| /* | 
 |  *  linux/fs/ext4/inode.c | 
 |  * | 
 |  * Copyright (C) 1992, 1993, 1994, 1995 | 
 |  * Remy Card (card@masi.ibp.fr) | 
 |  * Laboratoire MASI - Institut Blaise Pascal | 
 |  * Universite Pierre et Marie Curie (Paris VI) | 
 |  * | 
 |  *  from | 
 |  * | 
 |  *  linux/fs/minix/inode.c | 
 |  * | 
 |  *  Copyright (C) 1991, 1992  Linus Torvalds | 
 |  * | 
 |  *  64-bit file support on 64-bit platforms by Jakub Jelinek | 
 |  *	(jj@sunsite.ms.mff.cuni.cz) | 
 |  * | 
 |  *  Assorted race fixes, rewrite of ext4_get_block() by Al Viro, 2000 | 
 |  */ | 
 |  | 
 | #include <linux/fs.h> | 
 | #include <linux/time.h> | 
 | #include <linux/highuid.h> | 
 | #include <linux/pagemap.h> | 
 | #include <linux/quotaops.h> | 
 | #include <linux/string.h> | 
 | #include <linux/buffer_head.h> | 
 | #include <linux/writeback.h> | 
 | #include <linux/pagevec.h> | 
 | #include <linux/mpage.h> | 
 | #include <linux/namei.h> | 
 | #include <linux/uio.h> | 
 | #include <linux/bio.h> | 
 | #include <linux/workqueue.h> | 
 | #include <linux/kernel.h> | 
 | #include <linux/printk.h> | 
 | #include <linux/slab.h> | 
 | #include <linux/bitops.h> | 
 |  | 
 | #include "ext4_jbd2.h" | 
 | #include "xattr.h" | 
 | #include "acl.h" | 
 | #include "truncate.h" | 
 |  | 
 | #include <trace/events/ext4.h> | 
 |  | 
 | #define MPAGE_DA_EXTENT_TAIL 0x01 | 
 |  | 
 | static __u32 ext4_inode_csum(struct inode *inode, struct ext4_inode *raw, | 
 | 			      struct ext4_inode_info *ei) | 
 | { | 
 | 	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb); | 
 | 	__u16 csum_lo; | 
 | 	__u16 csum_hi = 0; | 
 | 	__u32 csum; | 
 |  | 
 | 	csum_lo = le16_to_cpu(raw->i_checksum_lo); | 
 | 	raw->i_checksum_lo = 0; | 
 | 	if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE && | 
 | 	    EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi)) { | 
 | 		csum_hi = le16_to_cpu(raw->i_checksum_hi); | 
 | 		raw->i_checksum_hi = 0; | 
 | 	} | 
 |  | 
 | 	csum = ext4_chksum(sbi, ei->i_csum_seed, (__u8 *)raw, | 
 | 			   EXT4_INODE_SIZE(inode->i_sb)); | 
 |  | 
 | 	raw->i_checksum_lo = cpu_to_le16(csum_lo); | 
 | 	if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE && | 
 | 	    EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi)) | 
 | 		raw->i_checksum_hi = cpu_to_le16(csum_hi); | 
 |  | 
 | 	return csum; | 
 | } | 
 |  | 
 | static int ext4_inode_csum_verify(struct inode *inode, struct ext4_inode *raw, | 
 | 				  struct ext4_inode_info *ei) | 
 | { | 
 | 	__u32 provided, calculated; | 
 |  | 
 | 	if (EXT4_SB(inode->i_sb)->s_es->s_creator_os != | 
 | 	    cpu_to_le32(EXT4_OS_LINUX) || | 
 | 	    !ext4_has_metadata_csum(inode->i_sb)) | 
 | 		return 1; | 
 |  | 
 | 	provided = le16_to_cpu(raw->i_checksum_lo); | 
 | 	calculated = ext4_inode_csum(inode, raw, ei); | 
 | 	if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE && | 
 | 	    EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi)) | 
 | 		provided |= ((__u32)le16_to_cpu(raw->i_checksum_hi)) << 16; | 
 | 	else | 
 | 		calculated &= 0xFFFF; | 
 |  | 
 | 	return provided == calculated; | 
 | } | 
 |  | 
 | static void ext4_inode_csum_set(struct inode *inode, struct ext4_inode *raw, | 
 | 				struct ext4_inode_info *ei) | 
 | { | 
 | 	__u32 csum; | 
 |  | 
 | 	if (EXT4_SB(inode->i_sb)->s_es->s_creator_os != | 
 | 	    cpu_to_le32(EXT4_OS_LINUX) || | 
 | 	    !ext4_has_metadata_csum(inode->i_sb)) | 
 | 		return; | 
 |  | 
 | 	csum = ext4_inode_csum(inode, raw, ei); | 
 | 	raw->i_checksum_lo = cpu_to_le16(csum & 0xFFFF); | 
 | 	if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE && | 
 | 	    EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi)) | 
 | 		raw->i_checksum_hi = cpu_to_le16(csum >> 16); | 
 | } | 
 |  | 
 | static inline int ext4_begin_ordered_truncate(struct inode *inode, | 
 | 					      loff_t new_size) | 
 | { | 
 | 	trace_ext4_begin_ordered_truncate(inode, new_size); | 
 | 	/* | 
 | 	 * If jinode is zero, then we never opened the file for | 
 | 	 * writing, so there's no need to call | 
 | 	 * jbd2_journal_begin_ordered_truncate() since there's no | 
 | 	 * outstanding writes we need to flush. | 
 | 	 */ | 
 | 	if (!EXT4_I(inode)->jinode) | 
 | 		return 0; | 
 | 	return jbd2_journal_begin_ordered_truncate(EXT4_JOURNAL(inode), | 
 | 						   EXT4_I(inode)->jinode, | 
 | 						   new_size); | 
 | } | 
 |  | 
 | static void ext4_invalidatepage(struct page *page, unsigned int offset, | 
 | 				unsigned int length); | 
 | static int __ext4_journalled_writepage(struct page *page, unsigned int len); | 
 | static int ext4_bh_delay_or_unwritten(handle_t *handle, struct buffer_head *bh); | 
 | static int ext4_meta_trans_blocks(struct inode *inode, int lblocks, | 
 | 				  int pextents); | 
 |  | 
 | /* | 
 |  * Test whether an inode is a fast symlink. | 
 |  */ | 
 | int ext4_inode_is_fast_symlink(struct inode *inode) | 
 | { | 
 |         int ea_blocks = EXT4_I(inode)->i_file_acl ? | 
 | 		EXT4_CLUSTER_SIZE(inode->i_sb) >> 9 : 0; | 
 |  | 
 | 	if (ext4_has_inline_data(inode)) | 
 | 		return 0; | 
 |  | 
 | 	return (S_ISLNK(inode->i_mode) && inode->i_blocks - ea_blocks == 0); | 
 | } | 
 |  | 
 | /* | 
 |  * Restart the transaction associated with *handle.  This does a commit, | 
 |  * so before we call here everything must be consistently dirtied against | 
 |  * this transaction. | 
 |  */ | 
 | int ext4_truncate_restart_trans(handle_t *handle, struct inode *inode, | 
 | 				 int nblocks) | 
 | { | 
 | 	int ret; | 
 |  | 
 | 	/* | 
 | 	 * Drop i_data_sem to avoid deadlock with ext4_map_blocks.  At this | 
 | 	 * moment, get_block can be called only for blocks inside i_size since | 
 | 	 * page cache has been already dropped and writes are blocked by | 
 | 	 * i_mutex. So we can safely drop the i_data_sem here. | 
 | 	 */ | 
 | 	BUG_ON(EXT4_JOURNAL(inode) == NULL); | 
 | 	jbd_debug(2, "restarting handle %p\n", handle); | 
 | 	up_write(&EXT4_I(inode)->i_data_sem); | 
 | 	ret = ext4_journal_restart(handle, nblocks); | 
 | 	down_write(&EXT4_I(inode)->i_data_sem); | 
 | 	ext4_discard_preallocations(inode); | 
 |  | 
 | 	return ret; | 
 | } | 
 |  | 
 | /* | 
 |  * Called at the last iput() if i_nlink is zero. | 
 |  */ | 
 | void ext4_evict_inode(struct inode *inode) | 
 | { | 
 | 	handle_t *handle; | 
 | 	int err; | 
 |  | 
 | 	trace_ext4_evict_inode(inode); | 
 |  | 
 | 	if (inode->i_nlink) { | 
 | 		/* | 
 | 		 * When journalling data dirty buffers are tracked only in the | 
 | 		 * journal. So although mm thinks everything is clean and | 
 | 		 * ready for reaping the inode might still have some pages to | 
 | 		 * write in the running transaction or waiting to be | 
 | 		 * checkpointed. Thus calling jbd2_journal_invalidatepage() | 
 | 		 * (via truncate_inode_pages()) to discard these buffers can | 
 | 		 * cause data loss. Also even if we did not discard these | 
 | 		 * buffers, we would have no way to find them after the inode | 
 | 		 * is reaped and thus user could see stale data if he tries to | 
 | 		 * read them before the transaction is checkpointed. So be | 
 | 		 * careful and force everything to disk here... We use | 
 | 		 * ei->i_datasync_tid to store the newest transaction | 
 | 		 * containing inode's data. | 
 | 		 * | 
 | 		 * Note that directories do not have this problem because they | 
 | 		 * don't use page cache. | 
 | 		 */ | 
 | 		if (ext4_should_journal_data(inode) && | 
 | 		    (S_ISLNK(inode->i_mode) || S_ISREG(inode->i_mode)) && | 
 | 		    inode->i_ino != EXT4_JOURNAL_INO) { | 
 | 			journal_t *journal = EXT4_SB(inode->i_sb)->s_journal; | 
 | 			tid_t commit_tid = EXT4_I(inode)->i_datasync_tid; | 
 |  | 
 | 			jbd2_complete_transaction(journal, commit_tid); | 
 | 			filemap_write_and_wait(&inode->i_data); | 
 | 		} | 
 | 		truncate_inode_pages_final(&inode->i_data); | 
 |  | 
 | 		WARN_ON(atomic_read(&EXT4_I(inode)->i_ioend_count)); | 
 | 		goto no_delete; | 
 | 	} | 
 |  | 
 | 	if (is_bad_inode(inode)) | 
 | 		goto no_delete; | 
 | 	dquot_initialize(inode); | 
 |  | 
 | 	if (ext4_should_order_data(inode)) | 
 | 		ext4_begin_ordered_truncate(inode, 0); | 
 | 	truncate_inode_pages_final(&inode->i_data); | 
 |  | 
 | 	WARN_ON(atomic_read(&EXT4_I(inode)->i_ioend_count)); | 
 |  | 
 | 	/* | 
 | 	 * Protect us against freezing - iput() caller didn't have to have any | 
 | 	 * protection against it | 
 | 	 */ | 
 | 	sb_start_intwrite(inode->i_sb); | 
 | 	handle = ext4_journal_start(inode, EXT4_HT_TRUNCATE, | 
 | 				    ext4_blocks_for_truncate(inode)+3); | 
 | 	if (IS_ERR(handle)) { | 
 | 		ext4_std_error(inode->i_sb, PTR_ERR(handle)); | 
 | 		/* | 
 | 		 * If we're going to skip the normal cleanup, we still need to | 
 | 		 * make sure that the in-core orphan linked list is properly | 
 | 		 * cleaned up. | 
 | 		 */ | 
 | 		ext4_orphan_del(NULL, inode); | 
 | 		sb_end_intwrite(inode->i_sb); | 
 | 		goto no_delete; | 
 | 	} | 
 |  | 
 | 	if (IS_SYNC(inode)) | 
 | 		ext4_handle_sync(handle); | 
 | 	inode->i_size = 0; | 
 | 	err = ext4_mark_inode_dirty(handle, inode); | 
 | 	if (err) { | 
 | 		ext4_warning(inode->i_sb, | 
 | 			     "couldn't mark inode dirty (err %d)", err); | 
 | 		goto stop_handle; | 
 | 	} | 
 | 	if (inode->i_blocks) | 
 | 		ext4_truncate(inode); | 
 |  | 
 | 	/* | 
 | 	 * ext4_ext_truncate() doesn't reserve any slop when it | 
 | 	 * restarts journal transactions; therefore there may not be | 
 | 	 * enough credits left in the handle to remove the inode from | 
 | 	 * the orphan list and set the dtime field. | 
 | 	 */ | 
 | 	if (!ext4_handle_has_enough_credits(handle, 3)) { | 
 | 		err = ext4_journal_extend(handle, 3); | 
 | 		if (err > 0) | 
 | 			err = ext4_journal_restart(handle, 3); | 
 | 		if (err != 0) { | 
 | 			ext4_warning(inode->i_sb, | 
 | 				     "couldn't extend journal (err %d)", err); | 
 | 		stop_handle: | 
 | 			ext4_journal_stop(handle); | 
 | 			ext4_orphan_del(NULL, inode); | 
 | 			sb_end_intwrite(inode->i_sb); | 
 | 			goto no_delete; | 
 | 		} | 
 | 	} | 
 |  | 
 | 	/* | 
 | 	 * Kill off the orphan record which ext4_truncate created. | 
 | 	 * AKPM: I think this can be inside the above `if'. | 
 | 	 * Note that ext4_orphan_del() has to be able to cope with the | 
 | 	 * deletion of a non-existent orphan - this is because we don't | 
 | 	 * know if ext4_truncate() actually created an orphan record. | 
 | 	 * (Well, we could do this if we need to, but heck - it works) | 
 | 	 */ | 
 | 	ext4_orphan_del(handle, inode); | 
 | 	EXT4_I(inode)->i_dtime	= get_seconds(); | 
 |  | 
 | 	/* | 
 | 	 * One subtle ordering requirement: if anything has gone wrong | 
 | 	 * (transaction abort, IO errors, whatever), then we can still | 
 | 	 * do these next steps (the fs will already have been marked as | 
 | 	 * having errors), but we can't free the inode if the mark_dirty | 
 | 	 * fails. | 
 | 	 */ | 
 | 	if (ext4_mark_inode_dirty(handle, inode)) | 
 | 		/* If that failed, just do the required in-core inode clear. */ | 
 | 		ext4_clear_inode(inode); | 
 | 	else | 
 | 		ext4_free_inode(handle, inode); | 
 | 	ext4_journal_stop(handle); | 
 | 	sb_end_intwrite(inode->i_sb); | 
 | 	return; | 
 | no_delete: | 
 | 	ext4_clear_inode(inode);	/* We must guarantee clearing of inode... */ | 
 | } | 
 |  | 
 | #ifdef CONFIG_QUOTA | 
 | qsize_t *ext4_get_reserved_space(struct inode *inode) | 
 | { | 
 | 	return &EXT4_I(inode)->i_reserved_quota; | 
 | } | 
 | #endif | 
 |  | 
 | /* | 
 |  * Called with i_data_sem down, which is important since we can call | 
 |  * ext4_discard_preallocations() from here. | 
 |  */ | 
 | void ext4_da_update_reserve_space(struct inode *inode, | 
 | 					int used, int quota_claim) | 
 | { | 
 | 	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb); | 
 | 	struct ext4_inode_info *ei = EXT4_I(inode); | 
 |  | 
 | 	spin_lock(&ei->i_block_reservation_lock); | 
 | 	trace_ext4_da_update_reserve_space(inode, used, quota_claim); | 
 | 	if (unlikely(used > ei->i_reserved_data_blocks)) { | 
 | 		ext4_warning(inode->i_sb, "%s: ino %lu, used %d " | 
 | 			 "with only %d reserved data blocks", | 
 | 			 __func__, inode->i_ino, used, | 
 | 			 ei->i_reserved_data_blocks); | 
 | 		WARN_ON(1); | 
 | 		used = ei->i_reserved_data_blocks; | 
 | 	} | 
 |  | 
 | 	/* Update per-inode reservations */ | 
 | 	ei->i_reserved_data_blocks -= used; | 
 | 	percpu_counter_sub(&sbi->s_dirtyclusters_counter, used); | 
 |  | 
 | 	spin_unlock(&EXT4_I(inode)->i_block_reservation_lock); | 
 |  | 
 | 	/* Update quota subsystem for data blocks */ | 
 | 	if (quota_claim) | 
 | 		dquot_claim_block(inode, EXT4_C2B(sbi, used)); | 
 | 	else { | 
 | 		/* | 
 | 		 * We did fallocate with an offset that is already delayed | 
 | 		 * allocated. So on delayed allocated writeback we should | 
 | 		 * not re-claim the quota for fallocated blocks. | 
 | 		 */ | 
 | 		dquot_release_reservation_block(inode, EXT4_C2B(sbi, used)); | 
 | 	} | 
 |  | 
 | 	/* | 
 | 	 * If we have done all the pending block allocations and if | 
 | 	 * there aren't any writers on the inode, we can discard the | 
 | 	 * inode's preallocations. | 
 | 	 */ | 
 | 	if ((ei->i_reserved_data_blocks == 0) && | 
