|  | /* | 
|  | * Copyright 2007-2009 Analog Devices Inc. | 
|  | *               Philippe Gerum <rpm@xenomai.org> | 
|  | * | 
|  | * Licensed under the GPL-2 or later. | 
|  | */ | 
|  |  | 
|  | #include <linux/init.h> | 
|  | #include <linux/kernel.h> | 
|  | #include <linux/sched.h> | 
|  | #include <linux/delay.h> | 
|  | #include <asm/smp.h> | 
|  | #include <asm/dma.h> | 
|  | #include <asm/time.h> | 
|  |  | 
|  | static DEFINE_SPINLOCK(boot_lock); | 
|  |  | 
|  | /* | 
|  | * platform_init_cpus() - Tell the world about how many cores we | 
|  | * have. This is called while setting up the architecture support | 
|  | * (setup_arch()), so don't be too demanding here with respect to | 
|  | * available kernel services. | 
|  | */ | 
|  |  | 
|  | void __init platform_init_cpus(void) | 
|  | { | 
|  | struct cpumask mask; | 
|  |  | 
|  | cpumask_set_cpu(0, &mask); /* CoreA */ | 
|  | cpumask_set_cpu(1, &mask); /* CoreB */ | 
|  | init_cpu_possible(&mask); | 
|  | } | 
|  |  | 
|  | void __init platform_prepare_cpus(unsigned int max_cpus) | 
|  | { | 
|  | struct cpumask mask; | 
|  |  | 
|  | bfin_relocate_coreb_l1_mem(); | 
|  |  | 
|  | /* Both cores ought to be present on a bf561! */ | 
|  | cpumask_set_cpu(0, &mask); /* CoreA */ | 
|  | cpumask_set_cpu(1, &mask); /* CoreB */ | 
|  | init_cpu_present(&mask); | 
|  | } | 
|  |  | 
|  | int __init setup_profiling_timer(unsigned int multiplier) /* not supported */ | 
|  | { | 
|  | return -EINVAL; | 
|  | } | 
|  |  | 
|  | void platform_secondary_init(unsigned int cpu) | 
|  | { | 
|  | /* Clone setup for peripheral interrupt sources from CoreA. */ | 
|  | bfin_write_SICB_IMASK0(bfin_read_SIC_IMASK0()); | 
|  | bfin_write_SICB_IMASK1(bfin_read_SIC_IMASK1()); | 
|  | SSYNC(); | 
|  |  | 
|  | /* Clone setup for IARs from CoreA. */ | 
|  | bfin_write_SICB_IAR0(bfin_read_SIC_IAR0()); | 
|  | bfin_write_SICB_IAR1(bfin_read_SIC_IAR1()); | 
|  | bfin_write_SICB_IAR2(bfin_read_SIC_IAR2()); | 
|  | bfin_write_SICB_IAR3(bfin_read_SIC_IAR3()); | 
|  | bfin_write_SICB_IAR4(bfin_read_SIC_IAR4()); | 
|  | bfin_write_SICB_IAR5(bfin_read_SIC_IAR5()); | 
|  | bfin_write_SICB_IAR6(bfin_read_SIC_IAR6()); | 
|  | bfin_write_SICB_IAR7(bfin_read_SIC_IAR7()); | 
|  | bfin_write_SICB_IWR0(IWR_DISABLE_ALL); | 
|  | bfin_write_SICB_IWR1(IWR_DISABLE_ALL); | 
|  | SSYNC(); | 
|  |  | 
|  | /* We are done with local CPU inits, unblock the boot CPU. */ | 
|  | spin_lock(&boot_lock); | 
|  | spin_unlock(&boot_lock); | 
|  | } | 
|  |  | 
|  | int platform_boot_secondary(unsigned int cpu, struct task_struct *idle) | 
|  | { | 
|  | unsigned long timeout; | 
|  |  | 
|  | printk(KERN_INFO "Booting Core B.\n"); | 
|  |  | 
|  | spin_lock(&boot_lock); | 
|  |  | 
