); | 
|  | ret = _abb5zes3_rtc_read_time(dev, &rtc_tm); | 
|  | if (ret) | 
|  | goto err; | 
|  |  | 
|  | ret = rtc_tm_to_time(&rtc_tm, &rtc_secs); | 
|  | if (ret) | 
|  | goto err; | 
|  |  | 
|  | ret = rtc_tm_to_time(alarm_tm, &alarm_secs); | 
|  | if (ret) | 
|  | goto err; | 
|  |  | 
|  | /* Let's first disable both the alarm and the timer interrupts */ | 
|  | ret = _abb5zes3_rtc_update_alarm(dev, false); | 
|  | if (ret < 0) { | 
|  | dev_err(dev, "%s: unable to disable alarm (%d)\n", __func__, | 
|  | ret); | 
|  | goto err; | 
|  | } | 
|  | ret = _abb5zes3_rtc_update_timer(dev, false); | 
|  | if (ret < 0) { | 
|  | dev_err(dev, "%s: unable to disable timer (%d)\n", __func__, | 
|  | ret); | 
|  | goto err; | 
|  | } | 
|  |  | 
|  | data->timer_alarm = 0; | 
|  |  | 
|  | /* | 
|  | * Let's now configure the alarm; if we are expected to ring in | 
|  | * more than 240s, then we setup an alarm. Otherwise, a timer. | 
|  | */ | 
|  | if ((alarm_secs > rtc_secs) && ((alarm_secs - rtc_secs) <= 240)) | 
|  | ret = _abb5zes3_rtc_set_timer(dev, alarm, | 
|  | alarm_secs - rtc_secs); | 
|  | else | 
|  | ret = _abb5zes3_rtc_set_alarm(dev, alarm); | 
|  |  | 
|  | err: | 
|  | mutex_unlock(&data->lock); | 
|  |  | 
|  | if (ret) | 
|  | dev_err(dev, "%s: unable to configure alarm (%d)\n", __func__, | 
|  | ret); | 
|  |  | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | /* Enable or disable battery low irq generation */ | 
|  | static inline int _abb5zes3_rtc_battery_low_irq_enable(struct regmap *regmap, | 
|  | bool enable) | 
|  | { | 
|  | return regmap_update_bits(regmap, ABB5ZES3_REG_CTRL3, | 
|  | ABB5ZES3_REG_CTRL3_BLIE, | 
|  | enable ? ABB5ZES3_REG_CTRL3_BLIE : 0); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Check current RTC status and enable/disable what needs to be. Return 0 if | 
|  | * everything went ok and a negative value upon error. Note: this function | 
|  | * is called early during init and hence does need mutex protection. | 
|  | */ | 
|  | static int abb5zes3_rtc_check_setup(struct device *dev) | 
|  | { | 
|  | struct abb5zes3_rtc_data *data = dev_get_drvdata(dev); | 
|  | struct regmap *regmap = data->regmap; | 
|  | unsigned int reg; | 
|  | int ret; | 
|  | u8 mask; | 
|  |  | 
|  | /* | 
|  | * By default, the devices generates a 32.768KHz signal on IRQ#1 pin. It | 
|  | * is disabled here to prevent polluting the interrupt line and | 
|  | * uselessly triggering the IRQ handler we install for alarm and battery | 
|  | * low events. Note: this is done before clearing int. status below | 
|  | * in this function. | 
|  | * We also disable all timers and set timer interrupt to permanent (not | 
|  | * pulsed). | 
|  | */ | 
|  | mask = (ABB5ZES3_REG_TIM_CLK_TBC | ABB5ZES3_REG_TIM_CLK_TAC0 | | 
|  | ABB5ZES3_REG_TIM_CLK_TAC1 | ABB5ZES3_REG_TIM_CLK_COF0 | | 
|  | ABB5ZES3_REG_TIM_CLK_COF1 | ABB5ZES3_REG_TIM_CLK_COF2 | | 