 | 	    (atomic_read(&inode->i_writecount) == 0)) | 
 | 		ext4_discard_preallocations(inode); | 
 | } | 
 |  | 
 | static int __check_block_validity(struct inode *inode, const char *func, | 
 | 				unsigned int line, | 
 | 				struct ext4_map_blocks *map) | 
 | { | 
 | 	if (!ext4_data_block_valid(EXT4_SB(inode->i_sb), map->m_pblk, | 
 | 				   map->m_len)) { | 
 | 		ext4_error_inode(inode, func, line, map->m_pblk, | 
 | 				 "lblock %lu mapped to illegal pblock " | 
 | 				 "(length %d)", (unsigned long) map->m_lblk, | 
 | 				 map->m_len); | 
 | 		return -EIO; | 
 | 	} | 
 | 	return 0; | 
 | } | 
 |  | 
 | #define check_block_validity(inode, map)	\ | 
 | 	__check_block_validity((inode), __func__, __LINE__, (map)) | 
 |  | 
 | #ifdef ES_AGGRESSIVE_TEST | 
 | static void ext4_map_blocks_es_recheck(handle_t *handle, | 
 | 				       struct inode *inode, | 
 | 				       struct ext4_map_blocks *es_map, | 
 | 				       struct ext4_map_blocks *map, | 
 | 				       int flags) | 
 | { | 
 | 	int retval; | 
 |  | 
 | 	map->m_flags = 0; | 
 | 	/* | 
 | 	 * There is a race window that the result is not the same. | 
 | 	 * e.g. xfstests #223 when dioread_nolock enables.  The reason | 
 | 	 * is that we lookup a block mapping in extent status tree with | 
 | 	 * out taking i_data_sem.  So at the time the unwritten extent | 
 | 	 * could be converted. | 
 | 	 */ | 
 | 	if (!(flags & EXT4_GET_BLOCKS_NO_LOCK)) | 
 | 		down_read(&EXT4_I(inode)->i_data_sem); | 
 | 	if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) { | 
 | 		retval = ext4_ext_map_blocks(handle, inode, map, flags & | 
 | 					     EXT4_GET_BLOCKS_KEEP_SIZE); | 
 | 	} else { | 
 | 		retval = ext4_ind_map_blocks(handle, inode, map, flags & | 
 | 					     EXT4_GET_BLOCKS_KEEP_SIZE); | 
 | 	} | 
 | 	if (!(flags & EXT4_GET_BLOCKS_NO_LOCK)) | 
 | 		up_read((&EXT4_I(inode)->i_data_sem)); | 
 |  | 
 | 	/* | 
 | 	 * We don't check m_len because extent will be collpased in status | 
 | 	 * tree.  So the m_len might not equal. | 
 | 	 */ | 
 | 	if (es_map->m_lblk != map->m_lblk || | 
 | 	    es_map->m_flags != map->m_flags || | 
 | 	    es_map->m_pblk != map->m_pblk) { | 
 | 		printk("ES cache assertion failed for inode: %lu " | 
 | 		       "es_cached ex [%d/%d/%llu/%x] != " | 
 | 		       "found ex [%d/%d/%llu/%x] retval %d flags %x\n", | 
 | 		       inode->i_ino, es_map->m_lblk, es_map->m_len, | 
 | 		       es_map->m_pblk, es_map->m_flags, map->m_lblk, | 
 | 		       map->m_len, map->m_pblk, map->m_flags, | 
 | 		       retval, flags); | 
 | 	} | 
 | } | 
 | #endif /* ES_AGGRESSIVE_TEST */ | 
 |  | 
 | /* | 
 |  * The ext4_map_blocks() function tries to look up the requested blocks, | 
 |  * and returns if the blocks are already mapped. | 
 |  * | 
 |  * Otherwise it takes the write lock of the i_data_sem and allocate blocks | 
 |  * and store the allocated blocks in the result buffer head and mark it | 
 |  * mapped. | 
 |  * | 
 |  * If file type is extents based, it will call ext4_ext_map_blocks(), | 
 |  * Otherwise, call with ext4_ind_map_blocks() to handle indirect mapping | 
 |  * based files | 
 |  * | 
 |  * On success, it returns the number of blocks being mapped or allocated. | 
 |  * if create==0 and the blocks are pre-allocated and unwritten block, | 
 |  * the result buffer head is unmapped. If the create ==1, it will make sure | 
 |  * the buffer head is mapped. | 
 |  * | 
 |  * It returns 0 if plain look up failed (blocks have not been allocated), in | 
 |  * that case, buffer head is unmapped | 
 |  * | 
 |  * It returns the error in case of allocation failure. | 
 |  */ | 
 | int ext4_map_blocks(handle_t *handle, struct inode *inode, | 
 | 		    struct ext4_map_blocks *map, int flags) | 
 | { | 
 | 	struct extent_status es; | 
 | 	int retval; | 
 | 	int ret = 0; | 
 | #ifdef ES_AGGRESSIVE_TEST | 
 | 	struct ext4_map_blocks orig_map; | 
 |  | 
 | 	memcpy(&orig_map, map, sizeof(*map)); | 
 | #endif | 
 |  | 
 | 	map->m_flags = 0; | 
 | 	ext_debug("ext4_map_blocks(): inode %lu, flag %d, max_blocks %u," | 
 | 		  "logical block %lu\n", inode->i_ino, flags, map->m_len, | 
 | 		  (unsigned long) map->m_lblk); | 
 |  | 
 | 	/* | 
 | 	 * ext4_map_blocks returns an int, and m_len is an unsigned int | 
 | 	 */ | 
 | 	if (unlikely(map->m_len > INT_MAX)) | 
 | 		map->m_len = INT_MAX; | 
 |  | 
 | 	/* We can handle the block number less than EXT_MAX_BLOCKS */ | 
 | 	if (unlikely(map->m_lblk >= EXT_MAX_BLOCKS)) | 
 | 		return -EIO; | 
 |  | 
 | 	/* Lookup extent status tree firstly */ | 
 | 	if (ext4_es_lookup_extent(inode, map->m_lblk, &es)) { | 
 | 		if (ext4_es_is_written(&es) || ext4_es_is_unwritten(&es)) { | 
 | 			map->m_pblk = ext4_es_pblock(&es) + | 
 | 					map->m_lblk - es.es_lblk; | 
 | 			map->m_flags |= ext4_es_is_written(&es) ? | 
 | 					EXT4_MAP_MAPPED : EXT4_MAP_UNWRITTEN; | 
 | 			retval = es.es_len - (map->m_lblk - es.es_lblk); | 
 | 			if (retval > map->m_len) | 
 | 				retval = map->m_len; | 
 | 			map->m_len = retval; | 
 | 		} else if (ext4_es_is_delayed(&es) || ext4_es_is_hole(&es)) { | 
 | 			retval = 0; | 
 | 		} else { | 
 | 			BUG_ON(1); | 
 | 		} | 
 | #ifdef ES_AGGRESSIVE_TEST | 
 | 		ext4_map_blocks_es_recheck(handle, inode, map, | 
 | 					   &orig_map, flags); | 
 | #endif | 
 | 		goto found; | 
 | 	} | 
 |  | 
 | 	/* | 
 | 	 * Try to see if we can get the block without requesting a new | 
 | 	 * file system block. | 
 | 	 */ | 
 | 	if (!(flags & EXT4_GET_BLOCKS_NO_LOCK)) | 
 | 		down_read(&EXT4_I(inode)->i_data_sem); | 
 | 	if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) { | 
 | 		retval = ext4_ext_map_blocks(handle, inode, map, flags & | 
 | 					     EXT4_GET_BLOCKS_KEEP_SIZE); | 
 | 	} else { | 
 | 		retval = ext4_ind_map_blocks(handle, inode, map, flags & | 
 | 					     EXT4_GET_BLOCKS_KEEP_SIZE); | 
 | 	} | 
 | 	if (retval > 0) { | 
 | 		unsigned int status; | 
 |  | 
 | 		if (unlikely(retval != map->m_len)) { | 
 | 			ext4_warning(inode->i_sb, | 
 | 				     "ES len assertion failed for inode " | 
 | 				     "%lu: retval %d != map->m_len %d", | 
 | 				     inode->i_ino, retval, map->m_len); | 
 | 			WARN_ON(1); | 
 | 		} | 
 |  | 
 | 		status = map->m_flags & EXT4_MAP_UNWRITTEN ? | 
 | 				EXTENT_STATUS_UNWRITTEN : EXTENT_STATUS_WRITTEN; | 
 | 		if (!(flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE) && | 
 | 		    !(status & EXTENT_STATUS_WRITTEN) && | 
 | 		    ext4_find_delalloc_range(inode, map->m_lblk, | 
 | 					     map->m_lblk + map->m_len - 1)) | 
 | 			status |= EXTENT_STATUS_DELAYED; | 
 | 		ret = ext4_es_insert_extent(inode, map->m_lblk, | 
 | 					    map->m_len, map->m_pblk, status); | 
 | 		if (ret < 0) | 
 | 			retval = ret; | 
 | 	} | 
 | 	if (!(flags & EXT4_GET_BLOCKS_NO_LOCK)) | 
 | 		up_read((&EXT4_I(inode)->i_data_sem)); | 
 |  | 
 | found: | 
 | 	if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED) { | 
 | 		ret = check_block_validity(inode, map); | 
 | 		if (ret != 0) | 
 | 			return ret; | 
 | 	} | 
 |  | 
 | 	/* If it is only a block(s) look up */ | 
 | 	if ((flags & EXT4_GET_BLOCKS_CREATE) == 0) | 
 | 		return retval; | 
 |  | 
 | 	/* | 
 | 	 * Returns if the blocks have already allocated | 
 | 	 * | 
 | 	 * Note that if blocks have been preallocated | 
 | 	 * ext4_ext_get_block() returns the create = 0 | 
 | 	 * with buffer head unmapped. | 
 | 	 */ | 
 | 	if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED) | 
 | 		/* | 
 | 		 * If we need to convert extent to unwritten | 
 | 		 * we continue and do the actual work in | 
 | 		 * ext4_ext_map_blocks() | 
 | 		 */ | 
 | 		if (!(flags & EXT4_GET_BLOCKS_CONVERT_UNWRITTEN)) | 
 | 			return retval; | 
 |  | 
 | 	/* | 
 | 	 * Here we clear m_flags because after allocating an new extent, | 
 | 	 * it will be set again. | 
 | 	 */ | 
 | 	map->m_flags &= ~EXT4_MAP_FLAGS; | 
 |  | 
 | 	/* | 
 | 	 * New blocks allocate and/or writing to unwritten extent | 
 | 	 * will possibly result in updating i_data, so we take | 
 | 	 * the write lock of i_data_sem, and call get_block() | 
 | 	 * with create == 1 flag. | 
 | 	 */ | 
 | 	down_write(&EXT4_I(inode)->i_data_sem); | 
 |  | 
 | 	/* | 
 | 	 * We need to check for EXT4 here because migrate | 
 | 	 * could have changed the inode type in between | 
 | 	 */ | 
 | 	if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) { | 
 | 		retval = ext4_ext_map_blocks(handle, inode, map, flags); | 
 | 	} else { | 
 | 		retval = ext4_ind_map_blocks(handle, inode, map, flags); | 
 |  | 
 | 		if (retval > 0 && map->m_flags & EXT4_MAP_NEW) { | 
 | 			/* | 
 | 			 * We allocated new blocks which will result in | 
 | 			 * i_data's format changing.  Force the migrate | 
 | 			 * to fail by clearing migrate flags | 
 | 			 */ | 
 | 			ext4_clear_inode_state(inode, EXT4_STATE_EXT_MIGRATE); | 
 | 		} | 
 |  | 
 | 		/* | 
 | 		 * Update reserved blocks/metadata blocks after successful | 
 | 		 * block allocation which had been deferred till now. We don't | 
 | 		 * support fallocate for non extent files. So we can update | 
 | 		 * reserve space here. | 
 | 		 */ | 
 | 		if ((retval > 0) && | 
 | 			(flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE)) | 
 | 			ext4_da_update_reserve_space(inode, retval, 1); | 
 | 	} | 
 |  | 
 | 	if (retval > 0) { | 
 | 		unsigned int status; | 
 |  | 
 | 		if (unlikely(retval != map->m_len)) { | 
 | 			ext4_warning(inode->i_sb, | 
 | 				     "ES len assertion failed for inode " | 
 | 				     "%lu: retval %d != map->m_len %d", | 
 | 				     inode->i_ino, retval, map->m_len); | 
 | 			WARN_ON(1); | 
 | 		} | 
 |  | 
 | 		/* | 
 | 		 * If the extent has been zeroed out, we don't need to update | 
 | 		 * extent status tree. | 
 | 		 */ | 
 | 		if ((flags & EXT4_GET_BLOCKS_PRE_IO) && | 
 | 		    ext4_es_lookup_extent(inode, map->m_lblk, &es)) { | 
 | 			if (ext4_es_is_written(&es)) | 
 | 				goto has_zeroout; | 
 | 		} | 
 | 		status = map->m_flags & EXT4_MAP_UNWRITTEN ? | 
 | 				EXTENT_STATUS_UNWRITTEN : EXTENT_STATUS_WRITTEN; | 
 | 		if (!(flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE) && | 
 | 		    !(status & EXTENT_STATUS_WRITTEN) && | 
 | 		    ext4_find_delalloc_range(inode, map->m_lblk, | 
 | 					     map->m_lblk + map->m_len - 1)) | 
 | 			status |= EXTENT_STATUS_DELAYED; | 
 | 		ret = ext4_es_insert_extent(inode, map->m_lblk, map->m_len, | 
 | 					    map->m_pblk, status); | 
 | 		if (ret < 0) | 
 | 			retval = ret; | 
 | 	} | 
 |  | 
 | has_zeroout: | 
 | 	up_write((&EXT4_I(inode)->i_data_sem)); | 
 | 	if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED) { | 
 | 		ret = check_block_validity(inode, map); | 
 | 		if (ret != 0) | 
 | 			return ret; | 
 | 	} | 
 | 	return retval; | 
 | } | 
 |  | 
 | static void ext4_end_io_unwritten(struct buffer_head *bh, int uptodate) | 
 | { | 
 | 	struct inode *inode = bh->b_assoc_map->host; | 
 | 	/* XXX: breaks on 32-bit > 16GB. Is that even supported? */ | 
 | 	loff_t offset = (loff_t)(uintptr_t)bh->b_private << inode->i_blkbits; | 
 | 	int err; | 
 | 	if (!uptodate) | 
 | 		return; | 
 | 	WARN_ON(!buffer_unwritten(bh)); | 
 | 	err = ext4_convert_unwritten_extents(NULL, inode, offset, bh->b_size); | 
 | } | 
 |  | 
 | /* Maximum number of blocks we map for direct IO at once. */ | 
 | #define DIO_MAX_BLOCKS 4096 | 
 |  | 
 | static int _ext4_get_block(struct inode *inode, sector_t iblock, | 
 | 			   struct buffer_head *bh, int flags) | 
 | { | 
 | 	handle_t *handle = ext4_journal_current_handle(); | 
 | 	struct ext4_map_blocks map; | 
 | 	int ret = 0, started = 0; | 
 | 	int dio_credits; | 
 |  | 
 | 	if (ext4_has_inline_data(inode)) | 
 | 		return -ERANGE; | 
 |  | 
 | 	map.m_lblk = iblock; | 
 | 	map.m_len = bh->b_size >> inode->i_blkbits; | 
 |  | 
 | 	if (flags && !(flags & EXT4_GET_BLOCKS_NO_LOCK) && !handle) { | 
 | 		/* Direct IO write... */ | 
 | 		if (map.m_len > DIO_MAX_BLOCKS) | 
 | 			map.m_len = DIO_MAX_BLOCKS; | 
 | 		dio_credits = ext4_chunk_trans_blocks(inode, map.m_len); | 
 | 		handle = ext4_journal_start(inode, EXT4_HT_MAP_BLOCKS, | 
 | 					    dio_credits); | 
 | 		if (IS_ERR(handle)) { | 
 | 			ret = PTR_ERR(handle); | 
 | 			return ret; | 
 | 		} | 
 | 		started = 1; | 
 | 	} | 
 |  | 
 | 	ret = ext4_map_blocks(handle, inode, &map, flags); | 
 | 	if (ret > 0) { | 
 | 		ext4_io_end_t *io_end = ext4_inode_aio(inode); | 
 |  | 
 | 		map_bh(bh, inode->i_sb, map.m_pblk); | 
 | 		bh->b_state = (bh->b_state & ~EXT4_MAP_FLAGS) | map.m_flags; | 
 | 		if (IS_DAX(inode) && buffer_unwritten(bh) && !io_end) { | 
 | 			bh->b_assoc_map = inode->i_mapping; | 
 | 			bh->b_private = (void *)(unsigned long)iblock; | 
 | 			bh->b_end_io = ext4_end_io_unwritten; | 
 | 		} | 
 | 		if (io_end && io_end->flag & EXT4_IO_END_UNWRITTEN) | 
 | 			set_buffer_defer_completion(bh); | 
 | 		bh->b_size = inode->i_sb->s_blocksize * map.m_len; | 
 | 		ret = 0; | 
 | 	} | 
 | 	if (started) | 
 | 		ext4_journal_stop(handle); | 
 | 	return ret; | 
 | } | 
 |  | 
 | int ext4_get_block(struct inode *inode, sector_t iblock, | 
 | 		   struct buffer_head *bh, int create) | 
 | { | 
 | 	return _ext4_get_block(inode, iblock, bh, | 
 | 			       create ? EXT4_GET_BLOCKS_CREATE : 0); | 
