|  | /* bbc_envctrl.c: UltraSPARC-III environment control driver. | 
|  | * | 
|  | * Copyright (C) 2001, 2008 David S. Miller (davem@davemloft.net) | 
|  | */ | 
|  |  | 
|  | #include <linux/kthread.h> | 
|  | #include <linux/delay.h> | 
|  | #include <linux/kmod.h> | 
|  | #include <linux/reboot.h> | 
|  | #include <linux/of.h> | 
|  | #include <linux/slab.h> | 
|  | #include <linux/of_device.h> | 
|  | #include <asm/oplib.h> | 
|  |  | 
|  | #include "bbc_i2c.h" | 
|  | #include "max1617.h" | 
|  |  | 
|  | #undef ENVCTRL_TRACE | 
|  |  | 
|  | /* WARNING: Making changes to this driver is very dangerous. | 
|  | *          If you misprogram the sensor chips they can | 
|  | *          cut the power on you instantly. | 
|  | */ | 
|  |  | 
|  | /* Two temperature sensors exist in the SunBLADE-1000 enclosure. | 
|  | * Both are implemented using max1617 i2c devices.  Each max1617 | 
|  | * monitors 2 temperatures, one for one of the cpu dies and the other | 
|  | * for the ambient temperature. | 
|  | * | 
|  | * The max1617 is capable of being programmed with power-off | 
|  | * temperature values, one low limit and one high limit.  These | 
|  | * can be controlled independently for the cpu or ambient temperature. | 
|  | * If a limit is violated, the power is simply shut off.  The frequency | 
|  | * with which the max1617 does temperature sampling can be controlled | 
|  | * as well. | 
|  | * | 
|  | * Three fans exist inside the machine, all three are controlled with | 
|  | * an i2c digital to analog converter.  There is a fan directed at the | 
|  | * two processor slots, another for the rest of the enclosure, and the | 
|  | * third is for the power supply.  The first two fans may be speed | 
|  | * controlled by changing the voltage fed to them.  The third fan may | 
|  | * only be completely off or on.  The third fan is meant to only be | 
|  | * disabled/enabled when entering/exiting the lowest power-saving | 
|  | * mode of the machine. | 
|  | * | 
|  | * An environmental control kernel thread periodically monitors all | 
|  | * temperature sensors.  Based upon the samples it will adjust the | 
|  | * fan speeds to try and keep the system within a certain temperature | 
|  | * range (the goal being to make the fans as quiet as possible without | 
|  | * allowing the system to get too hot). | 
|  | * | 
|  | * If the temperature begins to rise/fall outside of the acceptable | 
|  | * operating range, a periodic warning will be sent to the kernel log. | 
|  | * The fans will be put on full blast to attempt to deal with this | 
|  | * situation.  After exceeding the acceptable operating range by a | 
|  | * certain threshold, the kernel thread will shut down the system. | 
|  | * Here, the thread is attempting to shut the machine down cleanly | 
|  | * before the hardware based power-off event is triggered. | 
