|  | /* | 
|  | * intel_pstate.c: Native P state management for Intel processors | 
|  | * | 
|  | * (C) Copyright 2012 Intel Corporation | 
|  | * Author: Dirk Brandewie <dirk.j.brandewie@intel.com> | 
|  | * | 
|  | * This program is free software; you can redistribute it and/or | 
|  | * modify it under the terms of the GNU General Public License | 
|  | * as published by the Free Software Foundation; version 2 | 
|  | * of the License. | 
|  | */ | 
|  |  | 
|  | #include <linux/kernel.h> | 
|  | #include <linux/kernel_stat.h> | 
|  | #include <linux/module.h> | 
|  | #include <linux/ktime.h> | 
|  | #include <linux/hrtimer.h> | 
|  | #include <linux/tick.h> | 
|  | #include <linux/slab.h> | 
|  | #include <linux/sched.h> | 
|  | #include <linux/list.h> | 
|  | #include <linux/cpu.h> | 
|  | #include <linux/cpufreq.h> | 
|  | #include <linux/sysfs.h> | 
|  | #include <linux/types.h> | 
|  | #include <linux/fs.h> | 
|  | #include <linux/debugfs.h> | 
|  | #include <linux/acpi.h> | 
|  | #include <trace/events/power.h> | 
|  |  | 
|  | #include <asm/div64.h> | 
|  | #include <asm/msr.h> | 
|  | #include <asm/cpu_device_id.h> | 
|  | #include <asm/cpufeature.h> | 
|  |  | 
|  | #define BYT_RATIOS		0x66a | 
|  | #define BYT_VIDS		0x66b | 
|  | #define BYT_TURBO_RATIOS	0x66c | 
|  | #define BYT_TURBO_VIDS		0x66d | 
|  |  | 
|  | #define FRAC_BITS 8 | 
|  | #define int_tofp(X) ((int64_t)(X) << FRAC_BITS) | 
|  | #define fp_toint(X) ((X) >> FRAC_BITS) | 
|  |  | 
|  |  | 
|  | static inline int32_t mul_fp(int32_t x, int32_t y) | 
|  | { | 
|  | return ((int64_t)x * (int64_t)y) >> FRAC_BITS; | 
|  | } | 
|  |  | 
|  | static inline int32_t div_fp(s64 x, s64 y) | 
|  | { | 
|  | return div64_s64((int64_t)x << FRAC_BITS, y); | 
|  | } | 
|  |  | 
|  | static inline int ceiling_fp(int32_t x) | 
|  | { | 
|  | int mask, ret; | 
|  |  | 
|  | ret = fp_toint(x); | 
|  | mask = (1 << FRAC_BITS) - 1; | 
|  | if (x & mask) | 
|  | ret += 1; | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | struct sample { | 
|  | int32_t core_pct_busy; | 
|  | u64 aperf; | 
|  | u64 mperf; | 
|  | int freq; | 
|  | ktime_t time; | 
|  | }; | 
|  |  | 
|  | struct pstate_data { | 
|  | int	current_pstate; | 
|  | int	min_pstate; | 
|  | int	max_pstate; | 
|  | int	scaling; | 
|  | int	turbo_pstate; | 
|  | }; | 
|  |  | 
|  | struct vid_data { | 
|  | int min; | 
|  | int max; | 
|  | int turbo; | 
|  | int32_t ratio; | 
|  | }; | 
|  |  | 
|  | struct _pid { | 
|  | int setpoint; | 
|  | int32_t integral; | 
|  | int32_t p_gain; | 
|  | int32_t i_gain; | 
|  | int32_t d_gain; | 
|  | int deadband; | 
|  | int32_t last_err; | 
|  | }; | 
|  |  | 
|  | struct cpudata { | 
|  | int cpu; | 
|  |  | 
|  | struct timer_list timer; | 
|  |  | 
|  | struct pstate_data pstate; | 
|  | struct vid_data vid; | 
|  | struct _pid pid; | 
|  |  | 
|  | ktime_t last_sample_time; | 
|  | u64	prev_aperf; | 
|  | u64	prev_mperf; | 
|  | struct sample sample; | 
|  | }; | 
|  |  | 
|  | static struct cpudata **all_cpu_data; | 
|  | struct pstate_adjust_policy { | 
|  | int sample_rate_ms; | 
|  | int deadband; | 
|  | int setpoint; | 
|  | int p_gain_pct; | 
|  | int d_gain_pct; | 
|  | int i_gain_pct; | 
|  | }; | 
|  |  | 
|  | struct pstate_funcs { | 
|  | int (*get_max)(void); | 
|  | int (*get_min)(void); | 
|  | int (*get_turbo)(void); | 
|  | int (*get_scaling)(void); | 
|  | void (*set)(struct cpudata*, int pstate); | 
|  | void (*get_vid)(struct cpudata *); | 
|  | }; | 
|  |  | 
|  | struct cpu_defaults { | 
|  | struct pstate_adjust_policy pid_policy; | 
|  | struct pstate_funcs funcs; | 
|  | }; | 
|  |  | 
|  | static struct pstate_adjust_policy pid_params; | 
|  | static struct pstate_funcs pstate_funcs; | 
|  | static int hwp_active; | 
|  |  | 
|  | struct perf_limits { | 
|  | int no_turbo; | 
|  | int turbo_disabled; | 
|  | int max_perf_pct; | 
|  | int min_perf_pct; | 
|  | int32_t max_perf; | 
|  | int32_t min_perf; | 
|  | int max_policy_pct; | 
|  | int max_sysfs_pct; | 
|  | int min_policy_pct; | 
|  | int min_sysfs_pct; | 
|  | }; | 
|  |  | 
|  | static struct perf_limits limits = { | 
|  | .no_turbo = 0, | 
|  | .turbo_disabled = 0, | 
|  | .max_perf_pct = 100, | 
|  | .max_perf = int_tofp(1), | 
|  | .min_perf_pct = 0, | 
|  | .min_perf = 0, | 
|  | .max_policy_pct = 100, | 
|  | .max_sysfs_pct = 100, | 
|  | .min_policy_pct = 0, | 
|  | .min_sysfs_pct = 0, | 
|  | }; | 
|  |  | 
|  | static inline void pid_reset(struct _pid *pid, int setpoint, int busy, | 
|  | int deadband, int integral) { | 
|  | pid->setpoint = setpoint; | 
|  | pid->deadband  = deadband; | 
|  | pid->integral  = int_tofp(integral); | 
|  | pid->last_err  = int_tofp(setpoint) - int_tofp(busy); | 
|  | } | 
|  |  | 
|  | static inline void pid_p_gain_set(struct _pid *pid, int percent) | 
|  | { | 