 | } | 
 |  | 
 | /* | 
 |  * `handle' can be NULL if create is zero | 
 |  */ | 
 | struct buffer_head *ext4_getblk(handle_t *handle, struct inode *inode, | 
 | 				ext4_lblk_t block, int create) | 
 | { | 
 | 	struct ext4_map_blocks map; | 
 | 	struct buffer_head *bh; | 
 | 	int err; | 
 |  | 
 | 	J_ASSERT(handle != NULL || create == 0); | 
 |  | 
 | 	map.m_lblk = block; | 
 | 	map.m_len = 1; | 
 | 	err = ext4_map_blocks(handle, inode, &map, | 
 | 			      create ? EXT4_GET_BLOCKS_CREATE : 0); | 
 |  | 
 | 	if (err == 0) | 
 | 		return create ? ERR_PTR(-ENOSPC) : NULL; | 
 | 	if (err < 0) | 
 | 		return ERR_PTR(err); | 
 |  | 
 | 	bh = sb_getblk(inode->i_sb, map.m_pblk); | 
 | 	if (unlikely(!bh)) | 
 | 		return ERR_PTR(-ENOMEM); | 
 | 	if (map.m_flags & EXT4_MAP_NEW) { | 
 | 		J_ASSERT(create != 0); | 
 | 		J_ASSERT(handle != NULL); | 
 |  | 
 | 		/* | 
 | 		 * Now that we do not always journal data, we should | 
 | 		 * keep in mind whether this should always journal the | 
 | 		 * new buffer as metadata.  For now, regular file | 
 | 		 * writes use ext4_get_block instead, so it's not a | 
 | 		 * problem. | 
 | 		 */ | 
 | 		lock_buffer(bh); | 
 | 		BUFFER_TRACE(bh, "call get_create_access"); | 
 | 		err = ext4_journal_get_create_access(handle, bh); | 
 | 		if (unlikely(err)) { | 
 | 			unlock_buffer(bh); | 
 | 			goto errout; | 
 | 		} | 
 | 		if (!buffer_uptodate(bh)) { | 
 | 			memset(bh->b_data, 0, inode->i_sb->s_blocksize); | 
 | 			set_buffer_uptodate(bh); | 
 | 		} | 
 | 		unlock_buffer(bh); | 
 | 		BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata"); | 
 | 		err = ext4_handle_dirty_metadata(handle, inode, bh); | 
 | 		if (unlikely(err)) | 
 | 			goto errout; | 
 | 	} else | 
 | 		BUFFER_TRACE(bh, "not a new buffer"); | 
 | 	return bh; | 
 | errout: | 
 | 	brelse(bh); | 
 | 	return ERR_PTR(err); | 
 | } | 
 |  | 
 | struct buffer_head *ext4_bread(handle_t *handle, struct inode *inode, | 
 | 			       ext4_lblk_t block, int create) | 
 | { | 
 | 	struct buffer_head *bh; | 
 |  | 
 | 	bh = ext4_getblk(handle, inode, block, create); | 
 | 	if (IS_ERR(bh)) | 
 | 		return bh; | 
 | 	if (!bh || buffer_uptodate(bh)) | 
 | 		return bh; | 
 | 	ll_rw_block(READ | REQ_META | REQ_PRIO, 1, &bh); | 
 | 	wait_on_buffer(bh); | 
 | 	if (buffer_uptodate(bh)) | 
 | 		return bh; | 
 | 	put_bh(bh); | 
 | 	return ERR_PTR(-EIO); | 
 | } | 
 |  | 
 | int ext4_walk_page_buffers(handle_t *handle, | 
 | 			   struct buffer_head *head, | 
 | 			   unsigned from, | 
 | 			   unsigned to, | 
 | 			   int *partial, | 
 | 			   int (*fn)(handle_t *handle, | 
 | 				     struct buffer_head *bh)) | 
 | { | 
 | 	struct buffer_head *bh; | 
 | 	unsigned block_start, block_end; | 
 | 	unsigned blocksize = head->b_size; | 
 | 	int err, ret = 0; | 
 | 	struct buffer_head *next; | 
 |  | 
 | 	for (bh = head, block_start = 0; | 
 | 	     ret == 0 && (bh != head || !block_start); | 
 | 	     block_start = block_end, bh = next) { | 
 | 		next = bh->b_this_page; | 
 | 		block_end = block_start + blocksize; | 
 | 		if (block_end <= from || block_start >= to) { | 
 | 			if (partial && !buffer_uptodate(bh)) | 
 | 				*partial = 1; | 
 | 			continue; | 
 | 		} | 
 | 		err = (*fn)(handle, bh); | 
 | 		if (!ret) | 
 | 			ret = err; | 
 | 	} | 
 | 	return ret; | 
 | } | 
 |  | 
 | /* | 
 |  * To preserve ordering, it is essential that the hole instantiation and | 
 |  * the data write be encapsulated in a single transaction.  We cannot | 
 |  * close off a transaction and start a new one between the ext4_get_block() | 
 |  * and the commit_write().  So doing the jbd2_journal_start at the start of | 
 |  * prepare_write() is the right place. | 
 |  * | 
 |  * Also, this function can nest inside ext4_writepage().  In that case, we | 
 |  * *know* that ext4_writepage() has generated enough buffer credits to do the | 
 |  * whole page.  So we won't block on the journal in that case, which is good, | 
 |  * because the caller may be PF_MEMALLOC. | 
 |  * | 
 |  * By accident, ext4 can be reentered when a transaction is open via | 
 |  * quota file writes.  If we were to commit the transaction while thus | 
 |  * reentered, there can be a deadlock - we would be holding a quota | 
 |  * lock, and the commit would never complete if another thread had a | 
 |  * transaction open and was blocking on the quota lock - a ranking | 
 |  * violation. | 
 |  * | 
 |  * So what we do is to rely on the fact that jbd2_journal_stop/journal_start | 
 |  * will _not_ run commit under these circumstances because handle->h_ref | 
 |  * is elevated.  We'll still have enough credits for the tiny quotafile | 
 |  * write. | 
 |  */ | 
 | int do_journal_get_write_access(handle_t *handle, | 
 | 				struct buffer_head *bh) | 
 | { | 
 | 	int dirty = buffer_dirty(bh); | 
 | 	int ret; | 
 |  | 
 | 	if (!buffer_mapped(bh) || buffer_freed(bh)) | 
 | 		return 0; | 
 | 	/* | 
 | 	 * __block_write_begin() could have dirtied some buffers. Clean | 
 | 	 * the dirty bit as jbd2_journal_get_write_access() could complain | 
 | 	 * otherwise about fs integrity issues. Setting of the dirty bit | 
 | 	 * by __block_write_begin() isn't a real problem here as we clear | 
 | 	 * the bit before releasing a page lock and thus writeback cannot | 
 | 	 * ever write the buffer. | 
 | 	 */ | 
 | 	if (dirty) | 
 | 		clear_buffer_dirty(bh); | 
 | 	BUFFER_TRACE(bh, "get write access"); | 
 | 	ret = ext4_journal_get_write_access(handle, bh); | 
 | 	if (!ret && dirty) | 
 | 		ret = ext4_handle_dirty_metadata(handle, NULL, bh); | 
 | 	return ret; | 
 | } | 
 |  | 
 | static int ext4_get_block_write_nolock(struct inode *inode, sector_t iblock, | 
 | 		   struct buffer_head *bh_result, int create); | 
 |  | 
 | #ifdef CONFIG_EXT4_FS_ENCRYPTION | 
 | static int ext4_block_write_begin(struct page *page, loff_t pos, unsigned len, | 
 | 				  get_block_t *get_block) | 
 | { | 
 | 	unsigned from = pos & (PAGE_CACHE_SIZE - 1); | 
 | 	unsigned to = from + len; | 
 | 	struct inode *inode = page->mapping->host; | 
 | 	unsigned block_start, block_end; | 
 | 	sector_t block; | 
 | 	int err = 0; | 
 | 	unsigned blocksize = inode->i_sb->s_blocksize; | 
 | 	unsigned bbits; | 
 | 	struct buffer_head *bh, *head, *wait[2], **wait_bh = wait; | 
 | 	bool decrypt = false; | 
 |  | 
 | 	BUG_ON(!PageLocked(page)); | 
 | 	BUG_ON(from > PAGE_CACHE_SIZE); | 
 | 	BUG_ON(to > PAGE_CACHE_SIZE); | 
 | 	BUG_ON(from > to); | 
 |  | 
 | 	if (!page_has_buffers(page)) | 
 | 		create_empty_buffers(page, blocksize, 0); | 
 | 	head = page_buffers(page); | 
 | 	bbits = ilog2(blocksize); | 
 | 	block = (sector_t)page->index << (PAGE_CACHE_SHIFT - bbits); | 
 |  | 
 | 	for (bh = head, block_start = 0; bh != head || !block_start; | 
 | 	    block++, block_start = block_end, bh = bh->b_this_page) { | 
 | 		block_end = block_start + blocksize; | 
 | 		if (block_end <= from || block_start >= to) { | 
 | 			if (PageUptodate(page)) { | 
 | 				if (!buffer_uptodate(bh)) | 
 | 					set_buffer_uptodate(bh); | 
 | 			} | 
 | 			continue; | 
 | 		} | 
 | 		if (buffer_new(bh)) | 
 | 			clear_buffer_new(bh); | 
 | 		if (!buffer_mapped(bh)) { | 
 | 			WARN_ON(bh->b_size != blocksize); | 
 | 			err = get_block(inode, block, bh, 1); | 
 | 			if (err) | 
 | 				break; | 
 | 			if (buffer_new(bh)) { | 
 | 				unmap_underlying_metadata(bh->b_bdev, | 
 | 							  bh->b_blocknr); | 
 | 				if (PageUptodate(page)) { | 
 | 					clear_buffer_new(bh); | 
 | 					set_buffer_uptodate(bh); | 
 | 					mark_buffer_dirty(bh); | 
 | 					continue; | 
 | 				} | 
 | 				if (block_end > to || block_start < from) | 
 | 					zero_user_segments(page, to, block_end, | 
 | 							   block_start, from); | 
 | 				continue; | 
 | 			} | 
 | 		} | 
 | 		if (PageUptodate(page)) { | 
 | 			if (!buffer_uptodate(bh)) | 
 | 				set_buffer_uptodate(bh); | 
 | 			continue; | 
 | 		} | 
 | 		if (!buffer_uptodate(bh) && !buffer_delay(bh) && | 
 | 		    !buffer_unwritten(bh) && | 
 | 		    (block_start < from || block_end > to)) { | 
 | 			ll_rw_block(READ, 1, &bh); | 
 | 			*wait_bh++ = bh; | 
 | 			decrypt = ext4_encrypted_inode(inode) && | 
 | 				S_ISREG(inode->i_mode); | 
 | 		} | 
 | 	} | 
 | 	/* | 
 | 	 * If we issued read requests, let them complete. | 
 | 	 */ | 
 | 	while (wait_bh > wait) { | 
 | 		wait_on_buffer(*--wait_bh); | 
 | 		if (!buffer_uptodate(*wait_bh)) | 
 | 			err = -EIO; | 
 | 	} | 
 | 	if (unlikely(err)) | 
 | 		page_zero_new_buffers(page, from, to); | 
 | 	else if (decrypt) | 
 | 		err = ext4_decrypt_one(inode, page); | 
 | 	return err; | 
 | } | 
 | #endif | 
 |  | 
 | static int ext4_write_begin(struct file *file, struct address_space *mapping, | 
 | 			    loff_t pos, unsigned len, unsigned flags, | 
 | 			    struct page **pagep, void **fsdata) | 
 | { | 
 | 	struct inode *inode = mapping->host; | 
 | 	int ret, needed_blocks; | 
 | 	handle_t *handle; | 
 | 	int retries = 0; | 
 | 	struct page *page; | 
 | 	pgoff_t index; | 
 | 	unsigned from, to; | 
 |  | 
 | 	trace_ext4_write_begin(inode, pos, len, flags); | 
 | 	/* | 
 | 	 * Reserve one block more for addition to orphan list in case | 
 | 	 * we allocate blocks but write fails for some reason | 
 | 	 */ | 
 | 	needed_blocks = ext4_writepage_trans_blocks(inode) + 1; | 
 | 	index = pos >> PAGE_CACHE_SHIFT; | 
 | 	from = pos & (PAGE_CACHE_SIZE - 1); | 
 | 	to = from + len; | 
 |  | 
 | 	if (ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA)) { | 
 | 		ret = ext4_try_to_write_inline_data(mapping, inode, pos, len, | 
 | 						    flags, pagep); | 
 | 		if (ret < 0) | 
 | 			return ret; | 
 | 		if (ret == 1) | 
 | 			return 0; | 
 | 	} | 
 |  | 
 | 	/* | 
 | 	 * grab_cache_page_write_begin() can take a long time if the | 
 | 	 * system is thrashing due to memory pressure, or if the page | 
 | 	 * is being written back.  So grab it first before we start | 
 | 	 * the transaction handle.  This also allows us to allocate | 
 | 	 * the page (if needed) without using GFP_NOFS. | 
 | 	 */ | 
 | retry_grab: | 
 | 	page = grab_cache_page_write_begin(mapping, index, flags); | 
 | 	if (!page) | 
 | 		return -ENOMEM; | 
 | 	unlock_page(page); | 
 |  | 
 | retry_journal: | 
 | 	handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE, needed_blocks); | 
 | 	if (IS_ERR(handle)) { | 
 | 		page_cache_release(page); | 
 | 		return PTR_ERR(handle); | 
 | 	} | 
 |  | 
 | 	lock_page(page); | 
 | 	if (page->mapping != mapping) { | 
 | 		/* The page got truncated from under us */ | 
 | 		unlock_page(page); | 
 | 		page_cache_release(page); | 
 | 		ext4_journal_stop(handle); | 
 | 		goto retry_grab; | 
 | 	} | 
 | 	/* In case writeback began while the page was unlocked */ | 
 | 	wait_for_stable_page(page); | 
 |  | 
 | #ifdef CONFIG_EXT4_FS_ENCRYPTION | 
 | 	if (ext4_should_dioread_nolock(inode)) | 
 | 		ret = ext4_block_write_begin(page, pos, len, | 
 | 					     ext4_get_block_write); | 
 | 	else | 
 | 		ret = ext4_block_write_begin(page, pos, len, | 
 | 					     ext4_get_block); | 
 | #else | 
 | 	if (ext4_should_dioread_nolock(inode)) | 
 | 		ret = __block_write_begin(page, pos, len, ext4_get_block_write); | 
 | 	else | 
 | 		ret = __block_write_begin(page, pos, len, ext4_get_block); | 
 | #endif | 
 | 	if (!ret && ext4_should_journal_data(inode)) { | 
 | 		ret = ext4_walk_page_buffers(handle, page_buffers(page), | 
 | 					     from, to, NULL, | 
 | 					     do_journal_get_write_access); | 
 | 	} | 
 |  | 
 | 	if (ret) { | 
 | 		unlock_page(page); | 
 | 		/* | 
 | 		 * __block_write_begin may have instantiated a few blocks | 
 | 		 * outside i_size.  Trim these off again. Don't need | 
 | 		 * i_size_read because we hold i_mutex. | 
 | 		 * | 
 | 		 * Add inode to orphan list in case we crash before | 
 | 		 * truncate finishes | 
 | 		 */ | 
 | 		if (pos + len > inode->i_size && ext4_can_truncate(inode)) | 
 | 			ext4_orphan_add(handle, inode); | 
 |  | 
 | 		ext4_journal_stop(handle); | 
 | 		if (pos + len > inode->i_size) { | 
 | 			ext4_truncate_failed_write(inode); | 
 | 			/* | 
 | 			 * If truncate failed early the inode might | 
 | 			 * still be on the orphan list; we need to | 
 | 			 * make sure the inode is removed from the | 
 | 			 * orphan list in that case. | 
 | 			 */ | 
 | 			if (inode->i_nlink) | 
 | 				ext4_orphan_del(NULL, inode); | 
 | 		} | 
 |  | 
 | 		if (ret == -ENOSPC && | 
 | 		    ext4_should_retry_alloc(inode->i_sb, &retries)) | 
 | 			goto retry_journal; | 
 | 		page_cache_release(page); | 
 | 		return ret; | 
 | 	} | 
 | 	*pagep = page; | 
 | 	return ret; | 
 | } | 
 |  | 
 | /* For write_end() in data=journal mode */ | 
 | static int write_end_fn(handle_t *handle, struct buffer_head *bh) | 
 | { | 
 | 	int ret; | 
 | 	if (!buffer_mapped(bh) || buffer_freed(bh)) | 
 | 		return 0; | 
 | 	set_buffer_uptodate(bh); | 
 | 	ret = ext4_handle_dirty_metadata(handle, NULL, bh); | 
 | 	clear_buffer_meta(bh); | 
 | 	clear_buffer_prio(bh); | 
 | 	return ret; | 
 | } | 
 |  | 
 | /* | 
 |  * We need to pick up the new inode size which generic_commit_write gave us | 
 |  * `file' can be NULL - eg, when called from page_symlink(). | 