|  | */ | 
|  |  | 
|  | /* These settings are in Celsius.  We use these defaults only | 
|  | * if we cannot interrogate the cpu-fru SEEPROM. | 
|  | */ | 
|  | struct temp_limits { | 
|  | s8 high_pwroff, high_shutdown, high_warn; | 
|  | s8 low_warn, low_shutdown, low_pwroff; | 
|  | }; | 
|  |  | 
|  | static struct temp_limits cpu_temp_limits[2] = { | 
|  | { 100, 85, 80, 5, -5, -10 }, | 
|  | { 100, 85, 80, 5, -5, -10 }, | 
|  | }; | 
|  |  | 
|  | static struct temp_limits amb_temp_limits[2] = { | 
|  | { 65, 55, 40, 5, -5, -10 }, | 
|  | { 65, 55, 40, 5, -5, -10 }, | 
|  | }; | 
|  |  | 
|  | static LIST_HEAD(all_temps); | 
|  | static LIST_HEAD(all_fans); | 
|  |  | 
|  | #define CPU_FAN_REG	0xf0 | 
|  | #define SYS_FAN_REG	0xf2 | 
|  | #define PSUPPLY_FAN_REG	0xf4 | 
|  |  | 
|  | #define FAN_SPEED_MIN	0x0c | 
|  | #define FAN_SPEED_MAX	0x3f | 
|  |  | 
|  | #define PSUPPLY_FAN_ON	0x1f | 
|  | #define PSUPPLY_FAN_OFF	0x00 | 
|  |  | 
|  | static void set_fan_speeds(struct bbc_fan_control *fp) | 
|  | { | 
|  | /* Put temperatures into range so we don't mis-program | 
|  | * the hardware. | 
|  | */ | 
|  | if (fp->cpu_fan_speed < FAN_SPEED_MIN) | 
|  | fp->cpu_fan_speed = FAN_SPEED_MIN; | 
|  | if (fp->cpu_fan_speed > FAN_SPEED_MAX) | 
|  | fp->cpu_fan_speed = FAN_SPEED_MAX; | 
|  | if (fp->system_fan_speed < FAN_SPEED_MIN) | 
|  | fp->system_fan_speed = FAN_SPEED_MIN; | 
|  | if (fp->system_fan_speed > FAN_SPEED_MAX) | 
|  | fp->system_fan_speed = FAN_SPEED_MAX; | 
|  | #ifdef ENVCTRL_TRACE | 
|  | printk("fan%d: Changed fan speed to cpu(%02x) sys(%02x)\n", | 
|  | fp->index, | 
|  | fp->cpu_fan_speed, fp->system_fan_speed); | 
|  | #endif | 
|  |  | 
|  | bbc_i2c_writeb(fp->client, fp->cpu_fan_speed, CPU_FAN_REG); | 
|  | bbc_i2c_writeb(fp->client, fp->system_fan_speed, SYS_FAN_REG); | 
|  | bbc_i2c_writeb(fp->client, | 
|  | (fp->psupply_fan_on ? | 
|  | PSUPPLY_FAN_ON : PSUPPLY_FAN_OFF), | 
|  | PSUPPLY_FAN_REG); | 
|  | } | 
|  |  | 
|  | static void get_current_temps(struct bbc_cpu_temperature *tp) | 
|  | { | 
|  | tp->prev_amb_temp = tp->curr_amb_temp; | 
|  | bbc_i2c_readb(tp->client, | 
|  | (unsigned char *) &tp->curr_amb_temp, | 
|  | MAX1617_AMB_TEMP); | 
|  | tp->prev_cpu_temp = tp->curr_cpu_temp; | 
|  | bbc_i2c_readb(tp->client, | 
|  | (unsigned char *) &tp->curr_cpu_temp, | 
|  | MAX1617_CPU_TEMP); | 
|  | #ifdef ENVCTRL_TRACE | 
|  | printk("temp%d: cpu(%d C) amb(%d C)\n", | 
|  | tp->index, | 
|  | (int) tp->curr_cpu_temp, (int) tp->curr_amb_temp); | 
|  | #endif | 
|  | } | 
|  |  | 
|  |  | 
|  | static void do_envctrl_shutdown(struct bbc_cpu_temperature *tp) | 
|  | { | 
|  | static int shutting_down = 0; | 
|  | char *type = "???"; | 
|  | s8 val = -1; | 
|  |  | 
|  | if (shutting_down != 0) | 
|  | return; | 
|  |  | 
|  | if (tp->curr_amb_temp >= amb_temp_limits[tp->index].high_shutdown || | 