|  | ABB5ZES3_REG_TIM_CLK_TBM | ABB5ZES3_REG_TIM_CLK_TAM); | 
|  | ret = regmap_update_bits(regmap, ABB5ZES3_REG_TIM_CLK, mask, | 
|  | ABB5ZES3_REG_TIM_CLK_COF0 | ABB5ZES3_REG_TIM_CLK_COF1 | | 
|  | ABB5ZES3_REG_TIM_CLK_COF2); | 
|  | if (ret < 0) { | 
|  | dev_err(dev, "%s: unable to initialize clkout register (%d)\n", | 
|  | __func__, ret); | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Each component of the alarm (MN, HR, DT, DW) can be enabled/disabled | 
|  | * individually by clearing/setting MSB of each associated register. So, | 
|  | * we set all alarm enable bits to disable current alarm setting. | 
|  | */ | 
|  | mask = (ABB5ZES3_REG_ALRM_MN_AE | ABB5ZES3_REG_ALRM_HR_AE | | 
|  | ABB5ZES3_REG_ALRM_DT_AE | ABB5ZES3_REG_ALRM_DW_AE); | 
|  | ret = regmap_update_bits(regmap, ABB5ZES3_REG_CTRL2, mask, mask); | 
|  | if (ret < 0) { | 
|  | dev_err(dev, "%s: unable to disable alarm setting (%d)\n", | 
|  | __func__, ret); | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | /* Set Control 1 register (RTC enabled, 24hr mode, all int. disabled) */ | 
|  | mask = (ABB5ZES3_REG_CTRL1_CIE | ABB5ZES3_REG_CTRL1_AIE | | 
|  | ABB5ZES3_REG_CTRL1_SIE | ABB5ZES3_REG_CTRL1_PM | | 
|  | ABB5ZES3_REG_CTRL1_CAP | ABB5ZES3_REG_CTRL1_STOP); | 
|  | ret = regmap_update_bits(regmap, ABB5ZES3_REG_CTRL1, mask, 0); | 
|  | if (ret < 0) { | 
|  | dev_err(dev, "%s: unable to initialize CTRL1 register (%d)\n", | 
|  | __func__, ret); | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Set Control 2 register (timer int. disabled, alarm status cleared). | 
|  | * WTAF is read-only and cleared automatically by reading the register. | 
|  | */ | 
|  | mask = (ABB5ZES3_REG_CTRL2_CTBIE | ABB5ZES3_REG_CTRL2_CTAIE | | 
|  | ABB5ZES3_REG_CTRL2_WTAIE | ABB5ZES3_REG_CTRL2_AF | | 
|  | ABB5ZES3_REG_CTRL2_SF | ABB5ZES3_REG_CTRL2_CTBF | | 
|  | ABB5ZES3_REG_CTRL2_CTAF); | 
|  | ret = regmap_update_bits(regmap, ABB5ZES3_REG_CTRL2, mask, 0); | 
|  | if (ret < 0) { | 
|  | dev_err(dev, "%s: unable to initialize CTRL2 register (%d)\n", | 
|  | __func__, ret); | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Enable battery low detection function and battery switchover function | 
|  | * (standard mode). Disable associated interrupts. Clear battery | 
|  | * switchover flag but not battery low flag. The latter is checked | 
|  | * later below. | 
|  | */ | 
|  | mask = (ABB5ZES3_REG_CTRL3_PM0 | ABB5ZES3_REG_CTRL3_PM1 | | 
|  | ABB5ZES3_REG_CTRL3_PM2 | ABB5ZES3_REG_CTRL3_BLIE | | 
|  | ABB5ZES3_REG_CTRL3_BSIE| ABB5ZES3_REG_CTRL3_BSF); | 
|  | ret = regmap_update_bits(regmap, ABB5ZES3_REG_CTRL3, mask, 0); | 
|  | if (ret < 0) { | 
|  | dev_err(dev, "%s: unable to initialize CTRL3 register (%d)\n", | 
|  | __func__, ret); | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | /* Check oscillator integrity flag */ | 
|  | ret = regmap_read(regmap, ABB5ZES3_REG_RTC_SC, ®); | 
|  | if (ret < 0) { | 