|  | pid->p_gain = div_fp(int_tofp(percent), int_tofp(100)); | 
|  | } | 
|  |  | 
|  | static inline void pid_i_gain_set(struct _pid *pid, int percent) | 
|  | { | 
|  | pid->i_gain = div_fp(int_tofp(percent), int_tofp(100)); | 
|  | } | 
|  |  | 
|  | static inline void pid_d_gain_set(struct _pid *pid, int percent) | 
|  | { | 
|  | pid->d_gain = div_fp(int_tofp(percent), int_tofp(100)); | 
|  | } | 
|  |  | 
|  | static signed int pid_calc(struct _pid *pid, int32_t busy) | 
|  | { | 
|  | signed int result; | 
|  | int32_t pterm, dterm, fp_error; | 
|  | int32_t integral_limit; | 
|  |  | 
|  | fp_error = int_tofp(pid->setpoint) - busy; | 
|  |  | 
|  | if (abs(fp_error) <= int_tofp(pid->deadband)) | 
|  | return 0; | 
|  |  | 
|  | pterm = mul_fp(pid->p_gain, fp_error); | 
|  |  | 
|  | pid->integral += fp_error; | 
|  |  | 
|  | /* | 
|  | * We limit the integral here so that it will never | 
|  | * get higher than 30.  This prevents it from becoming | 
|  | * too large an input over long periods of time and allows | 
|  | * it to get factored out sooner. | 
|  | * | 
|  | * The value of 30 was chosen through experimentation. | 
|  | */ | 
|  | integral_limit = int_tofp(30); | 
|  | if (pid->integral > integral_limit) | 
|  | pid->integral = integral_limit; | 
|  | if (pid->integral < -integral_limit) | 
|  | pid->integral = -integral_limit; | 
|  |  | 
|  | dterm = mul_fp(pid->d_gain, fp_error - pid->last_err); | 
|  | pid->last_err = fp_error; | 
|  |  | 
|  | result = pterm + mul_fp(pid->integral, pid->i_gain) + dterm; | 
|  | result = result + (1 << (FRAC_BITS-1)); | 
|  | return (signed int)fp_toint(result); | 
|  | } | 
|  |  | 
|  | static inline void intel_pstate_busy_pid_reset(struct cpudata *cpu) | 
|  | { | 
|  | pid_p_gain_set(&cpu->pid, pid_params.p_gain_pct); | 
|  | pid_d_gain_set(&cpu->pid, pid_params.d_gain_pct); | 
|  | pid_i_gain_set(&cpu->pid, pid_params.i_gain_pct); | 
|  |  | 
|  | pid_reset(&cpu->pid, pid_params.setpoint, 100, pid_params.deadband, 0); | 
|  | } | 
|  |  | 
|  | static inline void intel_pstate_reset_all_pid(void) | 
|  | { | 
|  | unsigned int cpu; | 
|  |  | 
|  | for_each_online_cpu(cpu) { | 
|  | if (all_cpu_data[cpu]) | 
|  | intel_pstate_busy_pid_reset(all_cpu_data[cpu]); | 
|  | } | 
|  | } | 
|  |  | 
|  | static inline void update_turbo_state(void) | 
|  | { | 
|  | u64 misc_en; | 
|  | struct cpudata *cpu; | 
|  |  | 
|  | cpu = all_cpu_data[0]; | 
|  | rdmsrl(MSR_IA32_MISC_ENABLE, misc_en); | 
|  | limits.turbo_disabled = | 
|  | (misc_en & MSR_IA32_MISC_ENABLE_TURBO_DISABLE || | 
|  | cpu->pstate.max_pstate == cpu->pstate.turbo_pstate); | 
|  | } | 
|  |  | 
|  | #define PCT_TO_HWP(x) (x * 255 / 100) | 
|  | static void intel_pstate_hwp_set(void) | 
|  | { | 
|  | int min, max, cpu; | 
|  | u64 value, freq; | 
|  |  | 
|  | get_online_cpus(); | 
|  |  | 
|  | for_each_online_cpu(cpu) { | 
|  | rdmsrl_on_cpu(cpu, MSR_HWP_REQUEST, &value); | 
|  | min = PCT_TO_HWP(limits.min_perf_pct); | 
|  | value &= ~HWP_MIN_PERF(~0L); | 
|  | value |= HWP_MIN_PERF(min); | 
|  |  | 
|  | max = PCT_TO_HWP(limits.max_perf_pct); | 
|  | if (limits.no_turbo) { | 
|  | rdmsrl( MSR_HWP_CAPABILITIES, freq); | 
|  | max = HWP_GUARANTEED_PERF(freq); | 
|  | } | 
|  |  | 
|  | value &= ~HWP_MAX_PERF(~0L); | 
|  | value |= HWP_MAX_PERF(max); | 
|  | wrmsrl_on_cpu(cpu, MSR_HWP_REQUEST, value); | 
|  | } | 
|  |  | 
|  | put_online_cpus(); | 
|  | } | 
|  |  | 
|  | /************************** debugfs begin ************************/ | 
|  | static int pid_param_set(void *data, u64 val) | 
|  | { | 
|  | *(u32 *)data = val; | 
|  | intel_pstate_reset_all_pid(); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static int pid_param_get(void *data, u64 *val) | 
|  | { | 
|  | *val = *(u32 *)data; | 
|  | return 0; | 
|  | } | 
|  | DEFINE_SIMPLE_ATTRIBUTE(fops_pid_param, pid_param_get, pid_param_set, "%llu\n"); | 
|  |  | 
|  | struct pid_param { | 
|  | char *name; | 
|  | void *value; | 
|  | }; | 
|  |  | 
|  | static struct pid_param pid_files[] = { | 
|  | {"sample_rate_ms", &pid_params.sample_rate_ms}, | 
|  | {"d_gain_pct", &pid_params.d_gain_pct}, | 
|  | {"i_gain_pct", &pid_params.i_gain_pct}, | 
|  | {"deadband", &pid_params.deadband}, | 
|  | {"setpoint", &pid_params.setpoint}, | 
|  | {"p_gain_pct", &pid_params.p_gain_pct}, | 
|  | {NULL, NULL} | 
|  | }; | 
|  |  | 
|  | static void __init intel_pstate_debug_expose_params(void) | 
|  | { | 
|  | struct dentry *debugfs_parent; | 
|  | int i = 0; | 
|  |  | 
|  | if (hwp_active) | 
|  | return; | 
|  | debugfs_parent = debugfs_create_dir("pstate_snb", NULL); | 
|  | if (IS_ERR_OR_NULL(debugfs_parent)) | 
|  | return; | 
|  | while (pid_files[i].name) { | 
|  | debugfs_create_file(pid_files[i].name, 0660, | 
|  | debugfs_parent, pid_files[i].value, | 
|  | &fops_pid_param); | 
|  | i++; | 
|  | } | 
|  | } | 
|  |  | 