|  | tp->curr_amb_temp < amb_temp_limits[tp->index].low_shutdown) { | 
|  | type = "ambient"; | 
|  | val = tp->curr_amb_temp; | 
|  | } else if (tp->curr_cpu_temp >= cpu_temp_limits[tp->index].high_shutdown || | 
|  | tp->curr_cpu_temp < cpu_temp_limits[tp->index].low_shutdown) { | 
|  | type = "CPU"; | 
|  | val = tp->curr_cpu_temp; | 
|  | } | 
|  |  | 
|  | printk(KERN_CRIT "temp%d: Outside of safe %s " | 
|  | "operating temperature, %d C.\n", | 
|  | tp->index, type, val); | 
|  |  | 
|  | printk(KERN_CRIT "kenvctrld: Shutting down the system now.\n"); | 
|  |  | 
|  | shutting_down = 1; | 
|  | orderly_poweroff(true); | 
|  | } | 
|  |  | 
|  | #define WARN_INTERVAL	(30 * HZ) | 
|  |  | 
|  | static void analyze_ambient_temp(struct bbc_cpu_temperature *tp, unsigned long *last_warn, int tick) | 
|  | { | 
|  | int ret = 0; | 
|  |  | 
|  | if (time_after(jiffies, (*last_warn + WARN_INTERVAL))) { | 
|  | if (tp->curr_amb_temp >= | 
|  | amb_temp_limits[tp->index].high_warn) { | 
|  | printk(KERN_WARNING "temp%d: " | 
|  | "Above safe ambient operating temperature, %d C.\n", | 
|  | tp->index, (int) tp->curr_amb_temp); | 
|  | ret = 1; | 
|  | } else if (tp->curr_amb_temp < | 
|  | amb_temp_limits[tp->index].low_warn) { | 
|  | printk(KERN_WARNING "temp%d: " | 
|  | "Below safe ambient operating temperature, %d C.\n", | 
|  | tp->index, (int) tp->curr_amb_temp); | 
|  | ret = 1; | 
|  | } | 
|  | if (ret) | 
|  | *last_warn = jiffies; | 
|  | } else if (tp->curr_amb_temp >= amb_temp_limits[tp->index].high_warn || | 
|  | tp->curr_amb_temp < amb_temp_limits[tp->index].low_warn) | 
|  | ret = 1; | 
|  |  | 
|  | /* Now check the shutdown limits. */ | 
|  | if (tp->curr_amb_temp >= amb_temp_limits[tp->index].high_shutdown || | 
|  | tp->curr_amb_temp < amb_temp_limits[tp->index].low_shutdown) { | 
|  | do_envctrl_shutdown(tp); | 
|  | ret = 1; | 
|  | } | 
|  |  | 
|  | if (ret) { | 
|  | tp->fan_todo[FAN_AMBIENT] = FAN_FULLBLAST; | 
|  | } else if ((tick & (8 - 1)) == 0) { | 
|  | s8 amb_goal_hi = amb_temp_limits[tp->index].high_warn - 10; | 
|  | s8 amb_goal_lo; | 
|  |  | 
|  | amb_goal_lo = amb_goal_hi - 3; | 
|  |  | 
|  | /* We do not try to avoid 'too cold' events.  Basically we | 
|  | * only try to deal with over-heating and fan noise reduction. | 
|  | */ | 
|  | if (tp->avg_amb_temp < amb_goal_hi) { | 
|  | if (tp->avg_amb_temp >= amb_goal_lo) | 
|  | tp->fan_todo[FAN_AMBIENT] = FAN_SAME; | 
|  | else | 
|  | tp->fan_todo[FAN_AMBIENT] = FAN_SLOWER; | 
|  | } else { | 
|  | tp->fan_todo[FAN_AMBIENT] = FAN_FASTER; | 
|  | } | 
|  | } else { | 
|  | tp->fan_todo[FAN_AMBIENT] = FAN_SAME; | 
|  | } | 
|  | } | 
|  |  | 
|  | static void analyze_cpu_temp(struct bbc_cpu_temperature *tp, unsigned long *last_warn, int tick) | 
|  | { | 
|  | int ret = 0; | 
|  |  | 
|  | if (time_after(jiffies, (*last_warn + WARN_INTERVAL))) { | 