 |  * | 
 |  * ext4 never places buffers on inode->i_mapping->private_list.  metadata | 
 |  * buffers are managed internally. | 
 |  */ | 
 | static int ext4_write_end(struct file *file, | 
 | 			  struct address_space *mapping, | 
 | 			  loff_t pos, unsigned len, unsigned copied, | 
 | 			  struct page *page, void *fsdata) | 
 | { | 
 | 	handle_t *handle = ext4_journal_current_handle(); | 
 | 	struct inode *inode = mapping->host; | 
 | 	loff_t old_size = inode->i_size; | 
 | 	int ret = 0, ret2; | 
 | 	int i_size_changed = 0; | 
 |  | 
 | 	trace_ext4_write_end(inode, pos, len, copied); | 
 | 	if (ext4_test_inode_state(inode, EXT4_STATE_ORDERED_MODE)) { | 
 | 		ret = ext4_jbd2_file_inode(handle, inode); | 
 | 		if (ret) { | 
 | 			unlock_page(page); | 
 | 			page_cache_release(page); | 
 | 			goto errout; | 
 | 		} | 
 | 	} | 
 |  | 
 | 	if (ext4_has_inline_data(inode)) { | 
 | 		ret = ext4_write_inline_data_end(inode, pos, len, | 
 | 						 copied, page); | 
 | 		if (ret < 0) | 
 | 			goto errout; | 
 | 		copied = ret; | 
 | 	} else | 
 | 		copied = block_write_end(file, mapping, pos, | 
 | 					 len, copied, page, fsdata); | 
 | 	/* | 
 | 	 * it's important to update i_size while still holding page lock: | 
 | 	 * page writeout could otherwise come in and zero beyond i_size. | 
 | 	 */ | 
 | 	i_size_changed = ext4_update_inode_size(inode, pos + copied); | 
 | 	unlock_page(page); | 
 | 	page_cache_release(page); | 
 |  | 
 | 	if (old_size < pos) | 
 | 		pagecache_isize_extended(inode, old_size, pos); | 
 | 	/* | 
 | 	 * Don't mark the inode dirty under page lock. First, it unnecessarily | 
 | 	 * makes the holding time of page lock longer. Second, it forces lock | 
 | 	 * ordering of page lock and transaction start for journaling | 
 | 	 * filesystems. | 
 | 	 */ | 
 | 	if (i_size_changed) | 
 | 		ext4_mark_inode_dirty(handle, inode); | 
 |  | 
 | 	if (pos + len > inode->i_size && ext4_can_truncate(inode)) | 
 | 		/* if we have allocated more blocks and copied | 
 | 		 * less. We will have blocks allocated outside | 
 | 		 * inode->i_size. So truncate them | 
 | 		 */ | 
 | 		ext4_orphan_add(handle, inode); | 
 | errout: | 
 | 	ret2 = ext4_journal_stop(handle); | 
 | 	if (!ret) | 
 | 		ret = ret2; | 
 |  | 
 | 	if (pos + len > inode->i_size) { | 
 | 		ext4_truncate_failed_write(inode); | 
 | 		/* | 
 | 		 * If truncate failed early the inode might still be | 
 | 		 * on the orphan list; we need to make sure the inode | 
 | 		 * is removed from the orphan list in that case. | 
 | 		 */ | 
 | 		if (inode->i_nlink) | 
 | 			ext4_orphan_del(NULL, inode); | 
 | 	} | 
 |  | 
 | 	return ret ? ret : copied; | 
 | } | 
 |  | 
 | static int ext4_journalled_write_end(struct file *file, | 
 | 				     struct address_space *mapping, | 
 | 				     loff_t pos, unsigned len, unsigned copied, | 
 | 				     struct page *page, void *fsdata) | 
 | { | 
 | 	handle_t *handle = ext4_journal_current_handle(); | 
 | 	struct inode *inode = mapping->host; | 
 | 	loff_t old_size = inode->i_size; | 
 | 	int ret = 0, ret2; | 
 | 	int partial = 0; | 
 | 	unsigned from, to; | 
 | 	int size_changed = 0; | 
 |  | 
 | 	trace_ext4_journalled_write_end(inode, pos, len, copied); | 
 | 	from = pos & (PAGE_CACHE_SIZE - 1); | 
 | 	to = from + len; | 
 |  | 
 | 	BUG_ON(!ext4_handle_valid(handle)); | 
 |  | 
 | 	if (ext4_has_inline_data(inode)) | 
 | 		copied = ext4_write_inline_data_end(inode, pos, len, | 
 | 						    copied, page); | 
 | 	else { | 
 | 		if (copied < len) { | 
 | 			if (!PageUptodate(page)) | 
 | 				copied = 0; | 
 | 			page_zero_new_buffers(page, from+copied, to); | 
 | 		} | 
 |  | 
 | 		ret = ext4_walk_page_buffers(handle, page_buffers(page), from, | 
 | 					     to, &partial, write_end_fn); | 
 | 		if (!partial) | 
 | 			SetPageUptodate(page); | 
 | 	} | 
 | 	size_changed = ext4_update_inode_size(inode, pos + copied); | 
 | 	ext4_set_inode_state(inode, EXT4_STATE_JDATA); | 
 | 	EXT4_I(inode)->i_datasync_tid = handle->h_transaction->t_tid; | 
 | 	unlock_page(page); | 
 | 	page_cache_release(page); | 
 |  | 
 | 	if (old_size < pos) | 
 | 		pagecache_isize_extended(inode, old_size, pos); | 
 |  | 
 | 	if (size_changed) { | 
 | 		ret2 = ext4_mark_inode_dirty(handle, inode); | 
 | 		if (!ret) | 
 | 			ret = ret2; | 
 | 	} | 
 |  | 
 | 	if (pos + len > inode->i_size && ext4_can_truncate(inode)) | 
 | 		/* if we have allocated more blocks and copied | 
 | 		 * less. We will have blocks allocated outside | 
 | 		 * inode->i_size. So truncate them | 
 | 		 */ | 
 | 		ext4_orphan_add(handle, inode); | 
 |  | 
 | 	ret2 = ext4_journal_stop(handle); | 
 | 	if (!ret) | 
 | 		ret = ret2; | 
 | 	if (pos + len > inode->i_size) { | 
 | 		ext4_truncate_failed_write(inode); | 
 | 		/* | 
 | 		 * If truncate failed early the inode might still be | 
 | 		 * on the orphan list; we need to make sure the inode | 
 | 		 * is removed from the orphan list in that case. | 
 | 		 */ | 
 | 		if (inode->i_nlink) | 
 | 			ext4_orphan_del(NULL, inode); | 
 | 	} | 
 |  | 
 | 	return ret ? ret : copied; | 
 | } | 
 |  | 
 | /* | 
 |  * Reserve a single cluster located at lblock | 
 |  */ | 
 | static int ext4_da_reserve_space(struct inode *inode, ext4_lblk_t lblock) | 
 | { | 
 | 	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb); | 
 | 	struct ext4_inode_info *ei = EXT4_I(inode); | 
 | 	unsigned int md_needed; | 
 | 	int ret; | 
 |  | 
 | 	/* | 
 | 	 * We will charge metadata quota at writeout time; this saves | 
 | 	 * us from metadata over-estimation, though we may go over by | 
 | 	 * a small amount in the end.  Here we just reserve for data. | 
 | 	 */ | 
 | 	ret = dquot_reserve_block(inode, EXT4_C2B(sbi, 1)); | 
 | 	if (ret) | 
 | 		return ret; | 
 |  | 
 | 	/* | 
 | 	 * recalculate the amount of metadata blocks to reserve | 
 | 	 * in order to allocate nrblocks | 
 | 	 * worse case is one extent per block | 
 | 	 */ | 
 | 	spin_lock(&ei->i_block_reservation_lock); | 
 | 	/* | 
 | 	 * ext4_calc_metadata_amount() has side effects, which we have | 
 | 	 * to be prepared undo if we fail to claim space. | 
 | 	 */ | 
 | 	md_needed = 0; | 
 | 	trace_ext4_da_reserve_space(inode, 0); | 
 |  | 
 | 	if (ext4_claim_free_clusters(sbi, 1, 0)) { | 
 | 		spin_unlock(&ei->i_block_reservation_lock); | 
 | 		dquot_release_reservation_block(inode, EXT4_C2B(sbi, 1)); | 
 | 		return -ENOSPC; | 
 | 	} | 
 | 	ei->i_reserved_data_blocks++; | 
 | 	spin_unlock(&ei->i_block_reservation_lock); | 
 |  | 
 | 	return 0;       /* success */ | 
 | } | 
 |  | 
 | static void ext4_da_release_space(struct inode *inode, int to_free) | 
 | { | 
 | 	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb); | 
 | 	struct ext4_inode_info *ei = EXT4_I(inode); | 
 |  | 
 | 	if (!to_free) | 
 | 		return;		/* Nothing to release, exit */ | 
 |  | 
 | 	spin_lock(&EXT4_I(inode)->i_block_reservation_lock); | 
 |  | 
 | 	trace_ext4_da_release_space(inode, to_free); | 
 | 	if (unlikely(to_free > ei->i_reserved_data_blocks)) { | 
 | 		/* | 
 | 		 * if there aren't enough reserved blocks, then the | 
 | 		 * counter is messed up somewhere.  Since this | 
 | 		 * function is called from invalidate page, it's | 
 | 		 * harmless to return without any action. | 
 | 		 */ | 
 | 		ext4_warning(inode->i_sb, "ext4_da_release_space: " | 
 | 			 "ino %lu, to_free %d with only %d reserved " | 
 | 			 "data blocks", inode->i_ino, to_free, | 
 | 			 ei->i_reserved_data_blocks); | 
 | 		WARN_ON(1); | 
 | 		to_free = ei->i_reserved_data_blocks; | 
 | 	} | 
 | 	ei->i_reserved_data_blocks -= to_free; | 
 |  | 
 | 	/* update fs dirty data blocks counter */ | 
 | 	percpu_counter_sub(&sbi->s_dirtyclusters_counter, to_free); | 
 |  | 
 | 	spin_unlock(&EXT4_I(inode)->i_block_reservation_lock); | 
 |  | 
 | 	dquot_release_reservation_block(inode, EXT4_C2B(sbi, to_free)); | 
 | } | 
 |  | 
 | static void ext4_da_page_release_reservation(struct page *page, | 
 | 					     unsigned int offset, | 
 | 					     unsigned int length) | 
 | { | 
 | 	int to_release = 0, contiguous_blks = 0; | 
 | 	struct buffer_head *head, *bh; | 
 | 	unsigned int curr_off = 0; | 
 | 	struct inode *inode = page->mapping->host; | 
 | 	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb); | 
 | 	unsigned int stop = offset + length; | 
 | 	int num_clusters; | 
 | 	ext4_fsblk_t lblk; | 
 |  | 
 | 	BUG_ON(stop > PAGE_CACHE_SIZE || stop < length); | 
 |  | 
 | 	head = page_buffers(page); | 
 | 	bh = head; | 
 | 	do { | 
 | 		unsigned int next_off = curr_off + bh->b_size; | 
 |  | 
 | 		if (next_off > stop) | 
 | 			break; | 
 |  | 
 | 		if ((offset <= curr_off) && (buffer_delay(bh))) { | 
 | 			to_release++; | 
 | 			contiguous_blks++; | 
 | 			clear_buffer_delay(bh); | 
 | 		} else if (contiguous_blks) { | 
 | 			lblk = page->index << | 
 | 			       (PAGE_CACHE_SHIFT - inode->i_blkbits); | 
 | 			lblk += (curr_off >> inode->i_blkbits) - | 
 | 				contiguous_blks; | 
 | 			ext4_es_remove_extent(inode, lblk, contiguous_blks); | 
 | 			contiguous_blks = 0; | 
 | 		} | 
 | 		curr_off = next_off; | 
 | 	} while ((bh = bh->b_this_page) != head); | 
 |  | 
 | 	if (contiguous_blks) { | 
 | 		lblk = page->index << (PAGE_CACHE_SHIFT - inode->i_blkbits); | 
 | 		lblk += (curr_off >> inode->i_blkbits) - contiguous_blks; | 
 | 		ext4_es_remove_extent(inode, lblk, contiguous_blks); | 
 | 	} | 
 |  | 
 | 	/* If we have released all the blocks belonging to a cluster, then we | 
 | 	 * need to release the reserved space for that cluster. */ | 
 | 	num_clusters = EXT4_NUM_B2C(sbi, to_release); | 
 | 	while (num_clusters > 0) { | 
 | 		lblk = (page->index << (PAGE_CACHE_SHIFT - inode->i_blkbits)) + | 
 | 			((num_clusters - 1) << sbi->s_cluster_bits); | 
 | 		if (sbi->s_cluster_ratio == 1 || | 
 | 		    !ext4_find_delalloc_cluster(inode, lblk)) | 
 | 			ext4_da_release_space(inode, 1); | 
 |  | 
 | 		num_clusters--; | 
 | 	} | 
 | } | 
 |  | 
 | /* | 
 |  * Delayed allocation stuff | 
 |  */ | 
 |  | 
 | struct mpage_da_data { | 
 | 	struct inode *inode; | 
 | 	struct writeback_control *wbc; | 
 |  | 
 | 	pgoff_t first_page;	/* The first page to write */ | 
 | 	pgoff_t next_page;	/* Current page to examine */ | 
 | 	pgoff_t last_page;	/* Last page to examine */ | 
 | 	/* | 
 | 	 * Extent to map - this can be after first_page because that can be | 
 | 	 * fully mapped. We somewhat abuse m_flags to store whether the extent | 
 | 	 * is delalloc or unwritten. | 
 | 	 */ | 
 | 	struct ext4_map_blocks map; | 
 | 	struct ext4_io_submit io_submit;	/* IO submission data */ | 
 | }; | 
 |  | 
 | static void mpage_release_unused_pages(struct mpage_da_data *mpd, | 
 | 				       bool invalidate) | 
 | { | 
 | 	int nr_pages, i; | 
 | 	pgoff_t index, end; | 
 | 	struct pagevec pvec; | 
 | 	struct inode *inode = mpd->inode; | 
 | 	struct address_space *mapping = inode->i_mapping; | 
 |  | 
 | 	/* This is necessary when next_page == 0. */ | 
 | 	if (mpd->first_page >= mpd->next_page) | 
 | 		return; | 
 |  | 
 | 	index = mpd->first_page; | 
 | 	end   = mpd->next_page - 1; | 
 | 	if (invalidate) { | 
 | 		ext4_lblk_t start, last; | 
 | 		start = index << (PAGE_CACHE_SHIFT - inode->i_blkbits); | 
 | 		last = end << (PAGE_CACHE_SHIFT - inode->i_blkbits); | 
 | 		ext4_es_remove_extent(inode, start, last - start + 1); | 
 | 	} | 
 |  | 
 | 	pagevec_init(&pvec, 0); | 
 | 	while (index <= end) { | 
 | 		nr_pages = pagevec_lookup(&pvec, mapping, index, PAGEVEC_SIZE); | 
 | 		if (nr_pages == 0) | 
 | 			break; | 
 | 		for (i = 0; i < nr_pages; i++) { | 
 | 			struct page *page = pvec.pages[i]; | 
 | 			if (page->index > end) | 
 | 				break; | 
 | 			BUG_ON(!PageLocked(page)); | 
 | 			BUG_ON(PageWriteback(page)); | 
 | 			if (invalidate) { | 
 | 				block_invalidatepage(page, 0, PAGE_CACHE_SIZE); | 
 | 				ClearPageUptodate(page); | 
 | 			} | 
 | 			unlock_page(page); | 
 | 		} | 
 | 		index = pvec.pages[nr_pages - 1]->index + 1; | 
 | 		pagevec_release(&pvec); | 
 | 	} | 
 | } | 
 |  | 
 | static void ext4_print_free_blocks(struct inode *inode) | 
 | { | 
 | 	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb); | 
 | 	struct super_block *sb = inode->i_sb; | 
 | 	struct ext4_inode_info *ei = EXT4_I(inode); | 
 |  | 
 | 	ext4_msg(sb, KERN_CRIT, "Total free blocks count %lld", | 
 | 	       EXT4_C2B(EXT4_SB(inode->i_sb), | 
 | 			ext4_count_free_clusters(sb))); | 
 | 	ext4_msg(sb, KERN_CRIT, "Free/Dirty block details"); | 
 | 	ext4_msg(sb, KERN_CRIT, "free_blocks=%lld", | 
 | 	       (long long) EXT4_C2B(EXT4_SB(sb), | 
 | 		percpu_counter_sum(&sbi->s_freeclusters_counter))); | 
 | 	ext4_msg(sb, KERN_CRIT, "dirty_blocks=%lld", | 
 | 	       (long long) EXT4_C2B(EXT4_SB(sb), | 
 | 		percpu_counter_sum(&sbi->s_dirtyclusters_counter))); | 
 | 	ext4_msg(sb, KERN_CRIT, "Block reservation details"); | 
 | 	ext4_msg(sb, KERN_CRIT, "i_reserved_data_blocks=%u", | 
 | 		 ei->i_reserved_data_blocks); | 
 | 	return; | 
 | } | 
 |  | 
 | static int ext4_bh_delay_or_unwritten(handle_t *handle, struct buffer_head *bh) | 
 | { | 
 | 	return (buffer_delay(bh) || buffer_unwritten(bh)) && buffer_dirty(bh); | 
 | } | 
 |  | 
 | /* | 