|  | dev_err(dev, "%s: unable to read osc. integrity flag (%d)\n", | 
|  | __func__, ret); | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | if (reg & ABB5ZES3_REG_RTC_SC_OSC) { | 
|  | dev_err(dev, "clock integrity not guaranteed. Osc. has stopped " | 
|  | "or has been interrupted.\n"); | 
|  | dev_err(dev, "change battery (if not already done) and  " | 
|  | "then set time to reset osc. failure flag.\n"); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Check battery low flag at startup: this allows reporting battery | 
|  | * is low at startup when IRQ line is not connected. Note: we record | 
|  | * current status to avoid reenabling this interrupt later in probe | 
|  | * function if battery is low. | 
|  | */ | 
|  | ret = regmap_read(regmap, ABB5ZES3_REG_CTRL3, ®); | 
|  | if (ret < 0) { | 
|  | dev_err(dev, "%s: unable to read battery low flag (%d)\n", | 
|  | __func__, ret); | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | data->battery_low = reg & ABB5ZES3_REG_CTRL3_BLF; | 
|  | if (data->battery_low) { | 
|  | dev_err(dev, "RTC battery is low; please, consider " | 
|  | "changing it!\n"); | 
|  |  | 
|  | ret = _abb5zes3_rtc_battery_low_irq_enable(regmap, false); | 
|  | if (ret) | 
|  | dev_err(dev, "%s: disabling battery low interrupt " | 
|  | "generation failed (%d)\n", __func__, ret); | 
|  | } | 
|  |  | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | static int abb5zes3_rtc_alarm_irq_enable(struct device *dev, | 
|  | unsigned int enable) | 
|  | { | 
|  | struct abb5zes3_rtc_data *rtc_data = dev_get_drvdata(dev); | 
|  | int ret = 0; | 
|  |  | 
|  | if (rtc_data->irq) { | 
|  | mutex_lock(&rtc_data->lock); | 
|  | if (rtc_data->timer_alarm) | 
|  | ret = _abb5zes3_rtc_update_timer(dev, enable); | 
|  | else | 
|  | ret = _abb5zes3_rtc_update_alarm(dev, enable); | 
|  | mutex_unlock(&rtc_data->lock); | 
|  | } | 
|  |  | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | static irqreturn_t _abb5zes3_rtc_interrupt(int irq, void *data) | 
|  | { | 
|  | struct i2c_client *client = data; | 
|  | struct device *dev = &client->dev; | 
|  | struct abb5zes3_rtc_data *rtc_data = dev_get_drvdata(dev); | 
|  | struct rtc_device *rtc = rtc_data->rtc; | 
|  | u8 regs[ABB5ZES3_CTRL_SEC_LEN]; | 
|  | int ret, handled = IRQ_NONE; | 
|  |  | 
|  | ret = regmap_bulk_read(rtc_data->regmap, 0, regs, | 
|  | ABB5ZES3_CTRL_SEC_LEN); | 
|  | if (ret) { | 
|  | dev_err(dev, "%s: unable to read control section (%d)!\n", | 
|  | __func__, ret); | 
|  | return handled; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Check battery low detection flag and disable battery low interrupt | 
|  | * generation if flag is set (interrupt can only be cleared when | 
|  | * battery is replaced). | 
|  | */ | 
|  | if (regs[ABB5ZES3_REG_CTRL3] & ABB5ZES3_REG_CTRL3_BLF) { | 
|  | dev_err(dev, "RTC battery is low; please change it!\n"); | 
|  |  | 