|  | if (tp->curr_cpu_temp >= | 
|  | cpu_temp_limits[tp->index].high_warn) { | 
|  | printk(KERN_WARNING "temp%d: " | 
|  | "Above safe CPU operating temperature, %d C.\n", | 
|  | tp->index, (int) tp->curr_cpu_temp); | 
|  | ret = 1; | 
|  | } else if (tp->curr_cpu_temp < | 
|  | cpu_temp_limits[tp->index].low_warn) { | 
|  | printk(KERN_WARNING "temp%d: " | 
|  | "Below safe CPU operating temperature, %d C.\n", | 
|  | tp->index, (int) tp->curr_cpu_temp); | 
|  | ret = 1; | 
|  | } | 
|  | if (ret) | 
|  | *last_warn = jiffies; | 
|  | } else if (tp->curr_cpu_temp >= cpu_temp_limits[tp->index].high_warn || | 
|  | tp->curr_cpu_temp < cpu_temp_limits[tp->index].low_warn) | 
|  | ret = 1; | 
|  |  | 
|  | /* Now check the shutdown limits. */ | 
|  | if (tp->curr_cpu_temp >= cpu_temp_limits[tp->index].high_shutdown || | 
|  | tp->curr_cpu_temp < cpu_temp_limits[tp->index].low_shutdown) { | 
|  | do_envctrl_shutdown(tp); | 
|  | ret = 1; | 
|  | } | 
|  |  | 
|  | if (ret) { | 
|  | tp->fan_todo[FAN_CPU] = FAN_FULLBLAST; | 
|  | } else if ((tick & (8 - 1)) == 0) { | 
|  | s8 cpu_goal_hi = cpu_temp_limits[tp->index].high_warn - 10; | 
|  | s8 cpu_goal_lo; | 
|  |  | 
|  | cpu_goal_lo = cpu_goal_hi - 3; | 
|  |  | 
|  | /* We do not try to avoid 'too cold' events.  Basically we | 
|  | * only try to deal with over-heating and fan noise reduction. | 
|  | */ | 
|  | if (tp->avg_cpu_temp < cpu_goal_hi) { | 
|  | if (tp->avg_cpu_temp >= cpu_goal_lo) | 
|  | tp->fan_todo[FAN_CPU] = FAN_SAME; | 
|  | else | 
|  | tp->fan_todo[FAN_CPU] = FAN_SLOWER; | 
|  | } else { | 
|  | tp->fan_todo[FAN_CPU] = FAN_FASTER; | 
|  | } | 
|  | } else { | 
|  | tp->fan_todo[FAN_CPU] = FAN_SAME; | 
|  | } | 
|  | } | 
|  |  | 
|  | static void analyze_temps(struct bbc_cpu_temperature *tp, unsigned long *last_warn) | 
|  | { | 
|  | tp->avg_amb_temp = (s8)((int)((int)tp->avg_amb_temp + (int)tp->curr_amb_temp) / 2); | 
|  | tp->avg_cpu_temp = (s8)((int)((int)tp->avg_cpu_temp + (int)tp->curr_cpu_temp) / 2); | 
|  |  | 
|  | analyze_ambient_temp(tp, last_warn, tp->sample_tick); | 
|  | analyze_cpu_temp(tp, last_warn, tp->sample_tick); | 
|  |  | 
|  | tp->sample_tick++; | 
|  | } | 
|  |  | 
|  | static enum fan_action prioritize_fan_action(int which_fan) | 
|  | { | 
|  | struct bbc_cpu_temperature *tp; | 
|  | enum fan_action decision = FAN_STATE_MAX; | 
|  |  | 
|  | /* Basically, prioritize what the temperature sensors | 
|  | * recommend we do, and perform that action on all the | 
|  | * fans. | 
|  | */ | 
|  | list_for_each_entry(tp, &all_temps, glob_list) { | 
|  | if (tp->fan_todo[which_fan] == FAN_FULLBLAST) { | 
|  | decision = FAN_FULLBLAST; | 
|  | break; | 
|  | } | 
|  | if (tp->fan_todo[which_fan] == FAN_SAME && | 
|  | decision != FAN_FASTER) | 
|  | decision = FAN_SAME; | 
|  | else if (tp->fan_todo[which_fan] == FAN_FASTER) | 