|  | /************************** debugfs end ************************/ | 
|  |  | 
|  | /************************** sysfs begin ************************/ | 
|  | #define show_one(file_name, object)					\ | 
|  | static ssize_t show_##file_name					\ | 
|  | (struct kobject *kobj, struct attribute *attr, char *buf)	\ | 
|  | {								\ | 
|  | return sprintf(buf, "%u\n", limits.object);		\ | 
|  | } | 
|  |  | 
|  | static ssize_t show_turbo_pct(struct kobject *kobj, | 
|  | struct attribute *attr, char *buf) | 
|  | { | 
|  | struct cpudata *cpu; | 
|  | int total, no_turbo, turbo_pct; | 
|  | uint32_t turbo_fp; | 
|  |  | 
|  | cpu = all_cpu_data[0]; | 
|  |  | 
|  | total = cpu->pstate.turbo_pstate - cpu->pstate.min_pstate + 1; | 
|  | no_turbo = cpu->pstate.max_pstate - cpu->pstate.min_pstate + 1; | 
|  | turbo_fp = div_fp(int_tofp(no_turbo), int_tofp(total)); | 
|  | turbo_pct = 100 - fp_toint(mul_fp(turbo_fp, int_tofp(100))); | 
|  | return sprintf(buf, "%u\n", turbo_pct); | 
|  | } | 
|  |  | 
|  | static ssize_t show_num_pstates(struct kobject *kobj, | 
|  | struct attribute *attr, char *buf) | 
|  | { | 
|  | struct cpudata *cpu; | 
|  | int total; | 
|  |  | 
|  | cpu = all_cpu_data[0]; | 
|  | total = cpu->pstate.turbo_pstate - cpu->pstate.min_pstate + 1; | 
|  | return sprintf(buf, "%u\n", total); | 
|  | } | 
|  |  | 
|  | static ssize_t show_no_turbo(struct kobject *kobj, | 
|  | struct attribute *attr, char *buf) | 
|  | { | 
|  | ssize_t ret; | 
|  |  | 
|  | update_turbo_state(); | 
|  | if (limits.turbo_disabled) | 
|  | ret = sprintf(buf, "%u\n", limits.turbo_disabled); | 
|  | else | 
|  | ret = sprintf(buf, "%u\n", limits.no_turbo); | 
|  |  | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | static ssize_t store_no_turbo(struct kobject *a, struct attribute *b, | 
|  | const char *buf, size_t count) | 
|  | { | 
|  | unsigned int input; | 
|  | int ret; | 
|  |  | 
|  | ret = sscanf(buf, "%u", &input); | 
|  | if (ret != 1) | 
|  | return -EINVAL; | 
|  |  | 
|  | update_turbo_state(); | 
|  | if (limits.turbo_disabled) { | 
|  | pr_warn("Turbo disabled by BIOS or unavailable on processor\n"); | 
|  | return -EPERM; | 
|  | } | 
|  |  | 
|  | limits.no_turbo = clamp_t(int, input, 0, 1); | 
|  |  | 
|  | if (hwp_active) | 
|  | intel_pstate_hwp_set(); | 
|  |  | 
|  | return count; | 
|  | } | 
|  |  | 
|  | static ssize_t store_max_perf_pct(struct kobject *a, struct attribute *b, | 
|  | const char *buf, size_t count) | 
|  | { | 
|  | unsigned int input; | 
|  | int ret; | 
|  |  | 
|  | ret = sscanf(buf, "%u", &input); | 
|  | if (ret != 1) | 
|  | return -EINVAL; | 
|  |  | 
|  | limits.max_sysfs_pct = clamp_t(int, input, 0 , 100); | 
|  | limits.max_perf_pct = min(limits.max_policy_pct, limits.max_sysfs_pct); | 
|  | limits.max_perf = div_fp(int_tofp(limits.max_perf_pct), int_tofp(100)); | 
|  |  | 
|  | if (hwp_active) | 
|  | intel_pstate_hwp_set(); | 
|  | return count; | 
|  | } | 
|  |  | 
|  | static ssize_t store_min_perf_pct(struct kobject *a, struct attribute *b, | 
|  | const char *buf, size_t count) | 
|  | { | 
|  | unsigned int input; | 
|  | int ret; | 
|  |  | 
|  | ret = sscanf(buf, "%u", &input); | 
|  | if (ret != 1) | 
|  | return -EINVAL; | 
|  |  | 
|  | limits.min_sysfs_pct = clamp_t(int, input, 0 , 100); | 
|  | limits.min_perf_pct = max(limits.min_policy_pct, limits.min_sysfs_pct); | 
|  | limits.min_perf = div_fp(int_tofp(limits.min_perf_pct), int_tofp(100)); | 
|  |  | 
|  | if (hwp_active) | 
|  | intel_pstate_hwp_set(); | 
|  | return count; | 
|  | } | 
|  |  | 
|  | show_one(max_perf_pct, max_perf_pct); | 
|  | show_one(min_perf_pct, min_perf_pct); | 
|  |  | 
|  | define_one_global_rw(no_turbo); | 
|  | define_one_global_rw(max_perf_pct); | 
|  | define_one_global_rw(min_perf_pct); | 
|  | define_one_global_ro(turbo_pct); | 
|  | define_one_global_ro(num_pstates); | 
|  |  | 
|  | static struct attribute *intel_pstate_attributes[] = { | 
|  | &no_turbo.attr, | 
|  | &max_perf_pct.attr, | 
|  | &min_perf_pct.attr, | 
|  | &turbo_pct.attr, | 
|  | &num_pstates.attr, | 
|  | NULL | 
|  | }; | 
|  |  | 
|  | static struct attribute_group intel_pstate_attr_group = { | 
|  | .attrs = intel_pstate_attributes, | 
|  | }; | 
|  |  | 
|  | static void __init intel_pstate_sysfs_expose_params(void) | 
|  | { | 
|  | struct kobject *intel_pstate_kobject; | 
|  | int rc; | 
|  |  | 
|  | intel_pstate_kobject = kobject_create_and_add("intel_pstate", | 
|  | &cpu_subsys.dev_root->kobj); | 
|  | BUG_ON(!intel_pstate_kobject); | 
|  | rc = sysfs_create_group(intel_pstate_kobject, &intel_pstate_attr_group); | 
|  | BUG_ON(rc); | 
|  | } | 
|  | /************************** sysfs end ************************/ | 
|  |  | 
|  | static void intel_pstate_hwp_enable(void) | 
|  | { | 
|  | hwp_active++; | 
|  | pr_info("intel_pstate HWP enabled\n"); | 
