blob: 7ddc76709caaacf6dde6b71761ce05fe05babfa6 [file] [log] [blame] [edit]
/*
* Copyright (C) 2010-2013 Bluecherry, LLC <http://www.bluecherrydvr.com>
*
* Original author:
* Ben Collins <bcollins@ubuntu.com>
*
* Additional work by:
* John Brooks <john.brooks@bluecherry.net>
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*/
#include <linux/kernel.h>
#include <linux/mempool.h>
#include <linux/poll.h>
#include <linux/kthread.h>
#include <linux/freezer.h>
#include <linux/module.h>
#include <linux/slab.h>
#include <sound/core.h>
#include <sound/initval.h>
#include <sound/pcm.h>
#include <sound/control.h>
#include "solo6x10.h"
#include "solo6x10-tw28.h"
#define G723_FDMA_PAGES 32
#define G723_PERIOD_BYTES 48
#define G723_PERIOD_BLOCK 1024
#define G723_FRAMES_PER_PAGE 48
/* Sets up channels 16-19 for decoding and 0-15 for encoding */
#define OUTMODE_MASK 0x300
#define SAMPLERATE 8000
#define BITRATE 25
/* The solo writes to 1k byte pages, 32 pages, in the dma. Each 1k page
* is broken down to 20 * 48 byte regions (one for each channel possible)
* with the rest of the page being dummy data. */
#define G723_MAX_BUFFER (G723_PERIOD_BYTES * PERIODS_MAX)
#define G723_INTR_ORDER 4 /* 0 - 4 */
#define PERIODS_MIN (1 << G723_INTR_ORDER)
#define PERIODS_MAX G723_FDMA_PAGES
struct solo_snd_pcm {
int on;
spinlock_t lock;
struct solo_dev *solo_dev;
u8 *g723_buf;
dma_addr_t g723_dma;
};
static void solo_g723_config(struct solo_dev *solo_dev)
{
int clk_div;
clk_div = (solo_dev->clock_mhz * 1000000)
/ (SAMPLERATE * (BITRATE * 2) * 2);
solo_reg_write(solo_dev, SOLO_AUDIO_SAMPLE,
SOLO_AUDIO_BITRATE(BITRATE)
| SOLO_AUDIO_CLK_DIV(clk_div));
solo_reg_write(solo_dev, SOLO_AUDIO_FDMA_INTR,
SOLO_AUDIO_FDMA_INTERVAL(1)
| SOLO_AUDIO_INTR_ORDER(G723_INTR_ORDER)
| SOLO_AUDIO_FDMA_BASE(SOLO_G723_EXT_ADDR(solo_dev) >> 16));
solo_reg_write(solo_dev, SOLO_AUDIO_CONTROL,
SOLO_AUDIO_ENABLE
| SOLO_AUDIO_I2S_MODE
| SOLO_AUDIO_I2S_MULTI(3)
| SOLO_AUDIO_MODE(OUTMODE_MASK));
}
void solo_g723_isr(struct solo_dev *solo_dev)
{
struct snd_pcm_str *pstr =
&solo_dev->snd_pcm->streams[SNDRV_PCM_STREAM_CAPTURE];
struct snd_pcm_substream *ss;
struct solo_snd_pcm *solo_pcm;
for (ss = pstr->substream; ss != NULL; ss = ss->next) {
if (snd_pcm_substream_chip(ss) == NULL)
continue;
/* This means open() hasn't been called on this one */
if (snd_pcm_substream_chip(ss) == solo_dev)
continue;
/* Haven't triggered a start yet */
solo_pcm = snd_pcm_substream_chip(ss);
if (!solo_pcm->on)
continue;
snd_pcm_period_elapsed(ss);
}
}
static int snd_solo_hw_params(struct snd_pcm_substream *ss,
struct snd_pcm_hw_params *hw_params)
{
return snd_pcm_lib_malloc_pages(ss, params_buffer_bytes(hw_params));
}
static int snd_solo_hw_free(struct snd_pcm_substream *ss)
{
return snd_pcm_lib_free_pages(ss);
}
static const struct snd_pcm_hardware snd_solo_pcm_hw = {
.info = (SNDRV_PCM_INFO_MMAP |
SNDRV_PCM_INFO_INTERLEAVED |
SNDRV_PCM_INFO_BLOCK_TRANSFER |
SNDRV_PCM_INFO_MMAP_VALID),
.formats = SNDRV_PCM_FMTBIT_U8,
.rates = SNDRV_PCM_RATE_8000,
.rate_min = SAMPLERATE,
.rate_max = SAMPLERATE,
.channels_min = 1,
.channels_max = 1,
.buffer_bytes_max = G723_MAX_BUFFER,
.period_bytes_min = G723_PERIOD_BYTES,
.period_bytes_max = G723_PERIOD_BYTES,