 |  * This function is grabs code from the very beginning of | 
 |  * ext4_map_blocks, but assumes that the caller is from delayed write | 
 |  * time. This function looks up the requested blocks and sets the | 
 |  * buffer delay bit under the protection of i_data_sem. | 
 |  */ | 
 | static int ext4_da_map_blocks(struct inode *inode, sector_t iblock, | 
 | 			      struct ext4_map_blocks *map, | 
 | 			      struct buffer_head *bh) | 
 | { | 
 | 	struct extent_status es; | 
 | 	int retval; | 
 | 	sector_t invalid_block = ~((sector_t) 0xffff); | 
 | #ifdef ES_AGGRESSIVE_TEST | 
 | 	struct ext4_map_blocks orig_map; | 
 |  | 
 | 	memcpy(&orig_map, map, sizeof(*map)); | 
 | #endif | 
 |  | 
 | 	if (invalid_block < ext4_blocks_count(EXT4_SB(inode->i_sb)->s_es)) | 
 | 		invalid_block = ~0; | 
 |  | 
 | 	map->m_flags = 0; | 
 | 	ext_debug("ext4_da_map_blocks(): inode %lu, max_blocks %u," | 
 | 		  "logical block %lu\n", inode->i_ino, map->m_len, | 
 | 		  (unsigned long) map->m_lblk); | 
 |  | 
 | 	/* Lookup extent status tree firstly */ | 
 | 	if (ext4_es_lookup_extent(inode, iblock, &es)) { | 
 | 		if (ext4_es_is_hole(&es)) { | 
 | 			retval = 0; | 
 | 			down_read(&EXT4_I(inode)->i_data_sem); | 
 | 			goto add_delayed; | 
 | 		} | 
 |  | 
 | 		/* | 
 | 		 * Delayed extent could be allocated by fallocate. | 
 | 		 * So we need to check it. | 
 | 		 */ | 
 | 		if (ext4_es_is_delayed(&es) && !ext4_es_is_unwritten(&es)) { | 
 | 			map_bh(bh, inode->i_sb, invalid_block); | 
 | 			set_buffer_new(bh); | 
 | 			set_buffer_delay(bh); | 
 | 			return 0; | 
 | 		} | 
 |  | 
 | 		map->m_pblk = ext4_es_pblock(&es) + iblock - es.es_lblk; | 
 | 		retval = es.es_len - (iblock - es.es_lblk); | 
 | 		if (retval > map->m_len) | 
 | 			retval = map->m_len; | 
 | 		map->m_len = retval; | 
 | 		if (ext4_es_is_written(&es)) | 
 | 			map->m_flags |= EXT4_MAP_MAPPED; | 
 | 		else if (ext4_es_is_unwritten(&es)) | 
 | 			map->m_flags |= EXT4_MAP_UNWRITTEN; | 
 | 		else | 
 | 			BUG_ON(1); | 
 |  | 
 | #ifdef ES_AGGRESSIVE_TEST | 
 | 		ext4_map_blocks_es_recheck(NULL, inode, map, &orig_map, 0); | 
 | #endif | 
 | 		return retval; | 
 | 	} | 
 |  | 
 | 	/* | 
 | 	 * Try to see if we can get the block without requesting a new | 
 | 	 * file system block. | 
 | 	 */ | 
 | 	down_read(&EXT4_I(inode)->i_data_sem); | 
 | 	if (ext4_has_inline_data(inode)) | 
 | 		retval = 0; | 
 | 	else if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) | 
 | 		retval = ext4_ext_map_blocks(NULL, inode, map, 0); | 
 | 	else | 
 | 		retval = ext4_ind_map_blocks(NULL, inode, map, 0); | 
 |  | 
 | add_delayed: | 
 | 	if (retval == 0) { | 
 | 		int ret; | 
 | 		/* | 
 | 		 * XXX: __block_prepare_write() unmaps passed block, | 
 | 		 * is it OK? | 
 | 		 */ | 
 | 		/* | 
 | 		 * If the block was allocated from previously allocated cluster, | 
 | 		 * then we don't need to reserve it again. However we still need | 
 | 		 * to reserve metadata for every block we're going to write. | 
 | 		 */ | 
 | 		if (EXT4_SB(inode->i_sb)->s_cluster_ratio <= 1 || | 
 | 		    !ext4_find_delalloc_cluster(inode, map->m_lblk)) { | 
 | 			ret = ext4_da_reserve_space(inode, iblock); | 
 | 			if (ret) { | 
 | 				/* not enough space to reserve */ | 
 | 				retval = ret; | 
 | 				goto out_unlock; | 
 | 			} | 
 | 		} | 
 |  | 
 | 		ret = ext4_es_insert_extent(inode, map->m_lblk, map->m_len, | 
 | 					    ~0, EXTENT_STATUS_DELAYED); | 
 | 		if (ret) { | 
 | 			retval = ret; | 
 | 			goto out_unlock; | 
 | 		} | 
 |  | 
 | 		map_bh(bh, inode->i_sb, invalid_block); | 
 | 		set_buffer_new(bh); | 
 | 		set_buffer_delay(bh); | 
 | 	} else if (retval > 0) { | 
 | 		int ret; | 
 | 		unsigned int status; | 
 |  | 
 | 		if (unlikely(retval != map->m_len)) { | 
 | 			ext4_warning(inode->i_sb, | 
 | 				     "ES len assertion failed for inode " | 
 | 				     "%lu: retval %d != map->m_len %d", | 
 | 				     inode->i_ino, retval, map->m_len); | 
 | 			WARN_ON(1); | 
 | 		} | 
 |  | 
 | 		status = map->m_flags & EXT4_MAP_UNWRITTEN ? | 
 | 				EXTENT_STATUS_UNWRITTEN : EXTENT_STATUS_WRITTEN; | 
 | 		ret = ext4_es_insert_extent(inode, map->m_lblk, map->m_len, | 
 | 					    map->m_pblk, status); | 
 | 		if (ret != 0) | 
 | 			retval = ret; | 
 | 	} | 
 |  | 
 | out_unlock: | 
 | 	up_read((&EXT4_I(inode)->i_data_sem)); | 
 |  | 
 | 	return retval; | 
 | } | 
 |  | 
 | /* | 
 |  * This is a special get_block_t callback which is used by | 
 |  * ext4_da_write_begin().  It will either return mapped block or | 
 |  * reserve space for a single block. | 
 |  * | 
 |  * For delayed buffer_head we have BH_Mapped, BH_New, BH_Delay set. | 
 |  * We also have b_blocknr = -1 and b_bdev initialized properly | 
 |  * | 
 |  * For unwritten buffer_head we have BH_Mapped, BH_New, BH_Unwritten set. | 
 |  * We also have b_blocknr = physicalblock mapping unwritten extent and b_bdev | 
 |  * initialized properly. | 
 |  */ | 
 | int ext4_da_get_block_prep(struct inode *inode, sector_t iblock, | 
 | 			   struct buffer_head *bh, int create) | 
 | { | 
 | 	struct ext4_map_blocks map; | 
 | 	int ret = 0; | 
 |  | 
 | 	BUG_ON(create == 0); | 
 | 	BUG_ON(bh->b_size != inode->i_sb->s_blocksize); | 
 |  | 
 | 	map.m_lblk = iblock; | 
 | 	map.m_len = 1; | 
 |  | 
 | 	/* | 
 | 	 * first, we need to know whether the block is allocated already | 
 | 	 * preallocated blocks are unmapped but should treated | 
 | 	 * the same as allocated blocks. | 
 | 	 */ | 
 | 	ret = ext4_da_map_blocks(inode, iblock, &map, bh); | 
 | 	if (ret <= 0) | 
 | 		return ret; | 
 |  | 
 | 	map_bh(bh, inode->i_sb, map.m_pblk); | 
 | 	bh->b_state = (bh->b_state & ~EXT4_MAP_FLAGS) | map.m_flags; | 
 |  | 
 | 	if (buffer_unwritten(bh)) { | 
 | 		/* A delayed write to unwritten bh should be marked | 
 | 		 * new and mapped.  Mapped ensures that we don't do | 
 | 		 * get_block multiple times when we write to the same | 
 | 		 * offset and new ensures that we do proper zero out | 
 | 		 * for partial write. | 
 | 		 */ | 
 | 		set_buffer_new(bh); | 
 | 		set_buffer_mapped(bh); | 
 | 	} | 
 | 	return 0; | 
 | } | 
 |  | 
 | static int bget_one(handle_t *handle, struct buffer_head *bh) | 
 | { | 
 | 	get_bh(bh); | 
 | 	return 0; | 
 | } | 
 |  | 
 | static int bput_one(handle_t *handle, struct buffer_head *bh) | 
 | { | 
 | 	put_bh(bh); | 
 | 	return 0; | 
 | } | 
 |  | 
 | static int __ext4_journalled_writepage(struct page *page, | 
 | 				       unsigned int len) | 
 | { | 
 | 	struct address_space *mapping = page->mapping; | 
 | 	struct inode *inode = mapping->host; | 
 | 	struct buffer_head *page_bufs = NULL; | 
 | 	handle_t *handle = NULL; | 
 | 	int ret = 0, err = 0; | 
 | 	int inline_data = ext4_has_inline_data(inode); | 
 | 	struct buffer_head *inode_bh = NULL; | 
 |  | 
 | 	ClearPageChecked(page); | 
 |  | 
 | 	if (inline_data) { | 
 | 		BUG_ON(page->index != 0); | 
 | 		BUG_ON(len > ext4_get_max_inline_size(inode)); | 
 | 		inode_bh = ext4_journalled_write_inline_data(inode, len, page); | 
 | 		if (inode_bh == NULL) | 
 | 			goto out; | 
 | 	} else { | 
 | 		page_bufs = page_buffers(page); | 
 | 		if (!page_bufs) { | 
 | 			BUG(); | 
 | 			goto out; | 
 | 		} | 
 | 		ext4_walk_page_buffers(handle, page_bufs, 0, len, | 
 | 				       NULL, bget_one); | 
 | 	} | 
 | 	/* | 
 | 	 * We need to release the page lock before we start the | 
 | 	 * journal, so grab a reference so the page won't disappear | 
 | 	 * out from under us. | 
 | 	 */ | 
 | 	get_page(page); | 
 | 	unlock_page(page); | 
 |  | 
 | 	handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE, | 
 | 				    ext4_writepage_trans_blocks(inode)); | 
 | 	if (IS_ERR(handle)) { | 
 | 		ret = PTR_ERR(handle); | 
 | 		put_page(page); | 
 | 		goto out_no_pagelock; | 
 | 	} | 
 | 	BUG_ON(!ext4_handle_valid(handle)); | 
 |  | 
 | 	lock_page(page); | 
 | 	put_page(page); | 
 | 	if (page->mapping != mapping) { | 
 | 		/* The page got truncated from under us */ | 
 | 		ext4_journal_stop(handle); | 
 | 		ret = 0; | 
 | 		goto out; | 
 | 	} | 
 |  | 
 | 	if (inline_data) { | 
 | 		BUFFER_TRACE(inode_bh, "get write access"); | 
 | 		ret = ext4_journal_get_write_access(handle, inode_bh); | 
 |  | 
 | 		err = ext4_handle_dirty_metadata(handle, inode, inode_bh); | 
 |  | 
 | 	} else { | 
 | 		ret = ext4_walk_page_buffers(handle, page_bufs, 0, len, NULL, | 
 | 					     do_journal_get_write_access); | 
 |  | 
 | 		err = ext4_walk_page_buffers(handle, page_bufs, 0, len, NULL, | 
 | 					     write_end_fn); | 
 | 	} | 
 | 	if (ret == 0) | 
 | 		ret = err; | 
 | 	EXT4_I(inode)->i_datasync_tid = handle->h_transaction->t_tid; | 
 | 	err = ext4_journal_stop(handle); | 
 | 	if (!ret) | 
 | 		ret = err; | 
 |  | 
 | 	if (!ext4_has_inline_data(inode)) | 
 | 		ext4_walk_page_buffers(NULL, page_bufs, 0, len, | 
 | 				       NULL, bput_one); | 
 | 	ext4_set_inode_state(inode, EXT4_STATE_JDATA); | 
 | out: | 
 | 	unlock_page(page); | 
 | out_no_pagelock: | 
 | 	brelse(inode_bh); | 
 | 	return ret; | 
 | } | 
 |  | 
 | /* | 
 |  * Note that we don't need to start a transaction unless we're journaling data | 
 |  * because we should have holes filled from ext4_page_mkwrite(). We even don't | 
 |  * need to file the inode to the transaction's list in ordered mode because if | 
 |  * we are writing back data added by write(), the inode is already there and if | 
 |  * we are writing back data modified via mmap(), no one guarantees in which | 
 |  * transaction the data will hit the disk. In case we are journaling data, we | 
 |  * cannot start transaction directly because transaction start ranks above page | 
 |  * lock so we have to do some magic. | 
 |  * | 
 |  * This function can get called via... | 
 |  *   - ext4_writepages after taking page lock (have journal handle) | 
 |  *   - journal_submit_inode_data_buffers (no journal handle) | 
 |  *   - shrink_page_list via the kswapd/direct reclaim (no journal handle) | 
 |  *   - grab_page_cache when doing write_begin (have journal handle) | 
 |  * | 
 |  * We don't do any block allocation in this function. If we have page with | 
 |  * multiple blocks we need to write those buffer_heads that are mapped. This | 
 |  * is important for mmaped based write. So if we do with blocksize 1K | 
 |  * truncate(f, 1024); | 
 |  * a = mmap(f, 0, 4096); | 
 |  * a[0] = 'a'; | 
 |  * truncate(f, 4096); | 
 |  * we have in the page first buffer_head mapped via page_mkwrite call back | 
 |  * but other buffer_heads would be unmapped but dirty (dirty done via the | 
 |  * do_wp_page). So writepage should write the first block. If we modify | 
 |  * the mmap area beyond 1024 we will again get a page_fault and the | 
 |  * page_mkwrite callback will do the block allocation and mark the | 
 |  * buffer_heads mapped. | 
 |  * | 
 |  * We redirty the page if we have any buffer_heads that is either delay or | 
 |  * unwritten in the page. | 
 |  * | 
 |  * We can get recursively called as show below. | 
 |  * | 
 |  *	ext4_writepage() -> kmalloc() -> __alloc_pages() -> page_launder() -> | 
 |  *		ext4_writepage() | 
 |  * | 
 |  * But since we don't do any block allocation we should not deadlock. | 
 |  * Page also have the dirty flag cleared so we don't get recurive page_lock. | 
 |  */ | 
 | static int ext4_writepage(struct page *page, | 
 | 			  struct writeback_control *wbc) | 
 | { | 
 | 	int ret = 0; | 
 | 	loff_t size; | 
 | 	unsigned int len; | 
 | 	struct buffer_head *page_bufs = NULL; | 
 | 	struct inode *inode = page->mapping->host; | 
 | 	struct ext4_io_submit io_submit; | 
 | 	bool keep_towrite = false; | 
 |  | 
 | 	trace_ext4_writepage(page); | 
 | 	size = i_size_read(inode); | 
 | 	if (page->index == size >> PAGE_CACHE_SHIFT) | 
 | 		len = size & ~PAGE_CACHE_MASK; | 
 | 	else | 
 | 		len = PAGE_CACHE_SIZE; | 
 |  | 
 | 	page_bufs = page_buffers(page); | 
 | 	/* | 
 | 	 * We cannot do block allocation or other extent handling in this | 
 | 	 * function. If there are buffers needing that, we have to redirty | 
 | 	 * the page. But we may reach here when we do a journal commit via | 
 | 	 * journal_submit_inode_data_buffers() and in that case we must write | 
 | 	 * allocated buffers to achieve data=ordered mode guarantees. | 
 | 	 */ | 
 | 	if (ext4_walk_page_buffers(NULL, page_bufs, 0, len, NULL, | 
 | 				   ext4_bh_delay_or_unwritten)) { | 
 | 		redirty_page_for_writepage(wbc, page); | 
 | 		if (current->flags & PF_MEMALLOC) { | 
 | 			/* | 
 | 			 * For memory cleaning there's no point in writing only | 
 | 			 * some buffers. So just bail out. Warn if we came here | 
 | 			 * from direct reclaim. | 
 | 			 */ | 
 | 			WARN_ON_ONCE((current->flags & (PF_MEMALLOC|PF_KSWAPD)) | 
 | 							== PF_MEMALLOC); | 
 | 			unlock_page(page); | 
 | 			return 0; | 
 | 		} | 
 | 		keep_towrite = true; | 
 | 	} | 
 |  | 
 | 	if (PageChecked(page) && ext4_should_journal_data(inode)) | 
 | 		/* | 
 | 		 * It's mmapped pagecache.  Add buffers and journal it.  There | 
 | 		 * doesn't seem much point in redirtying the page here. | 
 | 		 */ | 
 | 		return __ext4_journalled_writepage(page, len); | 
 |  | 
 | 	ext4_io_submit_init(&io_submit, wbc); | 