|  |  | 
|  | wrmsrl( MSR_PM_ENABLE, 0x1); | 
|  | } | 
|  |  | 
|  | static int byt_get_min_pstate(void) | 
|  | { | 
|  | u64 value; | 
|  |  | 
|  | rdmsrl(BYT_RATIOS, value); | 
|  | return (value >> 8) & 0x7F; | 
|  | } | 
|  |  | 
|  | static int byt_get_max_pstate(void) | 
|  | { | 
|  | u64 value; | 
|  |  | 
|  | rdmsrl(BYT_RATIOS, value); | 
|  | return (value >> 16) & 0x7F; | 
|  | } | 
|  |  | 
|  | static int byt_get_turbo_pstate(void) | 
|  | { | 
|  | u64 value; | 
|  |  | 
|  | rdmsrl(BYT_TURBO_RATIOS, value); | 
|  | return value & 0x7F; | 
|  | } | 
|  |  | 
|  | static void byt_set_pstate(struct cpudata *cpudata, int pstate) | 
|  | { | 
|  | u64 val; | 
|  | int32_t vid_fp; | 
|  | u32 vid; | 
|  |  | 
|  | val = pstate << 8; | 
|  | if (limits.no_turbo && !limits.turbo_disabled) | 
|  | val |= (u64)1 << 32; | 
|  |  | 
|  | vid_fp = cpudata->vid.min + mul_fp( | 
|  | int_tofp(pstate - cpudata->pstate.min_pstate), | 
|  | cpudata->vid.ratio); | 
|  |  | 
|  | vid_fp = clamp_t(int32_t, vid_fp, cpudata->vid.min, cpudata->vid.max); | 
|  | vid = ceiling_fp(vid_fp); | 
|  |  | 
|  | if (pstate > cpudata->pstate.max_pstate) | 
|  | vid = cpudata->vid.turbo; | 
|  |  | 
|  | val |= vid; | 
|  |  | 
|  | wrmsrl_on_cpu(cpudata->cpu, MSR_IA32_PERF_CTL, val); | 
|  | } | 
|  |  | 
|  | #define BYT_BCLK_FREQS 5 | 
|  | static int byt_freq_table[BYT_BCLK_FREQS] = { 833, 1000, 1333, 1167, 800}; | 
|  |  | 
|  | static int byt_get_scaling(void) | 
|  | { | 
|  | u64 value; | 
|  | int i; | 
|  |  | 
|  | rdmsrl(MSR_FSB_FREQ, value); | 
|  | i = value & 0x3; | 
|  |  | 
|  | BUG_ON(i > BYT_BCLK_FREQS); | 
|  |  | 
|  | return byt_freq_table[i] * 100; | 
|  | } | 
|  |  | 
|  | static void byt_get_vid(struct cpudata *cpudata) | 
|  | { | 
|  | u64 value; | 
|  |  | 
|  | rdmsrl(BYT_VIDS, value); | 
|  | cpudata->vid.min = int_tofp((value >> 8) & 0x7f); | 
|  | cpudata->vid.max = int_tofp((value >> 16) & 0x7f); | 
|  | cpudata->vid.ratio = div_fp( | 
|  | cpudata->vid.max - cpudata->vid.min, | 
|  | int_tofp(cpudata->pstate.max_pstate - | 
|  | cpudata->pstate.min_pstate)); | 
|  |  | 
|  | rdmsrl(BYT_TURBO_VIDS, value); | 
|  | cpudata->vid.turbo = value & 0x7f; | 
|  | } | 
|  |  | 
|  | static int core_get_min_pstate(void) | 
|  | { | 
|  | u64 value; | 
|  |  | 
|  | rdmsrl(MSR_PLATFORM_INFO, value); | 
|  | return (value >> 40) & 0xFF; | 
|  | } | 
|  |  | 
|  | static int core_get_max_pstate(void) | 
|  | { | 
|  | u64 value; | 
|  |  | 
|  | rdmsrl(MSR_PLATFORM_INFO, value); | 
|  | return (value >> 8) & 0xFF; | 
|  | } | 
|  |  | 
|  | static int core_get_turbo_pstate(void) | 
|  | { | 
|  | u64 value; | 
|  | int nont, ret; | 
|  |  | 
|  | rdmsrl(MSR_NHM_TURBO_RATIO_LIMIT, value); | 
|  | nont = core_get_max_pstate(); | 
|  | ret = (value) & 255; | 
|  | if (ret <= nont) | 
|  | ret = nont; | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | static inline int core_get_scaling(void) | 
|  | { | 
|  | return 100000; | 
|  | } | 
|  |  | 
|  | static void core_set_pstate(struct cpudata *cpudata, int pstate) | 
|  | { | 
|  | u64 val; | 
|  |  | 
|  | val = pstate << 8; | 
|  | if (limits.no_turbo && !limits.turbo_disabled) | 
|  | val |= (u64)1 << 32; | 
|  |  | 
|  | wrmsrl_on_cpu(cpudata->cpu, MSR_IA32_PERF_CTL, val); | 
|  | } | 
|  |  | 
|  | static int knl_get_turbo_pstate(void) | 
|  | { | 
|  | u64 value; | 
|  | int nont, ret; | 
|  |  | 
|  | rdmsrl(MSR_NHM_TURBO_RATIO_LIMIT, value); | 
|  | nont = core_get_max_pstate(); | 
|  | ret = (((value) >> 8) & 0xFF); | 
|  | if (ret <= nont) | 
|  | ret = nont; | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | static struct cpu_defaults core_params = { | 
|  | .pid_policy = { | 
|  | .sample_rate_ms = 10, | 
|  | .deadband = 0, | 
|  | .setpoint = 97, | 
|  | .p_gain_pct = 20, | 
|  | .d_gain_pct = 0, | 
|  | .i_gain_pct = 0, | 
|  | }, | 
|  | .funcs = { | 
|  | .get_max = core_get_max_pstate, | 
|  | .get_min = core_get_min_pstate, | 
|  | .get_turbo = core_get_turbo_pstate, | 
|  | .get_scaling = core_get_scaling, | 
|  | .set = core_set_pstate, | 
|  | }, | 
|  | }; | 
|  |  | 
|  | static struct cpu_defaults byt_params = { | 
|  | .pid_policy = { | 
|  | .sample_rate_ms = 10, | 
|  | .deadband = 0, | 
|  | .setpoint = 60, | 
|  | .p_gain_pct = 14, | 
|  | .d_gain_pct = 0, | 
|  | .i_gain_pct = 4, | 
|  | }, | 
|  | .funcs = { | 
|  | .get_max = byt_get_max_pstate, | 
|  | .get_min = byt_get_min_pstate, | 
|  | .get_turbo = byt_get_turbo_pstate, | 
|  | .set = byt_set_pstate, | 
|  | .get_scaling = byt_get_scaling, | 
|  | .get_vid = byt_get_vid, | 
|  | }, | 
|  | }; | 
|  |  | 
|  | static struct cpu_defaults knl_params = { | 
|  | .pid_policy = { | 
|  | .sample_rate_ms = 10, | 
|  | .deadband = 0, | 
|  | .setpoint = 97, | 
|  | .p_gain_pct = 20, | 
|  | .d_gain_pct = 0, | 