.periods_min = PERIODS_MIN,
.periods_max = PERIODS_MAX,
};
static int snd_solo_pcm_open(struct snd_pcm_substream *ss)
{
struct solo_dev *solo_dev = snd_pcm_substream_chip(ss);
struct solo_snd_pcm *solo_pcm;
solo_pcm = kzalloc(sizeof(*solo_pcm), GFP_KERNEL);
if (solo_pcm == NULL)
goto oom;
solo_pcm->g723_buf = pci_alloc_consistent(solo_dev->pdev,
G723_PERIOD_BYTES,
&solo_pcm->g723_dma);
if (solo_pcm->g723_buf == NULL)
goto oom;
spin_lock_init(&solo_pcm->lock);
solo_pcm->solo_dev = solo_dev;
ss->runtime->hw = snd_solo_pcm_hw;
snd_pcm_substream_chip(ss) = solo_pcm;
return 0;
oom:
kfree(solo_pcm);
return -ENOMEM;
}
static int snd_solo_pcm_close(struct snd_pcm_substream *ss)
{
struct solo_snd_pcm *solo_pcm = snd_pcm_substream_chip(ss);
snd_pcm_substream_chip(ss) = solo_pcm->solo_dev;
pci_free_consistent(solo_pcm->solo_dev->pdev, G723_PERIOD_BYTES,
solo_pcm->g723_buf, solo_pcm->g723_dma);
kfree(solo_pcm);
return 0;
}
static int snd_solo_pcm_trigger(struct snd_pcm_substream *ss, int cmd)
{
struct solo_snd_pcm *solo_pcm = snd_pcm_substream_chip(ss);
struct solo_dev *solo_dev = solo_pcm->solo_dev;
int ret = 0;
spin_lock(&solo_pcm->lock);
switch (cmd) {
case SNDRV_PCM_TRIGGER_START:
if (solo_pcm->on == 0) {
/* If this is the first user, switch on interrupts */
if (atomic_inc_return(&solo_dev->snd_users) == 1)
solo_irq_on(solo_dev, SOLO_IRQ_G723);
solo_pcm->on = 1;
}
break;
case SNDRV_PCM_TRIGGER_STOP:
if (solo_pcm->on) {
/* If this was our last user, switch them off */
if (atomic_dec_return(&solo_dev->snd_users) == 0)
solo_irq_off(solo_dev, SOLO_IRQ_G723);
solo_pcm->on = 0;
}
break;
default:
ret = -EINVAL;
}
spin_unlock(&solo_pcm->lock);
return ret;
}
static int snd_solo_pcm_prepare(struct snd_pcm_substream *ss)
{
return 0;
}
static snd_pcm_uframes_t snd_solo_pcm_pointer(struct snd_pcm_substream *ss)
{
struct solo_snd_pcm *solo_pcm = snd_pcm_substream_chip(ss);
struct solo_dev *solo_dev = solo_pcm->solo_dev;
snd_pcm_uframes_t idx = solo_reg_read(solo_dev, SOLO_AUDIO_STA) & 0x1f;
return idx * G723_FRAMES_PER_PAGE;
}
static int snd_solo_pcm_copy(struct snd_pcm_substream *ss, int channel,
snd_pcm_uframes_t pos, void __user *dst,
snd_pcm_uframes_t count)
{
struct solo_snd_pcm *solo_pcm = snd_pcm_substream_chip(ss);
struct solo_dev *solo_dev = solo_pcm->solo_dev;
int err, i;
for (i = 0; i < (count / G723_FRAMES_PER_PAGE); i++) {
int page = (pos / G723_FRAMES_PER_PAGE) + i;
err = solo_p2m_dma_t(solo_dev, 0, solo_pcm->g723_dma,
SOLO_G723_EXT_ADDR(solo_dev) +
(page * G723_PERIOD_BLOCK) +
(ss->number * G723_PERIOD_BYTES),
G723_PERIOD_BYTES, 0, 0);
if (err)
return err;
err = copy_to_user(dst + (i * G723_PERIOD_BYTES),
solo_pcm->g723_buf, G723_PERIOD_BYTES);
if (err)
return -EFAULT;
}
return 0;
}
static struct snd_pcm_ops snd_solo_pcm_ops = {
.open = snd_solo_pcm_open,
.close = snd_solo_pcm_close,
.ioctl = snd_pcm_lib_ioctl,
.hw_params = snd_solo_hw_params,
.hw_free = snd_solo_hw_free,
.prepare = snd_solo_pcm_prepare,
.trigger = snd_solo_pcm_trigger,
.pointer = snd_solo_pcm_pointer,
.copy = snd_solo_pcm_copy,
};
static int snd_solo_capture_volume_info(struct snd_kcontrol *kcontrol,
struct snd_ctl_elem_info *info)
{
info->type = SNDRV_CTL_ELEM_TYPE_INTEGER;
info->count = 1;