|  | _abb5zes3_rtc_battery_low_irq_enable(rtc_data->regmap, false); | 
|  |  | 
|  | handled = IRQ_HANDLED; | 
|  | } | 
|  |  | 
|  | /* Check alarm flag */ | 
|  | if (regs[ABB5ZES3_REG_CTRL2] & ABB5ZES3_REG_CTRL2_AF) { | 
|  | dev_dbg(dev, "RTC alarm!\n"); | 
|  |  | 
|  | rtc_update_irq(rtc, 1, RTC_IRQF | RTC_AF); | 
|  |  | 
|  | /* Acknowledge and disable the alarm */ | 
|  | _abb5zes3_rtc_clear_alarm(dev); | 
|  | _abb5zes3_rtc_update_alarm(dev, 0); | 
|  |  | 
|  | handled = IRQ_HANDLED; | 
|  | } | 
|  |  | 
|  | /* Check watchdog Timer A flag */ | 
|  | if (regs[ABB5ZES3_REG_CTRL2] & ABB5ZES3_REG_CTRL2_WTAF) { | 
|  | dev_dbg(dev, "RTC timer!\n"); | 
|  |  | 
|  | rtc_update_irq(rtc, 1, RTC_IRQF | RTC_AF); | 
|  |  | 
|  | /* | 
|  | * Acknowledge and disable the alarm. Note: WTAF | 
|  | * flag had been cleared when reading CTRL2 | 
|  | */ | 
|  | _abb5zes3_rtc_update_timer(dev, 0); | 
|  |  | 
|  | rtc_data->timer_alarm = 0; | 
|  |  | 
|  | handled = IRQ_HANDLED; | 
|  | } | 
|  |  | 
|  | return handled; | 
|  | } | 
|  |  | 
|  | static const struct rtc_class_ops rtc_ops = { | 
|  | .read_time = _abb5zes3_rtc_read_time, | 
|  | .set_time = abb5zes3_rtc_set_time, | 
|  | .read_alarm = abb5zes3_rtc_read_alarm, | 
|  | .set_alarm = abb5zes3_rtc_set_alarm, | 
|  | .alarm_irq_enable = abb5zes3_rtc_alarm_irq_enable, | 
|  | }; | 
|  |  | 
|  | static const struct regmap_config abb5zes3_rtc_regmap_config = { | 
|  | .reg_bits = 8, | 
|  | .val_bits = 8, | 
|  | }; | 
|  |  | 
|  | static int abb5zes3_probe(struct i2c_client *client, | 
|  | const struct i2c_device_id *id) | 
|  | { | 
|  | struct abb5zes3_rtc_data *data = NULL; | 
|  | struct device *dev = &client->dev; | 
|  | struct regmap *regmap; | 
|  | int ret; | 
|  |  | 
|  | if (!i2c_check_functionality(client->adapter, I2C_FUNC_I2C | | 
|  | I2C_FUNC_SMBUS_BYTE_DATA | | 
|  | I2C_FUNC_SMBUS_I2C_BLOCK)) { | 
|  | ret = -ENODEV; | 
|  | goto err; | 
|  | } | 
|  |  | 
|  | regmap = devm_regmap_init_i2c(client, &abb5zes3_rtc_regmap_config); | 
|  | if (IS_ERR(regmap)) { | 
|  | ret = PTR_ERR(regmap); | 
|  | dev_err(dev, "%s: regmap allocation failed: %d\n", | 
|  | __func__, ret); | 
|  | goto err; | 
|  | } | 
|  |  | 
|  | ret = abb5zes3_i2c_validate_chip(regmap); | 
|  | if (ret) | 
|  | goto err; | 
|  |  | 
|  | data = devm_kzalloc(dev, sizeof(*data), GFP_KERNEL); | 
|  | if (!data) { | 
|  | ret = -ENOMEM; | 
|  | goto err; | 
|  | } | 
|  |  | 
|  | mutex_init(&data->lock); | 
|  | data->regmap = regmap; | 
|  | dev_set_drvdata(dev, data); | 
|  |  | 
|  | ret = abb5zes3_rtc_check_setup(dev); | 
|  | if (ret) | 
|  | goto err; | 
|  |  | 
|  | if (client->irq > 0) { | 
|  | ret = devm_request_threaded_irq(dev, client->irq, NULL, | 
|  | _abb5zes3_rtc_interrupt, | 
|  | IRQF_SHARED|IRQF_ONESHOT, | 
|  | DRV_NAME, client); | 
|  | if (!ret) { | 
|  | device_init_wakeup(dev, true); | 
|  | data->irq = client->irq; | 