|  | .i_gain_pct = 0, | 
|  | }, | 
|  | .funcs = { | 
|  | .get_max = core_get_max_pstate, | 
|  | .get_min = core_get_min_pstate, | 
|  | .get_turbo = knl_get_turbo_pstate, | 
|  | .get_scaling = core_get_scaling, | 
|  | .set = core_set_pstate, | 
|  | }, | 
|  | }; | 
|  |  | 
|  | static void intel_pstate_get_min_max(struct cpudata *cpu, int *min, int *max) | 
|  | { | 
|  | int max_perf = cpu->pstate.turbo_pstate; | 
|  | int max_perf_adj; | 
|  | int min_perf; | 
|  |  | 
|  | if (limits.no_turbo || limits.turbo_disabled) | 
|  | max_perf = cpu->pstate.max_pstate; | 
|  |  | 
|  | /* | 
|  | * performance can be limited by user through sysfs, by cpufreq | 
|  | * policy, or by cpu specific default values determined through | 
|  | * experimentation. | 
|  | */ | 
|  | max_perf_adj = fp_toint(mul_fp(int_tofp(max_perf), limits.max_perf)); | 
|  | *max = clamp_t(int, max_perf_adj, | 
|  | cpu->pstate.min_pstate, cpu->pstate.turbo_pstate); | 
|  |  | 
|  | min_perf = fp_toint(mul_fp(int_tofp(max_perf), limits.min_perf)); | 
|  | *min = clamp_t(int, min_perf, cpu->pstate.min_pstate, max_perf); | 
|  | } | 
|  |  | 
|  | static void intel_pstate_set_pstate(struct cpudata *cpu, int pstate) | 
|  | { | 
|  | int max_perf, min_perf; | 
|  |  | 
|  | update_turbo_state(); | 
|  |  | 
|  | intel_pstate_get_min_max(cpu, &min_perf, &max_perf); | 
|  |  | 
|  | pstate = clamp_t(int, pstate, min_perf, max_perf); | 
|  |  | 
|  | if (pstate == cpu->pstate.current_pstate) | 
|  | return; | 
|  |  | 
|  | trace_cpu_frequency(pstate * cpu->pstate.scaling, cpu->cpu); | 
|  |  | 
|  | cpu->pstate.current_pstate = pstate; | 
|  |  | 
|  | pstate_funcs.set(cpu, pstate); | 
|  | } | 
|  |  | 
|  | static void intel_pstate_get_cpu_pstates(struct cpudata *cpu) | 
|  | { | 
|  | cpu->pstate.min_pstate = pstate_funcs.get_min(); | 
|  | cpu->pstate.max_pstate = pstate_funcs.get_max(); | 
|  | cpu->pstate.turbo_pstate = pstate_funcs.get_turbo(); | 
|  | cpu->pstate.scaling = pstate_funcs.get_scaling(); | 
|  |  | 
|  | if (pstate_funcs.get_vid) | 
|  | pstate_funcs.get_vid(cpu); | 
|  | intel_pstate_set_pstate(cpu, cpu->pstate.min_pstate); | 
|  | } | 
|  |  | 
|  | static inline void intel_pstate_calc_busy(struct cpudata *cpu) | 
|  | { | 
|  | struct sample *sample = &cpu->sample; | 
|  | int64_t core_pct; | 
|  |  | 
|  | core_pct = int_tofp(sample->aperf) * int_tofp(100); | 
|  | core_pct = div64_u64(core_pct, int_tofp(sample->mperf)); | 
|  |  | 
|  | sample->freq = fp_toint( | 
|  | mul_fp(int_tofp( | 
|  | cpu->pstate.max_pstate * cpu->pstate.scaling / 100), | 
|  | core_pct)); | 
|  |  | 
|  | sample->core_pct_busy = (int32_t)core_pct; | 
|  | } | 
|  |  | 
|  | static inline void intel_pstate_sample(struct cpudata *cpu) | 
|  | { | 
|  | u64 aperf, mperf; | 
|  | unsigned long flags; | 
|  |  | 
|  | local_irq_save(flags); | 
|  | rdmsrl(MSR_IA32_APERF, aperf); | 
|  | rdmsrl(MSR_IA32_MPERF, mperf); | 
|  | if (cpu->prev_mperf == mperf) { | 
|  | local_irq_restore(flags); | 
|  | return; | 
|  | } | 
|  |  | 
|  | local_irq_restore(flags); | 
|  |  | 
|  | cpu->last_sample_time = cpu->sample.time; | 
|  | cpu->sample.time = ktime_get(); | 
|  | cpu->sample.aperf = aperf; | 
|  | cpu->sample.mperf = mperf; | 
|  | cpu->sample.aperf -= cpu->prev_aperf; | 
|  | cpu->sample.mperf -= cpu->prev_mperf; | 
|  |  | 
|  | intel_pstate_calc_busy(cpu); | 
|  |  | 
|  | cpu->prev_aperf = aperf; | 
|  | cpu->prev_mperf = mperf; | 
|  | } | 
|  |  | 
|  | static inline void intel_hwp_set_sample_time(struct cpudata *cpu) | 
|  | { | 
|  | int delay; | 
|  |  | 
|  | delay = msecs_to_jiffies(50); | 
|  | mod_timer_pinned(&cpu->timer, jiffies + delay); | 
|  | } | 
|  |  | 
|  | static inline void intel_pstate_set_sample_time(struct cpudata *cpu) | 
|  | { | 
|  | int delay; | 
|  |  | 
|  | delay = msecs_to_jiffies(pid_params.sample_rate_ms); | 
|  | mod_timer_pinned(&cpu->timer, jiffies + delay); | 
|  | } | 
|  |  | 
|  | static inline int32_t intel_pstate_get_scaled_busy(struct cpudata *cpu) | 
|  | { | 
|  | int32_t core_busy, max_pstate, current_pstate, sample_ratio; | 
|  | s64 duration_us; | 
|  | u32 sample_time; | 
|  |  | 
|  | /* | 
|  | * core_busy is the ratio of actual performance to max | 
|  | * max_pstate is the max non turbo pstate available | 
|  | * current_pstate was the pstate that was requested during | 
|  | * 	the last sample period. | 
|  | * | 
|  | * We normalize core_busy, which was our actual percent | 
|  | * performance to what we requested during the last sample | 
|  | * period. The result will be a percentage of busy at a | 
|  | * specified pstate. | 
|  | */ | 
|  | core_busy = cpu->sample.core_pct_busy; | 
|  | max_pstate = int_tofp(cpu->pstate.max_pstate); | 
|  | current_pstate = int_tofp(cpu->pstate.current_pstate); | 
|  | core_busy = mul_fp(core_busy, div_fp(max_pstate, current_pstate)); | 