|  | decision = FAN_FASTER; | 
|  | else if (decision != FAN_FASTER && | 
|  | decision != FAN_SAME && | 
|  | tp->fan_todo[which_fan] == FAN_SLOWER) | 
|  | decision = FAN_SLOWER; | 
|  | } | 
|  | if (decision == FAN_STATE_MAX) | 
|  | decision = FAN_SAME; | 
|  |  | 
|  | return decision; | 
|  | } | 
|  |  | 
|  | static int maybe_new_ambient_fan_speed(struct bbc_fan_control *fp) | 
|  | { | 
|  | enum fan_action decision = prioritize_fan_action(FAN_AMBIENT); | 
|  | int ret; | 
|  |  | 
|  | if (decision == FAN_SAME) | 
|  | return 0; | 
|  |  | 
|  | ret = 1; | 
|  | if (decision == FAN_FULLBLAST) { | 
|  | if (fp->system_fan_speed >= FAN_SPEED_MAX) | 
|  | ret = 0; | 
|  | else | 
|  | fp->system_fan_speed = FAN_SPEED_MAX; | 
|  | } else { | 
|  | if (decision == FAN_FASTER) { | 
|  | if (fp->system_fan_speed >= FAN_SPEED_MAX) | 
|  | ret = 0; | 
|  | else | 
|  | fp->system_fan_speed += 2; | 
|  | } else { | 
|  | int orig_speed = fp->system_fan_speed; | 
|  |  | 
|  | if (orig_speed <= FAN_SPEED_MIN || | 
|  | orig_speed <= (fp->cpu_fan_speed - 3)) | 
|  | ret = 0; | 
|  | else | 
|  | fp->system_fan_speed -= 1; | 
|  | } | 
|  | } | 
|  |  | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | static int maybe_new_cpu_fan_speed(struct bbc_fan_control *fp) | 
|  | { | 
|  | enum fan_action decision = prioritize_fan_action(FAN_CPU); | 
|  | int ret; | 
|  |  | 
|  | if (decision == FAN_SAME) | 
|  | return 0; | 
|  |  | 
|  | ret = 1; | 
|  | if (decision == FAN_FULLBLAST) { | 
|  | if (fp->cpu_fan_speed >= FAN_SPEED_MAX) | 
|  | ret = 0; | 
|  | else | 
|  | fp->cpu_fan_speed = FAN_SPEED_MAX; | 
|  | } else { | 
|  | if (decision == FAN_FASTER) { | 
|  | if (fp->cpu_fan_speed >= FAN_SPEED_MAX) | 
|  | ret = 0; | 
|  | else { | 
|  | fp->cpu_fan_speed += 2; | 
|  | if (fp->system_fan_speed < | 
|  | (fp->cpu_fan_speed - 3)) | 
|  | fp->system_fan_speed = | 
|  | fp->cpu_fan_speed - 3; | 
|  | } | 
|  | } else { | 
|  | if (fp->cpu_fan_speed <= FAN_SPEED_MIN) | 
|  | ret = 0; | 
|  | else | 
|  | fp->cpu_fan_speed -= 1; | 
|  | } | 
|  | } | 
|  |  | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | static void maybe_new_fan_speeds(struct bbc_fan_control *fp) | 
|  | { | 
|  | int new; | 
|  |  | 
|  | new  = maybe_new_ambient_fan_speed(fp); | 
|  | new |= maybe_new_cpu_fan_speed(fp); | 
|  |  | 
|  | if (new) | 
|  | set_fan_speeds(fp); | 
|  | } | 
|  |  | 
|  | static void fans_full_blast(void) | 
|  | { | 
|  | struct bbc_fan_control *fp; | 
|  |  | 
|  | /* Since we will not be monitoring things anymore, put | 
|  | * the fans on full blast. | 
|  | */ | 
|  | list_for_each_entry(fp, &all_fans, glob_list) { | 
|  | fp->cpu_fan_speed = FAN_SPEED_MAX; | 
|  | fp->system_fan_speed = FAN_SPEED_MAX; | 
|  | fp->psupply_fan_on = 1; | 
|  | set_fan_speeds(fp); | 
|  | } | 
|  | } | 
|  |  | 