|  | dev_dbg(dev, "%s: irq %d used by RTC\n", __func__, | 
|  | client->irq); | 
|  | } else { | 
|  | dev_err(dev, "%s: irq %d unavailable (%d)\n", | 
|  | __func__, client->irq, ret); | 
|  | goto err; | 
|  | } | 
|  | } | 
|  |  | 
|  | data->rtc = devm_rtc_device_register(dev, DRV_NAME, &rtc_ops, | 
|  | THIS_MODULE); | 
|  | ret = PTR_ERR_OR_ZERO(data->rtc); | 
|  | if (ret) { | 
|  | dev_err(dev, "%s: unable to register RTC device (%d)\n", | 
|  | __func__, ret); | 
|  | goto err; | 
|  | } | 
|  |  | 
|  | /* Enable battery low detection interrupt if battery not already low */ | 
|  | if (!data->battery_low && data->irq) { | 
|  | ret = _abb5zes3_rtc_battery_low_irq_enable(regmap, true); | 
|  | if (ret) { | 
|  | dev_err(dev, "%s: enabling battery low interrupt " | 
|  | "generation failed (%d)\n", __func__, ret); | 
|  | goto err; | 
|  | } | 
|  | } | 
|  |  | 
|  | err: | 
|  | if (ret && data && data->irq) | 
|  | device_init_wakeup(dev, false); | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | static int abb5zes3_remove(struct i2c_client *client) | 
|  | { | 
|  | struct abb5zes3_rtc_data *rtc_data = dev_get_drvdata(&client->dev); | 
|  |  | 
|  | if (rtc_data->irq > 0) | 
|  | device_init_wakeup(&client->dev, false); | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | #ifdef CONFIG_PM_SLEEP | 
|  | static int abb5zes3_rtc_suspend(struct device *dev) | 
|  | { | 
|  | struct abb5zes3_rtc_data *rtc_data = dev_get_drvdata(dev); | 
|  |  | 
|  | if (device_may_wakeup(dev)) | 
|  | return enable_irq_wake(rtc_data->irq); | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static int abb5zes3_rtc_resume(struct device *dev) | 
|  | { | 
|  | struct abb5zes3_rtc_data *rtc_data = dev_get_drvdata(dev); | 
|  |  | 
|  | if (device_may_wakeup(dev)) | 
|  | return disable_irq_wake(rtc_data->irq); | 
|  |  | 
|  | return 0; | 
|  | } | 
|  | #endif | 
|  |  | 
|  | static SIMPLE_DEV_PM_OPS(abb5zes3_rtc_pm_ops, abb5zes3_rtc_suspend, | 
|  | abb5zes3_rtc_resume); | 
|  |  | 
|  | #ifdef CONFIG_OF | 
|  | static const struct of_device_id abb5zes3_dt_match[] = { | 
|  | { .compatible = "abracon,abb5zes3" }, | 
|  | { }, | 
|  | }; | 
|  | #endif | 
|  |  | 
|  | static const struct i2c_device_id abb5zes3_id[] = { | 
|  | { "abb5zes3", 0 }, | 
|  | { } | 
|  | }; | 
|  | MODULE_DEVICE_TABLE(i2c, abb5zes3_id); | 
|  |  | 
|  | static struct i2c_driver abb5zes3_driver = { | 
|  | .driver = { | 
|  | .name = DRV_NAME, | 
|  | .owner = THIS_MODULE, | 
|  | .pm = &abb5zes3_rtc_pm_ops, | 
|  | .of_match_table = of_match_ptr(abb5zes3_dt_match), | 
|  | }, | 
|  | .probe	  = abb5zes3_probe, | 
|  | .remove	  = abb5zes3_remove, | 
|  | .id_table = abb5zes3_id, | 
|  | }; | 
|  | module_i2c_driver(abb5zes3_driver); | 
|  |  | 
|  | MODULE_AUTHOR("Arnaud EBALARD <arno@natisbad.org>"); | 
|  | MODULE_DESCRIPTION("Abracon AB-RTCMC-32.768kHz-B5ZE-S3 RTC/Alarm driver"); | 
|  | MODULE_LICENSE("GPL"); |