|  |  | 
|  | /* | 
|  | * Since we have a deferred timer, it will not fire unless | 
|  | * we are in C0.  So, determine if the actual elapsed time | 
|  | * is significantly greater (3x) than our sample interval.  If it | 
|  | * is, then we were idle for a long enough period of time | 
|  | * to adjust our busyness. | 
|  | */ | 
|  | sample_time = pid_params.sample_rate_ms  * USEC_PER_MSEC; | 
|  | duration_us = ktime_us_delta(cpu->sample.time, | 
|  | cpu->last_sample_time); | 
|  | if (duration_us > sample_time * 3) { | 
|  | sample_ratio = div_fp(int_tofp(sample_time), | 
|  | int_tofp(duration_us)); | 
|  | core_busy = mul_fp(core_busy, sample_ratio); | 
|  | } | 
|  |  | 
|  | return core_busy; | 
|  | } | 
|  |  | 
|  | static inline void intel_pstate_adjust_busy_pstate(struct cpudata *cpu) | 
|  | { | 
|  | int32_t busy_scaled; | 
|  | struct _pid *pid; | 
|  | signed int ctl; | 
|  |  | 
|  | pid = &cpu->pid; | 
|  | busy_scaled = intel_pstate_get_scaled_busy(cpu); | 
|  |  | 
|  | ctl = pid_calc(pid, busy_scaled); | 
|  |  | 
|  | /* Negative values of ctl increase the pstate and vice versa */ | 
|  | intel_pstate_set_pstate(cpu, cpu->pstate.current_pstate - ctl); | 
|  | } | 
|  |  | 
|  | static void intel_hwp_timer_func(unsigned long __data) | 
|  | { | 
|  | struct cpudata *cpu = (struct cpudata *) __data; | 
|  |  | 
|  | intel_pstate_sample(cpu); | 
|  | intel_hwp_set_sample_time(cpu); | 
|  | } | 
|  |  | 
|  | static void intel_pstate_timer_func(unsigned long __data) | 
|  | { | 
|  | struct cpudata *cpu = (struct cpudata *) __data; | 
|  | struct sample *sample; | 
|  |  | 
|  | intel_pstate_sample(cpu); | 
|  |  | 
|  | sample = &cpu->sample; | 
|  |  | 
|  | intel_pstate_adjust_busy_pstate(cpu); | 
|  |  | 
|  | trace_pstate_sample(fp_toint(sample->core_pct_busy), | 
|  | fp_toint(intel_pstate_get_scaled_busy(cpu)), | 
|  | cpu->pstate.current_pstate, | 
|  | sample->mperf, | 
|  | sample->aperf, | 
|  | sample->freq); | 
|  |  | 
|  | intel_pstate_set_sample_time(cpu); | 
|  | } | 
|  |  | 
|  | #define ICPU(model, policy) \ | 
|  | { X86_VENDOR_INTEL, 6, model, X86_FEATURE_APERFMPERF,\ | 
|  | (unsigned long)&policy } | 
|  |  | 
|  | static const struct x86_cpu_id intel_pstate_cpu_ids[] = { | 
|  | ICPU(0x2a, core_params), | 
|  | ICPU(0x2d, core_params), | 
|  | ICPU(0x37, byt_params), | 
|  | ICPU(0x3a, core_params), | 
|  | ICPU(0x3c, core_params), | 
|  | ICPU(0x3d, core_params), | 
|  | ICPU(0x3e, core_params), | 
|  | ICPU(0x3f, core_params), | 
|  | ICPU(0x45, core_params), | 
|  | ICPU(0x46, core_params), | 
|  | ICPU(0x47, core_params), | 
|  | ICPU(0x4c, byt_params), | 
|  | ICPU(0x4e, core_params), | 
|  | ICPU(0x4f, core_params), | 
|  | ICPU(0x56, core_params), | 
|  | ICPU(0x57, knl_params), | 
|  | {} | 
|  | }; | 
|  | MODULE_DEVICE_TABLE(x86cpu, intel_pstate_cpu_ids); | 
|  |  | 
|  | static const struct x86_cpu_id intel_pstate_cpu_oob_ids[] = { | 
|  | ICPU(0x56, core_params), | 
|  | {} | 
|  | }; | 
|  |  | 
|  | static int intel_pstate_init_cpu(unsigned int cpunum) | 
|  | { | 
|  | struct cpudata *cpu; | 
|  |  | 
|  | if (!all_cpu_data[cpunum]) | 
|  | all_cpu_data[cpunum] = kzalloc(sizeof(struct cpudata), | 
|  | GFP_KERNEL); | 
|  | if (!all_cpu_data[cpunum]) | 
|  | return -ENOMEM; | 
|  |  | 
|  | cpu = all_cpu_data[cpunum]; | 
|  |  | 
|  | cpu->cpu = cpunum; | 
|  | intel_pstate_get_cpu_pstates(cpu); | 
|  |  | 
|  | init_timer_deferrable(&cpu->timer); | 
|  | cpu->timer.data = (unsigned long)cpu; | 
|  | cpu->timer.expires = jiffies + HZ/100; | 
|  |  | 
|  | if (!hwp_active) | 
|  | cpu->timer.function = intel_pstate_timer_func; | 
|  | else | 
|  | cpu->timer.function = intel_hwp_timer_func; | 
|  |  | 
|  | intel_pstate_busy_pid_reset(cpu); | 
|  | intel_pstate_sample(cpu); | 
|  |  | 
|  | add_timer_on(&cpu->timer, cpunum); | 
|  |  | 
|  | pr_debug("Intel pstate controlling: cpu %d\n", cpunum); | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static unsigned int intel_pstate_get(unsigned int cpu_num) | 
|  | { | 
|  | struct sample *sample; | 
|  | struct cpudata *cpu; | 
|  |  | 
|  | cpu = all_cpu_data[cpu_num]; | 
|  | if (!cpu) | 
|  | return 0; | 
|  | sample = &cpu->sample; | 
|  | return sample->freq; | 
|  | } | 
|  |  | 
|  | static int intel_pstate_set_policy(struct cpufreq_policy *policy) | 
|  | { | 
|  | if (!policy->cpuinfo.max_freq) | 
|  | return -ENODEV; | 
|  |  | 
|  | if (policy->policy == CPUFREQ_POLICY_PERFORMANCE && | 
|  | policy->max >= policy->cpuinfo.max_freq) { | 
|  | limits.min_policy_pct = 100; | 
|  | limits.min_perf_pct = 100; | 
|  | limits.min_perf = int_tofp(1); | 
|  | limits.max_policy_pct = 100; | 
|  | limits.max_perf_pct = 100; | 
|  | limits.max_perf = int_tofp(1); | 
|  | limits.no_turbo = 0; | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | limits.min_policy_pct = (policy->min * 100) / policy->cpuinfo.max_freq; | 