 | 	io_submit.io_end = ext4_init_io_end(inode, GFP_NOFS); | 
 | 	if (!io_submit.io_end) { | 
 | 		redirty_page_for_writepage(wbc, page); | 
 | 		unlock_page(page); | 
 | 		return -ENOMEM; | 
 | 	} | 
 | 	ret = ext4_bio_write_page(&io_submit, page, len, wbc, keep_towrite); | 
 | 	ext4_io_submit(&io_submit); | 
 | 	/* Drop io_end reference we got from init */ | 
 | 	ext4_put_io_end_defer(io_submit.io_end); | 
 | 	return ret; | 
 | } | 
 |  | 
 | static int mpage_submit_page(struct mpage_da_data *mpd, struct page *page) | 
 | { | 
 | 	int len; | 
 | 	loff_t size = i_size_read(mpd->inode); | 
 | 	int err; | 
 |  | 
 | 	BUG_ON(page->index != mpd->first_page); | 
 | 	if (page->index == size >> PAGE_CACHE_SHIFT) | 
 | 		len = size & ~PAGE_CACHE_MASK; | 
 | 	else | 
 | 		len = PAGE_CACHE_SIZE; | 
 | 	clear_page_dirty_for_io(page); | 
 | 	err = ext4_bio_write_page(&mpd->io_submit, page, len, mpd->wbc, false); | 
 | 	if (!err) | 
 | 		mpd->wbc->nr_to_write--; | 
 | 	mpd->first_page++; | 
 |  | 
 | 	return err; | 
 | } | 
 |  | 
 | #define BH_FLAGS ((1 << BH_Unwritten) | (1 << BH_Delay)) | 
 |  | 
 | /* | 
 |  * mballoc gives us at most this number of blocks... | 
 |  * XXX: That seems to be only a limitation of ext4_mb_normalize_request(). | 
 |  * The rest of mballoc seems to handle chunks up to full group size. | 
 |  */ | 
 | #define MAX_WRITEPAGES_EXTENT_LEN 2048 | 
 |  | 
 | /* | 
 |  * mpage_add_bh_to_extent - try to add bh to extent of blocks to map | 
 |  * | 
 |  * @mpd - extent of blocks | 
 |  * @lblk - logical number of the block in the file | 
 |  * @bh - buffer head we want to add to the extent | 
 |  * | 
 |  * The function is used to collect contig. blocks in the same state. If the | 
 |  * buffer doesn't require mapping for writeback and we haven't started the | 
 |  * extent of buffers to map yet, the function returns 'true' immediately - the | 
 |  * caller can write the buffer right away. Otherwise the function returns true | 
 |  * if the block has been added to the extent, false if the block couldn't be | 
 |  * added. | 
 |  */ | 
 | static bool mpage_add_bh_to_extent(struct mpage_da_data *mpd, ext4_lblk_t lblk, | 
 | 				   struct buffer_head *bh) | 
 | { | 
 | 	struct ext4_map_blocks *map = &mpd->map; | 
 |  | 
 | 	/* Buffer that doesn't need mapping for writeback? */ | 
 | 	if (!buffer_dirty(bh) || !buffer_mapped(bh) || | 
 | 	    (!buffer_delay(bh) && !buffer_unwritten(bh))) { | 
 | 		/* So far no extent to map => we write the buffer right away */ | 
 | 		if (map->m_len == 0) | 
 | 			return true; | 
 | 		return false; | 
 | 	} | 
 |  | 
 | 	/* First block in the extent? */ | 
 | 	if (map->m_len == 0) { | 
 | 		map->m_lblk = lblk; | 
 | 		map->m_len = 1; | 
 | 		map->m_flags = bh->b_state & BH_FLAGS; | 
 | 		return true; | 
 | 	} | 
 |  | 
 | 	/* Don't go larger than mballoc is willing to allocate */ | 
 | 	if (map->m_len >= MAX_WRITEPAGES_EXTENT_LEN) | 
 | 		return false; | 
 |  | 
 | 	/* Can we merge the block to our big extent? */ | 
 | 	if (lblk == map->m_lblk + map->m_len && | 
 | 	    (bh->b_state & BH_FLAGS) == map->m_flags) { | 
 | 		map->m_len++; | 
 | 		return true; | 
 | 	} | 
 | 	return false; | 
 | } | 
 |  | 
 | /* | 
 |  * mpage_process_page_bufs - submit page buffers for IO or add them to extent | 
 |  * | 
 |  * @mpd - extent of blocks for mapping | 
 |  * @head - the first buffer in the page | 
 |  * @bh - buffer we should start processing from | 
 |  * @lblk - logical number of the block in the file corresponding to @bh | 
 |  * | 
 |  * Walk through page buffers from @bh upto @head (exclusive) and either submit | 
 |  * the page for IO if all buffers in this page were mapped and there's no | 
 |  * accumulated extent of buffers to map or add buffers in the page to the | 
 |  * extent of buffers to map. The function returns 1 if the caller can continue | 
 |  * by processing the next page, 0 if it should stop adding buffers to the | 
 |  * extent to map because we cannot extend it anymore. It can also return value | 
 |  * < 0 in case of error during IO submission. | 
 |  */ | 
 | static int mpage_process_page_bufs(struct mpage_da_data *mpd, | 
 | 				   struct buffer_head *head, | 
 | 				   struct buffer_head *bh, | 
 | 				   ext4_lblk_t lblk) | 
 | { | 
 | 	struct inode *inode = mpd->inode; | 
 | 	int err; | 
 | 	ext4_lblk_t blocks = (i_size_read(inode) + (1 << inode->i_blkbits) - 1) | 
 | 							>> inode->i_blkbits; | 
 |  | 
 | 	do { | 
 | 		BUG_ON(buffer_locked(bh)); | 
 |  | 
 | 		if (lblk >= blocks || !mpage_add_bh_to_extent(mpd, lblk, bh)) { | 
 | 			/* Found extent to map? */ | 
 | 			if (mpd->map.m_len) | 
 | 				return 0; | 
 | 			/* Everything mapped so far and we hit EOF */ | 
 | 			break; | 
 | 		} | 
 | 	} while (lblk++, (bh = bh->b_this_page) != head); | 
 | 	/* So far everything mapped? Submit the page for IO. */ | 
 | 	if (mpd->map.m_len == 0) { | 
 | 		err = mpage_submit_page(mpd, head->b_page); | 
 | 		if (err < 0) | 
 | 			return err; | 
 | 	} | 
 | 	return lblk < blocks; | 
 | } | 
 |  | 
 | /* | 
 |  * mpage_map_buffers - update buffers corresponding to changed extent and | 
 |  *		       submit fully mapped pages for IO | 
 |  * | 
 |  * @mpd - description of extent to map, on return next extent to map | 
 |  * | 
 |  * Scan buffers corresponding to changed extent (we expect corresponding pages | 
 |  * to be already locked) and update buffer state according to new extent state. | 
 |  * We map delalloc buffers to their physical location, clear unwritten bits, | 
 |  * and mark buffers as uninit when we perform writes to unwritten extents | 
 |  * and do extent conversion after IO is finished. If the last page is not fully | 
 |  * mapped, we update @map to the next extent in the last page that needs | 
 |  * mapping. Otherwise we submit the page for IO. | 
 |  */ | 
 | static int mpage_map_and_submit_buffers(struct mpage_da_data *mpd) | 
 | { | 
 | 	struct pagevec pvec; | 
 | 	int nr_pages, i; | 
 | 	struct inode *inode = mpd->inode; | 
 | 	struct buffer_head *head, *bh; | 
 | 	int bpp_bits = PAGE_CACHE_SHIFT - inode->i_blkbits; | 
 | 	pgoff_t start, end; | 
 | 	ext4_lblk_t lblk; | 
 | 	sector_t pblock; | 
 | 	int err; | 
 |  | 
 | 	start = mpd->map.m_lblk >> bpp_bits; | 
 | 	end = (mpd->map.m_lblk + mpd->map.m_len - 1) >> bpp_bits; | 
 | 	lblk = start << bpp_bits; | 
 | 	pblock = mpd->map.m_pblk; | 
 |  | 
 | 	pagevec_init(&pvec, 0); | 
 | 	while (start <= end) { | 
 | 		nr_pages = pagevec_lookup(&pvec, inode->i_mapping, start, | 
 | 					  PAGEVEC_SIZE); | 
 | 		if (nr_pages == 0) | 
 | 			break; | 
 | 		for (i = 0; i < nr_pages; i++) { | 
 | 			struct page *page = pvec.pages[i]; | 
 |  | 
 | 			if (page->index > end) | 
 | 				break; | 
 | 			/* Up to 'end' pages must be contiguous */ | 
 | 			BUG_ON(page->index != start); | 
 | 			bh = head = page_buffers(page); | 
 | 			do { | 
 | 				if (lblk < mpd->map.m_lblk) | 
 | 					continue; | 
 | 				if (lblk >= mpd->map.m_lblk + mpd->map.m_len) { | 
 | 					/* | 
 | 					 * Buffer after end of mapped extent. | 
 | 					 * Find next buffer in the page to map. | 
 | 					 */ | 
 | 					mpd->map.m_len = 0; | 
 | 					mpd->map.m_flags = 0; | 
 | 					/* | 
 | 					 * FIXME: If dioread_nolock supports | 
 | 					 * blocksize < pagesize, we need to make | 
 | 					 * sure we add size mapped so far to | 
 | 					 * io_end->size as the following call | 
 | 					 * can submit the page for IO. | 
 | 					 */ | 
 | 					err = mpage_process_page_bufs(mpd, head, | 
 | 								      bh, lblk); | 
 | 					pagevec_release(&pvec); | 
 | 					if (err > 0) | 
 | 						err = 0; | 
 | 					return err; | 
 | 				} | 
 | 				if (buffer_delay(bh)) { | 
 | 					clear_buffer_delay(bh); | 
 | 					bh->b_blocknr = pblock++; | 
 | 				} | 
 | 				clear_buffer_unwritten(bh); | 
 | 			} while (lblk++, (bh = bh->b_this_page) != head); | 
 |  | 
 | 			/* | 
 | 			 * FIXME: This is going to break if dioread_nolock | 
 | 			 * supports blocksize < pagesize as we will try to | 
 | 			 * convert potentially unmapped parts of inode. | 
 | 			 */ | 
 | 			mpd->io_submit.io_end->size += PAGE_CACHE_SIZE; | 
 | 			/* Page fully mapped - let IO run! */ | 
 | 			err = mpage_submit_page(mpd, page); | 
 | 			if (err < 0) { | 
 | 				pagevec_release(&pvec); | 
 | 				return err; | 
 | 			} | 
 | 			start++; | 
 | 		} | 
 | 		pagevec_release(&pvec); | 
 | 	} | 
 | 	/* Extent fully mapped and matches with page boundary. We are done. */ | 
 | 	mpd->map.m_len = 0; | 
 | 	mpd->map.m_flags = 0; | 
 | 	return 0; | 
 | } | 
 |  | 
 | static int mpage_map_one_extent(handle_t *handle, struct mpage_da_data *mpd) | 
 | { | 
 | 	struct inode *inode = mpd->inode; | 
 | 	struct ext4_map_blocks *map = &mpd->map; | 
 | 	int get_blocks_flags; | 
 | 	int err, dioread_nolock; | 
 |  | 
 | 	trace_ext4_da_write_pages_extent(inode, map); | 
 | 	/* | 
 | 	 * Call ext4_map_blocks() to allocate any delayed allocation blocks, or | 
 | 	 * to convert an unwritten extent to be initialized (in the case | 
 | 	 * where we have written into one or more preallocated blocks).  It is | 
 | 	 * possible that we're going to need more metadata blocks than | 
 | 	 * previously reserved. However we must not fail because we're in | 
 | 	 * writeback and there is nothing we can do about it so it might result | 
 | 	 * in data loss.  So use reserved blocks to allocate metadata if | 
 | 	 * possible. | 
 | 	 * | 
 | 	 * We pass in the magic EXT4_GET_BLOCKS_DELALLOC_RESERVE if | 
 | 	 * the blocks in question are delalloc blocks.  This indicates | 
 | 	 * that the blocks and quotas has already been checked when | 
 | 	 * the data was copied into the page cache. | 
 | 	 */ | 
 | 	get_blocks_flags = EXT4_GET_BLOCKS_CREATE | | 
 | 			   EXT4_GET_BLOCKS_METADATA_NOFAIL; | 
 | 	dioread_nolock = ext4_should_dioread_nolock(inode); | 
 | 	if (dioread_nolock) | 
 | 		get_blocks_flags |= EXT4_GET_BLOCKS_IO_CREATE_EXT; | 
 | 	if (map->m_flags & (1 << BH_Delay)) | 
 | 		get_blocks_flags |= EXT4_GET_BLOCKS_DELALLOC_RESERVE; | 
 |  | 
 | 	err = ext4_map_blocks(handle, inode, map, get_blocks_flags); | 
 | 	if (err < 0) | 
 | 		return err; | 
 | 	if (dioread_nolock && (map->m_flags & EXT4_MAP_UNWRITTEN)) { | 
 | 		if (!mpd->io_submit.io_end->handle && | 
 | 		    ext4_handle_valid(handle)) { | 
 | 			mpd->io_submit.io_end->handle = handle->h_rsv_handle; | 
 | 			handle->h_rsv_handle = NULL; | 
 | 		} | 
 | 		ext4_set_io_unwritten_flag(inode, mpd->io_submit.io_end); | 
 | 	} | 
 |  | 
 | 	BUG_ON(map->m_len == 0); | 
 | 	if (map->m_flags & EXT4_MAP_NEW) { | 
 | 		struct block_device *bdev = inode->i_sb->s_bdev; | 
 | 		int i; | 
 |  | 
 | 		for (i = 0; i < map->m_len; i++) | 
 | 			unmap_underlying_metadata(bdev, map->m_pblk + i); | 
 | 	} | 
 | 	return 0; | 
 | } | 
 |  | 
 | /* | 
 |  * mpage_map_and_submit_extent - map extent starting at mpd->lblk of length | 
 |  *				 mpd->len and submit pages underlying it for IO | 
 |  * | 
 |  * @handle - handle for journal operations | 
 |  * @mpd - extent to map | 
 |  * @give_up_on_write - we set this to true iff there is a fatal error and there | 
 |  *                     is no hope of writing the data. The caller should discard | 
 |  *                     dirty pages to avoid infinite loops. | 
 |  * | 
 |  * The function maps extent starting at mpd->lblk of length mpd->len. If it is | 
 |  * delayed, blocks are allocated, if it is unwritten, we may need to convert | 
 |  * them to initialized or split the described range from larger unwritten | 
 |  * extent. Note that we need not map all the described range since allocation | 
 |  * can return less blocks or the range is covered by more unwritten extents. We | 
 |  * cannot map more because we are limited by reserved transaction credits. On | 
 |  * the other hand we always make sure that the last touched page is fully | 
 |  * mapped so that it can be written out (and thus forward progress is | 
 |  * guaranteed). After mapping we submit all mapped pages for IO. | 
 |  */ | 
 | static int mpage_map_and_submit_extent(handle_t *handle, | 
 | 				       struct mpage_da_data *mpd, | 
 | 				       bool *give_up_on_write) | 
 | { | 
 | 	struct inode *inode = mpd->inode; | 
 | 	struct ext4_map_blocks *map = &mpd->map; | 
 | 	int err; | 
 | 	loff_t disksize; | 
 | 	int progress = 0; | 
 |  | 
 | 	mpd->io_submit.io_end->offset = | 
 | 				((loff_t)map->m_lblk) << inode->i_blkbits; | 
 | 	do { | 
 | 		err = mpage_map_one_extent(handle, mpd); | 
 | 		if (err < 0) { | 
 | 			struct super_block *sb = inode->i_sb; | 
 |  | 
 | 			if (EXT4_SB(sb)->s_mount_flags & EXT4_MF_FS_ABORTED) | 
 | 				goto invalidate_dirty_pages; | 
 | 			/* | 
 | 			 * Let the uper layers retry transient errors. | 
 | 			 * In the case of ENOSPC, if ext4_count_free_blocks() | 
 | 			 * is non-zero, a commit should free up blocks. | 
 | 			 */ | 
 | 			if ((err == -ENOMEM) || | 
 | 			    (err == -ENOSPC && ext4_count_free_clusters(sb))) { | 
 | 				if (progress) | 
 | 					goto update_disksize; | 
 | 				return err; | 
 | 			} | 
 | 			ext4_msg(sb, KERN_CRIT, | 
 | 				 "Delayed block allocation failed for " | 