|  | if ((bfin_read_SYSCR() & COREB_SRAM_INIT) == 0) { | 
|  | /* CoreB already running, sending ipi to wakeup it */ | 
|  | smp_send_reschedule(cpu); | 
|  | } else { | 
|  | /* Kick CoreB, which should start execution from CORE_SRAM_BASE. */ | 
|  | bfin_write_SYSCR(bfin_read_SYSCR() & ~COREB_SRAM_INIT); | 
|  | SSYNC(); | 
|  | } | 
|  |  | 
|  | timeout = jiffies + HZ; | 
|  | /* release the lock and let coreb run */ | 
|  | spin_unlock(&boot_lock); | 
|  | while (time_before(jiffies, timeout)) { | 
|  | if (cpu_online(cpu)) | 
|  | break; | 
|  | udelay(100); | 
|  | barrier(); | 
|  | } | 
|  |  | 
|  | if (cpu_online(cpu)) { | 
|  | return 0; | 
|  | } else | 
|  | panic("CPU%u: processor failed to boot\n", cpu); | 
|  | } | 
|  |  | 
|  | static const char supple0[] = "IRQ_SUPPLE_0"; | 
|  | static const char supple1[] = "IRQ_SUPPLE_1"; | 
|  | void __init platform_request_ipi(int irq, void *handler) | 
|  | { | 
|  | int ret; | 
|  | const char *name = (irq == IRQ_SUPPLE_0) ? supple0 : supple1; | 
|  |  | 
|  | ret = request_irq(irq, handler, IRQF_PERCPU | IRQF_NO_SUSPEND | | 
|  | IRQF_FORCE_RESUME, name, handler); | 
|  | if (ret) | 
|  | panic("Cannot request %s for IPI service", name); | 
|  | } | 
|  |  | 
|  | void platform_send_ipi(cpumask_t callmap, int irq) | 
|  | { | 
|  | unsigned int cpu; | 
|  | int offset = (irq == IRQ_SUPPLE_0) ? 6 : 8; | 
|  |  | 
|  | for_each_cpu(cpu, &callmap) { | 
|  | BUG_ON(cpu >= 2); | 
|  | SSYNC(); | 
|  | bfin_write_SICB_SYSCR(bfin_read_SICB_SYSCR() | (1 << (offset + cpu))); | 
|  | SSYNC(); | 
|  | } | 
|  | } | 
|  |  | 
|  | void platform_send_ipi_cpu(unsigned int cpu, int irq) | 
|  | { | 
|  | int offset = (irq == IRQ_SUPPLE_0) ? 6 : 8; | 
|  | BUG_ON(cpu >= 2); | 
|  | SSYNC(); | 
|  | bfin_write_SICB_SYSCR(bfin_read_SICB_SYSCR() | (1 << (offset + cpu))); | 
|  | SSYNC(); | 
|  | } | 
|  |  | 
|  | void platform_clear_ipi(unsigned int cpu, int irq) | 
|  | { | 
|  | int offset = (irq == IRQ_SUPPLE_0) ? 10 : 12; | 
|  | BUG_ON(cpu >= 2); | 
|  | SSYNC(); | 
|  | bfin_write_SICB_SYSCR(bfin_read_SICB_SYSCR() | (1 << (offset + cpu))); | 
|  | SSYNC(); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Setup core B's local core timer. | 
|  | * In SMP, core timer is used for clock event device. | 
|  | */ | 
|  | void bfin_local_timer_setup(void) | 
|  | { | 
|  | #if defined(CONFIG_TICKSOURCE_CORETMR) | 
|  | struct irq_data *data = irq_get_irq_data(IRQ_CORETMR); | 
|  | struct irq_chip *chip = irq_data_get_irq_chip(data); | 
|  |  | 
|  | bfin_coretmr_init(); | 
|  | bfin_coretmr_clockevent_init(); | 
|  |  | 
|  | chip->irq_unmask(data); | 
|  | #else | 
|  | /* Power down the core timer, just to play safe. */ | 
|  | bfin_write_TCNTL(0); | 
|  | #endif | 
|  |  | 
|  | } |