|  | limits.min_policy_pct = clamp_t(int, limits.min_policy_pct, 0 , 100); | 
|  | limits.min_perf_pct = max(limits.min_policy_pct, limits.min_sysfs_pct); | 
|  | limits.min_perf = div_fp(int_tofp(limits.min_perf_pct), int_tofp(100)); | 
|  |  | 
|  | limits.max_policy_pct = (policy->max * 100) / policy->cpuinfo.max_freq; | 
|  | limits.max_policy_pct = clamp_t(int, limits.max_policy_pct, 0 , 100); | 
|  | limits.max_perf_pct = min(limits.max_policy_pct, limits.max_sysfs_pct); | 
|  | limits.max_perf = div_fp(int_tofp(limits.max_perf_pct), int_tofp(100)); | 
|  |  | 
|  | if (hwp_active) | 
|  | intel_pstate_hwp_set(); | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static int intel_pstate_verify_policy(struct cpufreq_policy *policy) | 
|  | { | 
|  | cpufreq_verify_within_cpu_limits(policy); | 
|  |  | 
|  | if (policy->policy != CPUFREQ_POLICY_POWERSAVE && | 
|  | policy->policy != CPUFREQ_POLICY_PERFORMANCE) | 
|  | return -EINVAL; | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static void intel_pstate_stop_cpu(struct cpufreq_policy *policy) | 
|  | { | 
|  | int cpu_num = policy->cpu; | 
|  | struct cpudata *cpu = all_cpu_data[cpu_num]; | 
|  |  | 
|  | pr_info("intel_pstate CPU %d exiting\n", cpu_num); | 
|  |  | 
|  | del_timer_sync(&all_cpu_data[cpu_num]->timer); | 
|  | if (hwp_active) | 
|  | return; | 
|  |  | 
|  | intel_pstate_set_pstate(cpu, cpu->pstate.min_pstate); | 
|  | } | 
|  |  | 
|  | static int intel_pstate_cpu_init(struct cpufreq_policy *policy) | 
|  | { | 
|  | struct cpudata *cpu; | 
|  | int rc; | 
|  |  | 
|  | rc = intel_pstate_init_cpu(policy->cpu); | 
|  | if (rc) | 
|  | return rc; | 
|  |  | 
|  | cpu = all_cpu_data[policy->cpu]; | 
|  |  | 
|  | if (limits.min_perf_pct == 100 && limits.max_perf_pct == 100) | 
|  | policy->policy = CPUFREQ_POLICY_PERFORMANCE; | 
|  | else | 
|  | policy->policy = CPUFREQ_POLICY_POWERSAVE; | 
|  |  | 
|  | policy->min = cpu->pstate.min_pstate * cpu->pstate.scaling; | 
|  | policy->max = cpu->pstate.turbo_pstate * cpu->pstate.scaling; | 
|  |  | 
|  | /* cpuinfo and default policy values */ | 
|  | policy->cpuinfo.min_freq = cpu->pstate.min_pstate * cpu->pstate.scaling; | 
|  | policy->cpuinfo.max_freq = | 
|  | cpu->pstate.turbo_pstate * cpu->pstate.scaling; | 
|  | policy->cpuinfo.transition_latency = CPUFREQ_ETERNAL; | 
|  | cpumask_set_cpu(policy->cpu, policy->cpus); | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static struct cpufreq_driver intel_pstate_driver = { | 
|  | .flags		= CPUFREQ_CONST_LOOPS, | 
|  | .verify		= intel_pstate_verify_policy, | 
|  | .setpolicy	= intel_pstate_set_policy, | 
|  | .get		= intel_pstate_get, | 
|  | .init		= intel_pstate_cpu_init, | 
|  | .stop_cpu	= intel_pstate_stop_cpu, | 
|  | .name		= "intel_pstate", | 
|  | }; | 
|  |  | 
|  | static int __initdata no_load; | 
|  | static int __initdata no_hwp; | 
|  | static int __initdata hwp_only; | 
|  | static unsigned int force_load; | 
|  |  | 
|  | static int intel_pstate_msrs_not_valid(void) | 
|  | { | 
|  | if (!pstate_funcs.get_max() || | 
|  | !pstate_funcs.get_min() || | 
|  | !pstate_funcs.get_turbo()) | 
|  | return -ENODEV; | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static void copy_pid_params(struct pstate_adjust_policy *policy) | 
|  | { | 
|  | pid_params.sample_rate_ms = policy->sample_rate_ms; | 
|  | pid_params.p_gain_pct = policy->p_gain_pct; | 
|  | pid_params.i_gain_pct = policy->i_gain_pct; | 
|  | pid_params.d_gain_pct = policy->d_gain_pct; | 
|  | pid_params.deadband = policy->deadband; | 
|  | pid_params.setpoint = policy->setpoint; | 
|  | } | 
|  |  | 
|  | static void copy_cpu_funcs(struct pstate_funcs *funcs) | 
|  | { | 
|  | pstate_funcs.get_max   = funcs->get_max; | 
|  | pstate_funcs.get_min   = funcs->get_min; | 
|  | pstate_funcs.get_turbo = funcs->get_turbo; | 
|  | pstate_funcs.get_scaling = funcs->get_scaling; | 
|  | pstate_funcs.set       = funcs->set; | 
|  | pstate_funcs.get_vid   = funcs->get_vid; | 
|  | } | 
|  |  | 
|  | #if IS_ENABLED(CONFIG_ACPI) | 
|  | #include <acpi/processor.h> | 
|  |  | 
|  | static bool intel_pstate_no_acpi_pss(void) | 
|  | { | 
|  | int i; | 
|  |  | 
|  | for_each_possible_cpu(i) { | 
|  | acpi_status status; | 
|  | union acpi_object *pss; | 
|  | struct acpi_buffer buffer = { ACPI_ALLOCATE_BUFFER, NULL }; | 
|  | struct acpi_processor *pr = per_cpu(processors, i); | 
|  |  | 
|  | if (!pr) | 
|  | continue; | 
|  |  | 
|  | status = acpi_evaluate_object(pr->handle, "_PSS", NULL, &buffer); | 
|  | if (ACPI_FAILURE(status)) | 
|  | continue; | 
|  |  | 
|  | pss = buffer.pointer; | 
|  | if (pss && pss->type == ACPI_TYPE_PACKAGE) { | 
|  | kfree(pss); | 
|  | return false; | 
|  | } | 
|  |  | 
|  | kfree(pss); | 
|  | } | 
|  |  | 
|  | return true; | 