info->value.integer.min = 0;
info->value.integer.max = 15;
info->value.integer.step = 1;
return 0;
}
static int snd_solo_capture_volume_get(struct snd_kcontrol *kcontrol,
struct snd_ctl_elem_value *value)
{
struct solo_dev *solo_dev = snd_kcontrol_chip(kcontrol);
u8 ch = value->id.numid - 1;
value->value.integer.value[0] = tw28_get_audio_gain(solo_dev, ch);
return 0;
}
static int snd_solo_capture_volume_put(struct snd_kcontrol *kcontrol,
struct snd_ctl_elem_value *value)
{
struct solo_dev *solo_dev = snd_kcontrol_chip(kcontrol);
u8 ch = value->id.numid - 1;
u8 old_val;
old_val = tw28_get_audio_gain(solo_dev, ch);
if (old_val == value->value.integer.value[0])
return 0;
tw28_set_audio_gain(solo_dev, ch, value->value.integer.value[0]);
return 1;
}
static struct snd_kcontrol_new snd_solo_capture_volume = {
.iface = SNDRV_CTL_ELEM_IFACE_MIXER,
.name = "Capture Volume",
.info = snd_solo_capture_volume_info,
.get = snd_solo_capture_volume_get,
.put = snd_solo_capture_volume_put,
};
static int solo_snd_pcm_init(struct solo_dev *solo_dev)
{
struct snd_card *card = solo_dev->snd_card;
struct snd_pcm *pcm;
struct snd_pcm_substream *ss;
int ret;
int i;
ret = snd_pcm_new(card, card->driver, 0, 0, solo_dev->nr_chans,
&pcm);
if (ret < 0)
return ret;
snd_pcm_set_ops(pcm, SNDRV_PCM_STREAM_CAPTURE,
&snd_solo_pcm_ops);
snd_pcm_chip(pcm) = solo_dev;
pcm->info_flags = 0;
strcpy(pcm->name, card->shortname);
for (i = 0, ss = pcm->streams[SNDRV_PCM_STREAM_CAPTURE].substream;
ss; ss = ss->next, i++)
sprintf(ss->name, "Camera #%d Audio", i);
ret = snd_pcm_lib_preallocate_pages_for_all(pcm,
SNDRV_DMA_TYPE_CONTINUOUS,
snd_dma_continuous_data(GFP_KERNEL),
G723_MAX_BUFFER, G723_MAX_BUFFER);
if (ret < 0)
return ret;
solo_dev->snd_pcm = pcm;
return 0;
}
int solo_g723_init(struct solo_dev *solo_dev)
{
static struct snd_device_ops ops = { NULL };
struct snd_card *card;
struct snd_kcontrol_new kctl;
char name[32];
int ret;
atomic_set(&solo_dev->snd_users, 0);
/* Allows for easier mapping between video and audio */
sprintf(name, "Softlogic%d", solo_dev->vfd->num);
ret = snd_card_new(&solo_dev->pdev->dev,
SNDRV_DEFAULT_IDX1, name, THIS_MODULE, 0,
&solo_dev->snd_card);
if (ret < 0)
return ret;
card = solo_dev->snd_card;
strcpy(card->driver, SOLO6X10_NAME);
strcpy(card->shortname, "SOLO-6x10 Audio");
sprintf(card->longname, "%s on %s IRQ %d", card->shortname,
pci_name(solo_dev->pdev), solo_dev->pdev->irq);
ret = snd_device_new(card, SNDRV_DEV_LOWLEVEL, solo_dev, &ops);
if (ret < 0)
goto snd_error;
/* Mixer controls */
strcpy(card->mixername, "SOLO-6x10");
kctl = snd_solo_capture_volume;
kctl.count = solo_dev->nr_chans;
ret = snd_ctl_add(card, snd_ctl_new1(&kctl, solo_dev));
if (ret < 0)
return ret;
ret = solo_snd_pcm_init(solo_dev);
if (ret < 0)
goto snd_error;
ret = snd_card_register(card);
if (ret < 0)
goto snd_error;
solo_g723_config(solo_dev);
dev_info(&solo_dev->pdev->dev, "Alsa sound card as %s\n", name);
return 0;
snd_error:
snd_card_free(card);
return ret;
}
void solo_g723_exit(struct solo_dev *solo_dev)
{
if (!solo_dev->snd_card)
return;
solo_reg_write(solo_dev, SOLO_AUDIO_CONTROL, 0);
solo_irq_off(solo_dev, SOLO_IRQ_G723);
snd_card_free(solo_dev->snd_card);
solo_dev->snd_card = NULL;
}