 | 				 "inode %lu at logical offset %llu with" | 
 | 				 " max blocks %u with error %d", | 
 | 				 inode->i_ino, | 
 | 				 (unsigned long long)map->m_lblk, | 
 | 				 (unsigned)map->m_len, -err); | 
 | 			ext4_msg(sb, KERN_CRIT, | 
 | 				 "This should not happen!! Data will " | 
 | 				 "be lost\n"); | 
 | 			if (err == -ENOSPC) | 
 | 				ext4_print_free_blocks(inode); | 
 | 		invalidate_dirty_pages: | 
 | 			*give_up_on_write = true; | 
 | 			return err; | 
 | 		} | 
 | 		progress = 1; | 
 | 		/* | 
 | 		 * Update buffer state, submit mapped pages, and get us new | 
 | 		 * extent to map | 
 | 		 */ | 
 | 		err = mpage_map_and_submit_buffers(mpd); | 
 | 		if (err < 0) | 
 | 			goto update_disksize; | 
 | 	} while (map->m_len); | 
 |  | 
 | update_disksize: | 
 | 	/* | 
 | 	 * Update on-disk size after IO is submitted.  Races with | 
 | 	 * truncate are avoided by checking i_size under i_data_sem. | 
 | 	 */ | 
 | 	disksize = ((loff_t)mpd->first_page) << PAGE_CACHE_SHIFT; | 
 | 	if (disksize > EXT4_I(inode)->i_disksize) { | 
 | 		int err2; | 
 | 		loff_t i_size; | 
 |  | 
 | 		down_write(&EXT4_I(inode)->i_data_sem); | 
 | 		i_size = i_size_read(inode); | 
 | 		if (disksize > i_size) | 
 | 			disksize = i_size; | 
 | 		if (disksize > EXT4_I(inode)->i_disksize) | 
 | 			EXT4_I(inode)->i_disksize = disksize; | 
 | 		err2 = ext4_mark_inode_dirty(handle, inode); | 
 | 		up_write(&EXT4_I(inode)->i_data_sem); | 
 | 		if (err2) | 
 | 			ext4_error(inode->i_sb, | 
 | 				   "Failed to mark inode %lu dirty", | 
 | 				   inode->i_ino); | 
 | 		if (!err) | 
 | 			err = err2; | 
 | 	} | 
 | 	return err; | 
 | } | 
 |  | 
 | /* | 
 |  * Calculate the total number of credits to reserve for one writepages | 
 |  * iteration. This is called from ext4_writepages(). We map an extent of | 
 |  * up to MAX_WRITEPAGES_EXTENT_LEN blocks and then we go on and finish mapping | 
 |  * the last partial page. So in total we can map MAX_WRITEPAGES_EXTENT_LEN + | 
 |  * bpp - 1 blocks in bpp different extents. | 
 |  */ | 
 | static int ext4_da_writepages_trans_blocks(struct inode *inode) | 
 | { | 
 | 	int bpp = ext4_journal_blocks_per_page(inode); | 
 |  | 
 | 	return ext4_meta_trans_blocks(inode, | 
 | 				MAX_WRITEPAGES_EXTENT_LEN + bpp - 1, bpp); | 
 | } | 
 |  | 
 | /* | 
 |  * mpage_prepare_extent_to_map - find & lock contiguous range of dirty pages | 
 |  * 				 and underlying extent to map | 
 |  * | 
 |  * @mpd - where to look for pages | 
 |  * | 
 |  * Walk dirty pages in the mapping. If they are fully mapped, submit them for | 
 |  * IO immediately. When we find a page which isn't mapped we start accumulating | 
 |  * extent of buffers underlying these pages that needs mapping (formed by | 
 |  * either delayed or unwritten buffers). We also lock the pages containing | 
 |  * these buffers. The extent found is returned in @mpd structure (starting at | 
 |  * mpd->lblk with length mpd->len blocks). | 
 |  * | 
 |  * Note that this function can attach bios to one io_end structure which are | 
 |  * neither logically nor physically contiguous. Although it may seem as an | 
 |  * unnecessary complication, it is actually inevitable in blocksize < pagesize | 
 |  * case as we need to track IO to all buffers underlying a page in one io_end. | 
 |  */ | 
 | static int mpage_prepare_extent_to_map(struct mpage_da_data *mpd) | 
 | { | 
 | 	struct address_space *mapping = mpd->inode->i_mapping; | 
 | 	struct pagevec pvec; | 
 | 	unsigned int nr_pages; | 
 | 	long left = mpd->wbc->nr_to_write; | 
 | 	pgoff_t index = mpd->first_page; | 
 | 	pgoff_t end = mpd->last_page; | 
 | 	int tag; | 
 | 	int i, err = 0; | 
 | 	int blkbits = mpd->inode->i_blkbits; | 
 | 	ext4_lblk_t lblk; | 
 | 	struct buffer_head *head; | 
 |  | 
 | 	if (mpd->wbc->sync_mode == WB_SYNC_ALL || mpd->wbc->tagged_writepages) | 
 | 		tag = PAGECACHE_TAG_TOWRITE; | 
 | 	else | 
 | 		tag = PAGECACHE_TAG_DIRTY; | 
 |  | 
 | 	pagevec_init(&pvec, 0); | 
 | 	mpd->map.m_len = 0; | 
 | 	mpd->next_page = index; | 
 | 	while (index <= end) { | 
 | 		nr_pages = pagevec_lookup_tag(&pvec, mapping, &index, tag, | 
 | 			      min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1); | 
 | 		if (nr_pages == 0) | 
 | 			goto out; | 
 |  | 
 | 		for (i = 0; i < nr_pages; i++) { | 
 | 			struct page *page = pvec.pages[i]; | 
 |  | 
 | 			/* | 
 | 			 * At this point, the page may be truncated or | 
 | 			 * invalidated (changing page->mapping to NULL), or | 
 | 			 * even swizzled back from swapper_space to tmpfs file | 
 | 			 * mapping. However, page->index will not change | 
 | 			 * because we have a reference on the page. | 
 | 			 */ | 
 | 			if (page->index > end) | 
 | 				goto out; | 
 |  | 
 | 			/* | 
 | 			 * Accumulated enough dirty pages? This doesn't apply | 
 | 			 * to WB_SYNC_ALL mode. For integrity sync we have to | 
 | 			 * keep going because someone may be concurrently | 
 | 			 * dirtying pages, and we might have synced a lot of | 
 | 			 * newly appeared dirty pages, but have not synced all | 
 | 			 * of the old dirty pages. | 
 | 			 */ | 
 | 			if (mpd->wbc->sync_mode == WB_SYNC_NONE && left <= 0) | 
 | 				goto out; | 
 |  | 
 | 			/* If we can't merge this page, we are done. */ | 
 | 			if (mpd->map.m_len > 0 && mpd->next_page != page->index) | 
 | 				goto out; | 
 |  | 
 | 			lock_page(page); | 
 | 			/* | 
 | 			 * If the page is no longer dirty, or its mapping no | 
 | 			 * longer corresponds to inode we are writing (which | 
 | 			 * means it has been truncated or invalidated), or the | 
 | 			 * page is already under writeback and we are not doing | 
 | 			 * a data integrity writeback, skip the page | 
 | 			 */ | 
 | 			if (!PageDirty(page) || | 
 | 			    (PageWriteback(page) && | 
 | 			     (mpd->wbc->sync_mode == WB_SYNC_NONE)) || | 
 | 			    unlikely(page->mapping != mapping)) { | 
 | 				unlock_page(page); | 
 | 				continue; | 
 | 			} | 
 |  | 
 | 			wait_on_page_writeback(page); | 
 | 			BUG_ON(PageWriteback(page)); | 
 |  | 
 | 			if (mpd->map.m_len == 0) | 
 | 				mpd->first_page = page->index; | 
 | 			mpd->next_page = page->index + 1; | 
 | 			/* Add all dirty buffers to mpd */ | 
 | 			lblk = ((ext4_lblk_t)page->index) << | 
 | 				(PAGE_CACHE_SHIFT - blkbits); | 
 | 			head = page_buffers(page); | 
 | 			err = mpage_process_page_bufs(mpd, head, head, lblk); | 
 | 			if (err <= 0) | 
 | 				goto out; | 
 | 			err = 0; | 
 | 			left--; | 
 | 		} | 
 | 		pagevec_release(&pvec); | 
 | 		cond_resched(); | 
 | 	} | 
 | 	return 0; | 
 | out: | 
 | 	pagevec_release(&pvec); | 
 | 	return err; | 
 | } | 
 |  | 
 | static int __writepage(struct page *page, struct writeback_control *wbc, | 
 | 		       void *data) | 
 | { | 
 | 	struct address_space *mapping = data; | 
 | 	int ret = ext4_writepage(page, wbc); | 
 | 	mapping_set_error(mapping, ret); | 
 | 	return ret; | 
 | } | 
 |  | 
 | static int ext4_writepages(struct address_space *mapping, | 
 | 			   struct writeback_control *wbc) | 
 | { | 
 | 	pgoff_t	writeback_index = 0; | 
 | 	long nr_to_write = wbc->nr_to_write; | 
 | 	int range_whole = 0; | 
 | 	int cycled = 1; | 
 | 	handle_t *handle = NULL; | 
 | 	struct mpage_da_data mpd; | 
 | 	struct inode *inode = mapping->host; | 
 | 	int needed_blocks, rsv_blocks = 0, ret = 0; | 
 | 	struct ext4_sb_info *sbi = EXT4_SB(mapping->host->i_sb); | 
 | 	bool done; | 
 | 	struct blk_plug plug; | 
 | 	bool give_up_on_write = false; | 
 |  | 
 | 	trace_ext4_writepages(inode, wbc); | 
 |  | 
 | 	/* | 
 | 	 * No pages to write? This is mainly a kludge to avoid starting | 
 | 	 * a transaction for special inodes like journal inode on last iput() | 
 | 	 * because that could violate lock ordering on umount | 
 | 	 */ | 
 | 	if (!mapping->nrpages || !mapping_tagged(mapping, PAGECACHE_TAG_DIRTY)) | 
 | 		goto out_writepages; | 
 |  | 
 | 	if (ext4_should_journal_data(inode)) { | 
 | 		struct blk_plug plug; | 
 |  | 
 | 		blk_start_plug(&plug); | 
 | 		ret = write_cache_pages(mapping, wbc, __writepage, mapping); | 
 | 		blk_finish_plug(&plug); | 
 | 		goto out_writepages; | 
 | 	} | 
 |  | 
 | 	/* | 
 | 	 * If the filesystem has aborted, it is read-only, so return | 
 | 	 * right away instead of dumping stack traces later on that | 
 | 	 * will obscure the real source of the problem.  We test | 
 | 	 * EXT4_MF_FS_ABORTED instead of sb->s_flag's MS_RDONLY because | 
 | 	 * the latter could be true if the filesystem is mounted | 
 | 	 * read-only, and in that case, ext4_writepages should | 
 | 	 * *never* be called, so if that ever happens, we would want | 
 | 	 * the stack trace. | 
 | 	 */ | 
 | 	if (unlikely(sbi->s_mount_flags & EXT4_MF_FS_ABORTED)) { | 
 | 		ret = -EROFS; | 
 | 		goto out_writepages; | 
 | 	} | 
 |  | 
 | 	if (ext4_should_dioread_nolock(inode)) { | 
 | 		/* | 
 | 		 * We may need to convert up to one extent per block in | 
 | 		 * the page and we may dirty the inode. | 
 | 		 */ | 
 | 		rsv_blocks = 1 + (PAGE_CACHE_SIZE >> inode->i_blkbits); | 
 | 	} | 
 |  | 
 | 	/* | 
 | 	 * If we have inline data and arrive here, it means that | 
 | 	 * we will soon create the block for the 1st page, so | 
 | 	 * we'd better clear the inline data here. | 
 | 	 */ | 
 | 	if (ext4_has_inline_data(inode)) { | 
 | 		/* Just inode will be modified... */ | 
 | 		handle = ext4_journal_start(inode, EXT4_HT_INODE, 1); | 
 | 		if (IS_ERR(handle)) { | 
 | 			ret = PTR_ERR(handle); | 
 | 			goto out_writepages; | 
 | 		} | 
 | 		BUG_ON(ext4_test_inode_state(inode, | 
 | 				EXT4_STATE_MAY_INLINE_DATA)); | 
 | 		ext4_destroy_inline_data(handle, inode); | 
 | 		ext4_journal_stop(handle); | 
 | 	} | 
 |  | 
 | 	if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX) | 
 | 		range_whole = 1; | 
 |  | 
 | 	if (wbc->range_cyclic) { | 
 | 		writeback_index = mapping->writeback_index; | 
 | 		if (writeback_index) | 
 | 			cycled = 0; | 
 | 		mpd.first_page = writeback_index; | 
 | 		mpd.last_page = -1; | 
 | 	} else { | 
 | 		mpd.first_page = wbc->range_start >> PAGE_CACHE_SHIFT; | 
 | 		mpd.last_page = wbc->range_end >> PAGE_CACHE_SHIFT; | 
 | 	} | 
 |  | 
 | 	mpd.inode = inode; | 
 | 	mpd.wbc = wbc; | 
 | 	ext4_io_submit_init(&mpd.io_submit, wbc); | 
 | retry: | 
 | 	if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages) | 
 | 		tag_pages_for_writeback(mapping, mpd.first_page, mpd.last_page); | 
 | 	done = false; | 
 | 	blk_start_plug(&plug); | 
 | 	while (!done && mpd.first_page <= mpd.last_page) { | 
 | 		/* For each extent of pages we use new io_end */ | 
 | 		mpd.io_submit.io_end = ext4_init_io_end(inode, GFP_KERNEL); | 
 | 		if (!mpd.io_submit.io_end) { | 
 | 			ret = -ENOMEM; | 
 | 			break; | 
 | 		} | 
 |  | 
 | 		/* | 
 | 		 * We have two constraints: We find one extent to map and we | 
 | 		 * must always write out whole page (makes a difference when | 
 | 		 * blocksize < pagesize) so that we don't block on IO when we | 
 | 		 * try to write out the rest of the page. Journalled mode is | 
 | 		 * not supported by delalloc. | 
 | 		 */ | 
 | 		BUG_ON(ext4_should_journal_data(inode)); | 
 | 		needed_blocks = ext4_da_writepages_trans_blocks(inode); | 
 |  | 
 | 		/* start a new transaction */ | 
 | 		handle = ext4_journal_start_with_reserve(inode, | 
 | 				EXT4_HT_WRITE_PAGE, needed_blocks, rsv_blocks); | 
 | 		if (IS_ERR(handle)) { | 
 | 			ret = PTR_ERR(handle); | 
 | 			ext4_msg(inode->i_sb, KERN_CRIT, "%s: jbd2_start: " | 
 | 			       "%ld pages, ino %lu; err %d", __func__, | 
 | 				wbc->nr_to_write, inode->i_ino, ret); | 
 | 			/* Release allocated io_end */ | 
 | 			ext4_put_io_end(mpd.io_submit.io_end); | 
 | 			break; | 
 | 		} | 
 |  | 
 | 		trace_ext4_da_write_pages(inode, mpd.first_page, mpd.wbc); | 
 | 		ret = mpage_prepare_extent_to_map(&mpd); | 
 | 		if (!ret) { | 
 | 			if (mpd.map.m_len) | 
 | 				ret = mpage_map_and_submit_extent(handle, &mpd, | 
 | 					&give_up_on_write); | 
 | 			else { | 
 | 				/* | 
 | 				 * We scanned the whole range (or exhausted | 
 | 				 * nr_to_write), submitted what was mapped and | 
 | 				 * didn't find anything needing mapping. We are | 
 | 				 * done. | 
 | 				 */ | 
 | 				done = true; | 
 | 			} | 
 | 		} | 
 | 		ext4_journal_stop(handle); | 
 | 		/* Submit prepared bio */ | 
 | 		ext4_io_submit(&mpd.io_submit); | 
 | 		/* Unlock pages we didn't use */ | 
 | 		mpage_release_unused_pages(&mpd, give_up_on_write); | 
 | 		/* Drop our io_end reference we got from init */ | 
 | 		ext4_put_io_end(mpd.io_submit.io_end); | 
 |  | 
 | 		if (ret == -ENOSPC && sbi->s_journal) { | 
 | 			/* | 
 | 			 * Commit the transaction which would | 
 | 			 * free blocks released in the transaction | 
 | 			 * and try again | 
 | 			 */ | 
 | 			jbd2_journal_force_commit_nested(sbi->s_journal); | 
 | 			ret = 0; | 
 | 			continue; | 
 | 		} | 
 | 		/* Fatal error - ENOMEM, EIO... */ | 
 | 		if (ret) | 
 | 			break; | 
 | 	} | 
 | 	blk_finish_plug(&plug); | 
 | 	if (!ret && !cycled && wbc->nr_to_write > 0) { | 
 | 		cycled = 1; | 
 | 		mpd.last_page = writeback_index - 1; | 
 | 		mpd.first_page = 0; | 
 | 		goto retry; | 
 | 	} | 
 |  | 
 | 	/* Update index */ | 