|  | #define POLL_INTERVAL	(5 * 1000) | 
|  | static unsigned long last_warning_jiffies; | 
|  | static struct task_struct *kenvctrld_task; | 
|  |  | 
|  | static int kenvctrld(void *__unused) | 
|  | { | 
|  | printk(KERN_INFO "bbc_envctrl: kenvctrld starting...\n"); | 
|  | last_warning_jiffies = jiffies - WARN_INTERVAL; | 
|  | for (;;) { | 
|  | struct bbc_cpu_temperature *tp; | 
|  | struct bbc_fan_control *fp; | 
|  |  | 
|  | msleep_interruptible(POLL_INTERVAL); | 
|  | if (kthread_should_stop()) | 
|  | break; | 
|  |  | 
|  | list_for_each_entry(tp, &all_temps, glob_list) { | 
|  | get_current_temps(tp); | 
|  | analyze_temps(tp, &last_warning_jiffies); | 
|  | } | 
|  | list_for_each_entry(fp, &all_fans, glob_list) | 
|  | maybe_new_fan_speeds(fp); | 
|  | } | 
|  | printk(KERN_INFO "bbc_envctrl: kenvctrld exiting...\n"); | 
|  |  | 
|  | fans_full_blast(); | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static void attach_one_temp(struct bbc_i2c_bus *bp, struct platform_device *op, | 
|  | int temp_idx) | 
|  | { | 
|  | struct bbc_cpu_temperature *tp; | 
|  |  | 
|  | tp = kzalloc(sizeof(*tp), GFP_KERNEL); | 
|  | if (!tp) | 
|  | return; | 
|  |  | 
|  | INIT_LIST_HEAD(&tp->bp_list); | 
|  | INIT_LIST_HEAD(&tp->glob_list); | 
|  |  | 
|  | tp->client = bbc_i2c_attach(bp, op); | 
|  | if (!tp->client) { | 
|  | kfree(tp); | 
|  | return; | 
|  | } | 
|  |  | 
|  |  | 
|  | tp->index = temp_idx; | 
|  |  | 
|  | list_add(&tp->glob_list, &all_temps); | 
|  | list_add(&tp->bp_list, &bp->temps); | 
|  |  | 
|  | /* Tell it to convert once every 5 seconds, clear all cfg | 
|  | * bits. | 
|  | */ | 
|  | bbc_i2c_writeb(tp->client, 0x00, MAX1617_WR_CFG_BYTE); | 
|  | bbc_i2c_writeb(tp->client, 0x02, MAX1617_WR_CVRATE_BYTE); | 
|  |  | 
|  | /* Program the hard temperature limits into the chip. */ | 
|  | bbc_i2c_writeb(tp->client, amb_temp_limits[tp->index].high_pwroff, | 
|  | MAX1617_WR_AMB_HIGHLIM); | 
|  | bbc_i2c_writeb(tp->client, amb_temp_limits[tp->index].low_pwroff, | 
|  | MAX1617_WR_AMB_LOWLIM); | 
|  | bbc_i2c_writeb(tp->client, cpu_temp_limits[tp->index].high_pwroff, | 
|  | MAX1617_WR_CPU_HIGHLIM); | 
|  | bbc_i2c_writeb(tp->client, cpu_temp_limits[tp->index].low_pwroff, | 
|  | MAX1617_WR_CPU_LOWLIM); | 
|  |  | 
|  | get_current_temps(tp); | 
|  | tp->prev_cpu_temp = tp->avg_cpu_temp = tp->curr_cpu_temp; | 
|  | tp->prev_amb_temp = tp->avg_amb_temp = tp->curr_amb_temp; | 
|  |  | 
|  | tp->fan_todo[FAN_AMBIENT] = FAN_SAME; | 
|  | tp->fan_todo[FAN_CPU] = FAN_SAME; | 
|  | } | 
|  |  | 
|  | static void attach_one_fan(struct bbc_i2c_bus *bp, struct platform_device *op, | 
|  | int fan_idx) | 
|  | { | 
|  | struct bbc_fan_control *fp; | 
|  |  | 
|  | fp = kzalloc(sizeof(*fp), GFP_KERNEL); | 
|  | if (!fp) | 
|  | return; | 
|  |  | 
|  | INIT_LIST_HEAD(&fp->bp_list); | 
|  | INIT_LIST_HEAD(&fp->glob_list); | 