|  | } | 
|  |  | 
|  | static bool intel_pstate_has_acpi_ppc(void) | 
|  | { | 
|  | int i; | 
|  |  | 
|  | for_each_possible_cpu(i) { | 
|  | struct acpi_processor *pr = per_cpu(processors, i); | 
|  |  | 
|  | if (!pr) | 
|  | continue; | 
|  | if (acpi_has_method(pr->handle, "_PPC")) | 
|  | return true; | 
|  | } | 
|  | return false; | 
|  | } | 
|  |  | 
|  | enum { | 
|  | PSS, | 
|  | PPC, | 
|  | }; | 
|  |  | 
|  | struct hw_vendor_info { | 
|  | u16  valid; | 
|  | char oem_id[ACPI_OEM_ID_SIZE]; | 
|  | char oem_table_id[ACPI_OEM_TABLE_ID_SIZE]; | 
|  | int  oem_pwr_table; | 
|  | }; | 
|  |  | 
|  | /* Hardware vendor-specific info that has its own power management modes */ | 
|  | static struct hw_vendor_info vendor_info[] = { | 
|  | {1, "HP    ", "ProLiant", PSS}, | 
|  | {1, "ORACLE", "X4-2    ", PPC}, | 
|  | {1, "ORACLE", "X4-2L   ", PPC}, | 
|  | {1, "ORACLE", "X4-2B   ", PPC}, | 
|  | {1, "ORACLE", "X3-2    ", PPC}, | 
|  | {1, "ORACLE", "X3-2L   ", PPC}, | 
|  | {1, "ORACLE", "X3-2B   ", PPC}, | 
|  | {1, "ORACLE", "X4470M2 ", PPC}, | 
|  | {1, "ORACLE", "X4270M3 ", PPC}, | 
|  | {1, "ORACLE", "X4270M2 ", PPC}, | 
|  | {1, "ORACLE", "X4170M2 ", PPC}, | 
|  | {0, "", ""}, | 
|  | }; | 
|  |  | 
|  | static bool intel_pstate_platform_pwr_mgmt_exists(void) | 
|  | { | 
|  | struct acpi_table_header hdr; | 
|  | struct hw_vendor_info *v_info; | 
|  | const struct x86_cpu_id *id; | 
|  | u64 misc_pwr; | 
|  |  | 
|  | id = x86_match_cpu(intel_pstate_cpu_oob_ids); | 
|  | if (id) { | 
|  | rdmsrl(MSR_MISC_PWR_MGMT, misc_pwr); | 
|  | if ( misc_pwr & (1 << 8)) | 
|  | return true; | 
|  | } | 
|  |  | 
|  | if (acpi_disabled || | 
|  | ACPI_FAILURE(acpi_get_table_header(ACPI_SIG_FADT, 0, &hdr))) | 
|  | return false; | 
|  |  | 
|  | for (v_info = vendor_info; v_info->valid; v_info++) { | 
|  | if (!strncmp(hdr.oem_id, v_info->oem_id, ACPI_OEM_ID_SIZE) && | 
|  | !strncmp(hdr.oem_table_id, v_info->oem_table_id, | 
|  | ACPI_OEM_TABLE_ID_SIZE)) | 
|  | switch (v_info->oem_pwr_table) { | 
|  | case PSS: | 
|  | return intel_pstate_no_acpi_pss(); | 
|  | case PPC: | 
|  | return intel_pstate_has_acpi_ppc() && | 
|  | (!force_load); | 
|  | } | 
|  | } | 
|  |  | 
|  | return false; | 
|  | } | 
|  | #else /* CONFIG_ACPI not enabled */ | 
|  | static inline bool intel_pstate_platform_pwr_mgmt_exists(void) { return false; } | 
|  | static inline bool intel_pstate_has_acpi_ppc(void) { return false; } | 
|  | #endif /* CONFIG_ACPI */ | 
|  |  | 
|  | static int __init intel_pstate_init(void) | 
|  | { | 
|  | int cpu, rc = 0; | 
|  | const struct x86_cpu_id *id; | 
|  | struct cpu_defaults *cpu_def; | 
|  |  | 
|  | if (no_load) | 
|  | return -ENODEV; | 
|  |  | 
|  | id = x86_match_cpu(intel_pstate_cpu_ids); | 
|  | if (!id) | 
|  | return -ENODEV; | 
|  |  | 
|  | /* | 
|  | * The Intel pstate driver will be ignored if the platform | 
|  | * firmware has its own power management modes. | 
|  | */ | 
|  | if (intel_pstate_platform_pwr_mgmt_exists()) | 
|  | return -ENODEV; | 
|  |  | 
|  | cpu_def = (struct cpu_defaults *)id->driver_data; | 
|  |  | 
|  | copy_pid_params(&cpu_def->pid_policy); | 
|  | copy_cpu_funcs(&cpu_def->funcs); | 
|  |  | 
|  | if (intel_pstate_msrs_not_valid()) | 
|  | return -ENODEV; | 
|  |  | 
|  | pr_info("Intel P-state driver initializing.\n"); | 
|  |  | 
|  | all_cpu_data = vzalloc(sizeof(void *) * num_possible_cpus()); | 
|  | if (!all_cpu_data) | 
|  | return -ENOMEM; | 
|  |  | 
|  | if (static_cpu_has_safe(X86_FEATURE_HWP) && !no_hwp) | 
|  | intel_pstate_hwp_enable(); | 
|  |  | 
|  | if (!hwp_active && hwp_only) | 
|  | goto out; | 
|  |  | 
|  | rc = cpufreq_register_driver(&intel_pstate_driver); | 
|  | if (rc) | 
|  | goto out; | 
|  |  | 
|  | intel_pstate_debug_expose_params(); | 
|  | intel_pstate_sysfs_expose_params(); | 
|  |  | 
|  | return rc; | 
|  | out: | 
|  | get_online_cpus(); | 
|  | for_each_online_cpu(cpu) { | 
|  | if (all_cpu_data[cpu]) { | 
|  | del_timer_sync(&all_cpu_data[cpu]->timer); | 
|  | kfree(all_cpu_data[cpu]); | 
|  | } | 
|  | } | 
|  |  | 
|  | put_online_cpus(); | 
|  | vfree(all_cpu_data); | 
|  | return -ENODEV; | 
|  | } | 
|  | device_initcall(intel_pstate_init); | 
|  |  | 
|  | static int __init intel_pstate_setup(char *str) | 
|  | { | 
|  | if (!str) | 
|  | return -EINVAL; | 
|  |  | 
|  | if (!strcmp(str, "disable")) | 
|  | no_load = 1; | 
|  | if (!strcmp(str, "no_hwp")) | 
|  | no_hwp = 1; | 
|  | if (!strcmp(str, "force")) | 
|  | force_load = 1; | 
|  | if (!strcmp(str, "hwp_only")) | 
|  | hwp_only = 1; | 
|  | return 0; | 
|  | } | 
|  | early_param("intel_pstate", intel_pstate_setup); | 
|  |  | 
|  | MODULE_AUTHOR("Dirk Brandewie <dirk.j.brandewie@intel.com>"); | 
|  | MODULE_DESCRIPTION("'intel_pstate' - P state driver Intel Core processors"); | 
|  | MODULE_LICENSE("GPL"); |