|  |  | 
|  | fp->client = bbc_i2c_attach(bp, op); | 
|  | if (!fp->client) { | 
|  | kfree(fp); | 
|  | return; | 
|  | } | 
|  |  | 
|  | fp->index = fan_idx; | 
|  |  | 
|  | list_add(&fp->glob_list, &all_fans); | 
|  | list_add(&fp->bp_list, &bp->fans); | 
|  |  | 
|  | /* The i2c device controlling the fans is write-only. | 
|  | * So the only way to keep track of the current power | 
|  | * level fed to the fans is via software.  Choose half | 
|  | * power for cpu/system and 'on' fo the powersupply fan | 
|  | * and set it now. | 
|  | */ | 
|  | fp->psupply_fan_on = 1; | 
|  | fp->cpu_fan_speed = (FAN_SPEED_MAX - FAN_SPEED_MIN) / 2; | 
|  | fp->cpu_fan_speed += FAN_SPEED_MIN; | 
|  | fp->system_fan_speed = (FAN_SPEED_MAX - FAN_SPEED_MIN) / 2; | 
|  | fp->system_fan_speed += FAN_SPEED_MIN; | 
|  |  | 
|  | set_fan_speeds(fp); | 
|  | } | 
|  |  | 
|  | static void destroy_one_temp(struct bbc_cpu_temperature *tp) | 
|  | { | 
|  | bbc_i2c_detach(tp->client); | 
|  | kfree(tp); | 
|  | } | 
|  |  | 
|  | static void destroy_all_temps(struct bbc_i2c_bus *bp) | 
|  | { | 
|  | struct bbc_cpu_temperature *tp, *tpos; | 
|  |  | 
|  | list_for_each_entry_safe(tp, tpos, &bp->temps, bp_list) { | 
|  | list_del(&tp->bp_list); | 
|  | list_del(&tp->glob_list); | 
|  | destroy_one_temp(tp); | 
|  | } | 
|  | } | 
|  |  | 
|  | static void destroy_one_fan(struct bbc_fan_control *fp) | 
|  | { | 
|  | bbc_i2c_detach(fp->client); | 
|  | kfree(fp); | 
|  | } | 
|  |  | 
|  | static void destroy_all_fans(struct bbc_i2c_bus *bp) | 
|  | { | 
|  | struct bbc_fan_control *fp, *fpos; | 
|  |  | 
|  | list_for_each_entry_safe(fp, fpos, &bp->fans, bp_list) { | 
|  | list_del(&fp->bp_list); | 
|  | list_del(&fp->glob_list); | 
|  | destroy_one_fan(fp); | 
|  | } | 
|  | } | 
|  |  | 
|  | int bbc_envctrl_init(struct bbc_i2c_bus *bp) | 
|  | { | 
|  | struct platform_device *op; | 
|  | int temp_index = 0; | 
|  | int fan_index = 0; | 
|  | int devidx = 0; | 
|  |  | 
|  | while ((op = bbc_i2c_getdev(bp, devidx++)) != NULL) { | 
|  | if (!strcmp(op->dev.of_node->name, "temperature")) | 
|  | attach_one_temp(bp, op, temp_index++); | 
|  | if (!strcmp(op->dev.of_node->name, "fan-control")) | 
|  | attach_one_fan(bp, op, fan_index++); | 
|  | } | 
|  | if (temp_index != 0 && fan_index != 0) { | 
|  | kenvctrld_task = kthread_run(kenvctrld, NULL, "kenvctrld"); | 
|  | if (IS_ERR(kenvctrld_task)) { | 
|  | int err = PTR_ERR(kenvctrld_task); | 
|  |  | 
|  | kenvctrld_task = NULL; | 
|  | destroy_all_temps(bp); | 
|  | destroy_all_fans(bp); | 
|  | return err; | 
|  | } | 
|  | } | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | void bbc_envctrl_cleanup(struct bbc_i2c_bus *bp) | 
|  | { | 
|  | if (kenvctrld_task) | 
|  | kthread_stop(kenvctrld_task); | 
|  |  | 
|  | destroy_all_temps(bp); | 
|  | destroy_all_fans(bp); | 
|  | } |