 | 	if (wbc->range_cyclic || (range_whole && wbc->nr_to_write > 0)) | 
 | 		/* | 
 | 		 * Set the writeback_index so that range_cyclic | 
 | 		 * mode will write it back later | 
 | 		 */ | 
 | 		mapping->writeback_index = mpd.first_page; | 
 |  | 
 | out_writepages: | 
 | 	trace_ext4_writepages_result(inode, wbc, ret, | 
 | 				     nr_to_write - wbc->nr_to_write); | 
 | 	return ret; | 
 | } | 
 |  | 
 | static int ext4_nonda_switch(struct super_block *sb) | 
 | { | 
 | 	s64 free_clusters, dirty_clusters; | 
 | 	struct ext4_sb_info *sbi = EXT4_SB(sb); | 
 |  | 
 | 	/* | 
 | 	 * switch to non delalloc mode if we are running low | 
 | 	 * on free block. The free block accounting via percpu | 
 | 	 * counters can get slightly wrong with percpu_counter_batch getting | 
 | 	 * accumulated on each CPU without updating global counters | 
 | 	 * Delalloc need an accurate free block accounting. So switch | 
 | 	 * to non delalloc when we are near to error range. | 
 | 	 */ | 
 | 	free_clusters = | 
 | 		percpu_counter_read_positive(&sbi->s_freeclusters_counter); | 
 | 	dirty_clusters = | 
 | 		percpu_counter_read_positive(&sbi->s_dirtyclusters_counter); | 
 | 	/* | 
 | 	 * Start pushing delalloc when 1/2 of free blocks are dirty. | 
 | 	 */ | 
 | 	if (dirty_clusters && (free_clusters < 2 * dirty_clusters)) | 
 | 		try_to_writeback_inodes_sb(sb, WB_REASON_FS_FREE_SPACE); | 
 |  | 
 | 	if (2 * free_clusters < 3 * dirty_clusters || | 
 | 	    free_clusters < (dirty_clusters + EXT4_FREECLUSTERS_WATERMARK)) { | 
 | 		/* | 
 | 		 * free block count is less than 150% of dirty blocks | 
 | 		 * or free blocks is less than watermark | 
 | 		 */ | 
 | 		return 1; | 
 | 	} | 
 | 	return 0; | 
 | } | 
 |  | 
 | /* We always reserve for an inode update; the superblock could be there too */ | 
 | static int ext4_da_write_credits(struct inode *inode, loff_t pos, unsigned len) | 
 | { | 
 | 	if (likely(EXT4_HAS_RO_COMPAT_FEATURE(inode->i_sb, | 
 | 				EXT4_FEATURE_RO_COMPAT_LARGE_FILE))) | 
 | 		return 1; | 
 |  | 
 | 	if (pos + len <= 0x7fffffffULL) | 
 | 		return 1; | 
 |  | 
 | 	/* We might need to update the superblock to set LARGE_FILE */ | 
 | 	return 2; | 
 | } | 
 |  | 
 | static int ext4_da_write_begin(struct file *file, struct address_space *mapping, | 
 | 			       loff_t pos, unsigned len, unsigned flags, | 
 | 			       struct page **pagep, void **fsdata) | 
 | { | 
 | 	int ret, retries = 0; | 
 | 	struct page *page; | 
 | 	pgoff_t index; | 
 | 	struct inode *inode = mapping->host; | 
 | 	handle_t *handle; | 
 |  | 
 | 	index = pos >> PAGE_CACHE_SHIFT; | 
 |  | 
 | 	if (ext4_nonda_switch(inode->i_sb)) { | 
 | 		*fsdata = (void *)FALL_BACK_TO_NONDELALLOC; | 
 | 		return ext4_write_begin(file, mapping, pos, | 
 | 					len, flags, pagep, fsdata); | 
 | 	} | 
 | 	*fsdata = (void *)0; | 
 | 	trace_ext4_da_write_begin(inode, pos, len, flags); | 
 |  | 
 | 	if (ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA)) { | 
 | 		ret = ext4_da_write_inline_data_begin(mapping, inode, | 
 | 						      pos, len, flags, | 
 | 						      pagep, fsdata); | 
 | 		if (ret < 0) | 
 | 			return ret; | 
 | 		if (ret == 1) | 
 | 			return 0; | 
 | 	} | 
 |  | 
 | 	/* | 
 | 	 * grab_cache_page_write_begin() can take a long time if the | 
 | 	 * system is thrashing due to memory pressure, or if the page | 
 | 	 * is being written back.  So grab it first before we start | 
 | 	 * the transaction handle.  This also allows us to allocate | 
 | 	 * the page (if needed) without using GFP_NOFS. | 
 | 	 */ | 
 | retry_grab: | 
 | 	page = grab_cache_page_write_begin(mapping, index, flags); | 
 | 	if (!page) | 
 | 		return -ENOMEM; | 
 | 	unlock_page(page); | 
 |  | 
 | 	/* | 
 | 	 * With delayed allocation, we don't log the i_disksize update | 
 | 	 * if there is delayed block allocation. But we still need | 
 | 	 * to journalling the i_disksize update if writes to the end | 
 | 	 * of file which has an already mapped buffer. | 
 | 	 */ | 
 | retry_journal: | 
 | 	handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE, | 
 | 				ext4_da_write_credits(inode, pos, len)); | 
 | 	if (IS_ERR(handle)) { | 
 | 		page_cache_release(page); | 
 | 		return PTR_ERR(handle); | 
 | 	} | 
 |  | 
 | 	lock_page(page); | 
 | 	if (page->mapping != mapping) { | 
 | 		/* The page got truncated from under us */ | 
 | 		unlock_page(page); | 
 | 		page_cache_release(page); | 
 | 		ext4_journal_stop(handle); | 
 | 		goto retry_grab; | 
 | 	} | 
 | 	/* In case writeback began while the page was unlocked */ | 
 | 	wait_for_stable_page(page); | 
 |  | 
 | #ifdef CONFIG_EXT4_FS_ENCRYPTION | 
 | 	ret = ext4_block_write_begin(page, pos, len, | 
 | 				     ext4_da_get_block_prep); | 
 | #else | 
 | 	ret = __block_write_begin(page, pos, len, ext4_da_get_block_prep); | 
 | #endif | 
 | 	if (ret < 0) { | 
 | 		unlock_page(page); | 
 | 		ext4_journal_stop(handle); | 
 | 		/* | 
 | 		 * block_write_begin may have instantiated a few blocks | 
 | 		 * outside i_size.  Trim these off again. Don't need | 
 | 		 * i_size_read because we hold i_mutex. | 
 | 		 */ | 
 | 		if (pos + len > inode->i_size) | 
 | 			ext4_truncate_failed_write(inode); | 
 |  | 
 | 		if (ret == -ENOSPC && | 
 | 		    ext4_should_retry_alloc(inode->i_sb, &retries)) | 
 | 			goto retry_journal; | 
 |  | 
 | 		page_cache_release(page); | 
 | 		return ret; | 
 | 	} | 
 |  | 
 | 	*pagep = page; | 
 | 	return ret; | 
 | } | 
 |  | 
 | /* | 
 |  * Check if we should update i_disksize | 
 |  * when write to the end of file but not require block allocation | 
 |  */ | 
 | static int ext4_da_should_update_i_disksize(struct page *page, | 
 | 					    unsigned long offset) | 
 | { | 
 | 	struct buffer_head *bh; | 
 | 	struct inode *inode = page->mapping->host; | 
 | 	unsigned int idx; | 
 | 	int i; | 
 |  | 
 | 	bh = page_buffers(page); | 
 | 	idx = offset >> inode->i_blkbits; | 
 |  | 
 | 	for (i = 0; i < idx; i++) | 
 | 		bh = bh->b_this_page; | 
 |  | 
 | 	if (!buffer_mapped(bh) || (buffer_delay(bh)) || buffer_unwritten(bh)) | 
 | 		return 0; | 
 | 	return 1; | 
 | } | 
 |  | 
 | static int ext4_da_write_end(struct file *file, | 
 | 			     struct address_space *mapping, | 
 | 			     loff_t pos, unsigned len, unsigned copied, | 
 | 			     struct page *page, void *fsdata) | 
 | { | 
 | 	struct inode *inode = mapping->host; | 
 | 	int ret = 0, ret2; | 
 | 	handle_t *handle = ext4_journal_current_handle(); | 
 | 	loff_t new_i_size; | 
 | 	unsigned long start, end; | 
 | 	int write_mode = (int)(unsigned long)fsdata; | 
 |  | 
 | 	if (write_mode == FALL_BACK_TO_NONDELALLOC) | 
 | 		return ext4_write_end(file, mapping, pos, | 
 | 				      len, copied, page, fsdata); | 
 |  | 
 | 	trace_ext4_da_write_end(inode, pos, len, copied); | 
 | 	start = pos & (PAGE_CACHE_SIZE - 1); | 
 | 	end = start + copied - 1; | 
 |  | 
 | 	/* | 
 | 	 * generic_write_end() will run mark_inode_dirty() if i_size | 
 | 	 * changes.  So let's piggyback the i_disksize mark_inode_dirty | 
 | 	 * into that. | 
 | 	 */ | 
 | 	new_i_size = pos + copied; | 
 | 	if (copied && new_i_size > EXT4_I(inode)->i_disksize) { | 
 | 		if (ext4_has_inline_data(inode) || | 
 | 		    ext4_da_should_update_i_disksize(page, end)) { | 
 | 			ext4_update_i_disksize(inode, new_i_size); | 
 | 			/* We need to mark inode dirty even if | 
 | 			 * new_i_size is less that inode->i_size | 
 | 			 * bu greater than i_disksize.(hint delalloc) | 
 | 			 */ | 
 | 			ext4_mark_inode_dirty(handle, inode); | 
 | 		} | 
 | 	} | 
 |  | 
 | 	if (write_mode != CONVERT_INLINE_DATA && | 
 | 	    ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA) && | 
 | 	    ext4_has_inline_data(inode)) | 
 | 		ret2 = ext4_da_write_inline_data_end(inode, pos, len, copied, | 
 | 						     page); | 
 | 	else | 
 | 		ret2 = generic_write_end(file, mapping, pos, len, copied, | 
 | 							page, fsdata); | 
 |  | 
 | 	copied = ret2; | 
 | 	if (ret2 < 0) | 
 | 		ret = ret2; | 
 | 	ret2 = ext4_journal_stop(handle); | 
 | 	if (!ret) | 
 | 		ret = ret2; | 
 |  | 
 | 	return ret ? ret : copied; | 
 | } | 
 |  | 
 | static void ext4_da_invalidatepage(struct page *page, unsigned int offset, | 
 | 				   unsigned int length) | 
 | { | 
 | 	/* | 
 | 	 * Drop reserved blocks | 
 | 	 */ | 
 | 	BUG_ON(!PageLocked(page)); | 
 | 	if (!page_has_buffers(page)) | 
 | 		goto out; | 
 |  | 
 | 	ext4_da_page_release_reservation(page, offset, length); | 
 |  | 
 | out: | 
 | 	ext4_invalidatepage(page, offset, length); | 
 |  | 
 | 	return; | 
 | } | 
 |  | 
 | /* | 
 |  * Force all delayed allocation blocks to be allocated for a given inode. | 
 |  */ | 
 | int ext4_alloc_da_blocks(struct inode *inode) | 
 | { | 
 | 	trace_ext4_alloc_da_blocks(inode); | 
 |  | 
 | 	if (!EXT4_I(inode)->i_reserved_data_blocks) | 
 | 		return 0; | 
 |  | 
 | 	/* | 
 | 	 * We do something simple for now.  The filemap_flush() will | 
 | 	 * also start triggering a write of the data blocks, which is | 
 | 	 * not strictly speaking necessary (and for users of | 
 | 	 * laptop_mode, not even desirable).  However, to do otherwise | 
 | 	 * would require replicating code paths in: | 
 | 	 * | 
 | 	 * ext4_writepages() -> | 
 | 	 *    write_cache_pages() ---> (via passed in callback function) | 
 | 	 *        __mpage_da_writepage() --> | 
 | 	 *           mpage_add_bh_to_extent() | 
 | 	 *           mpage_da_map_blocks() | 
 | 	 * | 
 | 	 * The problem is that write_cache_pages(), located in | 
 | 	 * mm/page-writeback.c, marks pages clean in preparation for | 
 | 	 * doing I/O, which is not desirable if we're not planning on | 
 | 	 * doing I/O at all. | 
 | 	 * | 
 | 	 * We could call write_cache_pages(), and then redirty all of | 
 | 	 * the pages by calling redirty_page_for_writepage() but that | 
 | 	 * would be ugly in the extreme.  So instead we would need to | 
 | 	 * replicate parts of the code in the above functions, | 
 | 	 * simplifying them because we wouldn't actually intend to | 
 | 	 * write out the pages, but rather only collect contiguous | 
 | 	 * logical block extents, call the multi-block allocator, and | 
 | 	 * then update the buffer heads with the block allocations. | 
 | 	 * | 
 | 	 * For now, though, we'll cheat by calling filemap_flush(), | 
 | 	 * which will map the blocks, and start the I/O, but not | 
 | 	 * actually wait for the I/O to complete. | 
 | 	 */ | 
 | 	return filemap_flush(inode->i_mapping); | 
 | } | 
 |  | 
 | /* | 
 |  * bmap() is special.  It gets used by applications such as lilo and by | 
 |  * the swapper to find the on-disk block of a specific piece of data. | 
 |  * | 
 |  * Naturally, this is dangerous if the block concerned is still in the | 
 |  * journal.  If somebody makes a swapfile on an ext4 data-journaling | 
 |  * filesystem and enables swap, then they may get a nasty shock when the | 
 |  * data getting swapped to that swapfile suddenly gets overwritten by | 
 |  * the original zero's written out previously to the journal and | 
 |  * awaiting writeback in the kernel's buffer cache. | 
 |  * | 
 |  * So, if we see any bmap calls here on a modified, data-journaled file, | 
 |  * take extra steps to flush any blocks which might be in the cache. | 
 |  */ | 
 | static sector_t ext4_bmap(struct address_space *mapping, sector_t block) | 
 | { | 
 | 	struct inode *inode = mapping->host; | 
 | 	journal_t *journal; | 
 | 	int err; | 
 |  | 
 | 	/* | 
 | 	 * We can get here for an inline file via the FIBMAP ioctl | 
 | 	 */ | 
 | 	if (ext4_has_inline_data(inode)) | 
 | 		return 0; | 
 |  | 
 | 	if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY) && | 
 | 			test_opt(inode->i_sb, DELALLOC)) { | 
 | 		/* | 
 | 		 * With delalloc we want to sync the file | 
 | 		 * so that we can make sure we allocate | 
 | 		 * blocks for file | 
 | 		 */ | 
 | 		filemap_write_and_wait(mapping); | 
 | 	} | 
 |  | 
 | 	if (EXT4_JOURNAL(inode) && | 
 | 	    ext4_test_inode_state(inode, EXT4_STATE_JDATA)) { | 
 | 		/* | 
 | 		 * This is a REALLY heavyweight approach, but the use of | 
 | 		 * bmap on dirty files is expected to be extremely rare: | 
 | 		 * only if we run lilo or swapon on a freshly made file | 
 | 		 * do we expect this to happen. | 
 | 		 * | 
 | 		 * (bmap requires CAP_SYS_RAWIO so this does not | 
 | 		 * represent an unprivileged user DOS attack --- we'd be | 
 | 		 * in trouble if mortal users could trigger this path at | 
 | 		 * will.) | 
 | 		 * | 
 | 		 * NB. EXT4_STATE_JDATA is not set on files other than | 
 | 		 * regular files.  If somebody wants to bmap a directory | 
 | 		 * or symlink and gets confused because the buffer | 
 | 		 * hasn't yet been flushed to disk, they deserve | 
 | 		 * everything they get. | 
 | 		 */ | 
 |  | 
 | 		ext4_clear_inode_state(inode, EXT4_STATE_JDATA); | 
 | 		journal = EXT4_JOURNAL(inode); | 
 | 		jbd2_journal_lock_updates(journal); | 
 | 		err = jbd2_journal_flush(journal); | 
 | 		jbd2_journal_unlock_updates(journal); | 
 |  | 
 | 		if (err) | 
 | 			return 0; | 
 | 	} | 
 |  | 
 | 	return generic_block_bmap(mapping, block, ext4_get_block); | 
 | } | 
 |  | 
 | static int ext4_readpage(struct file *file, struct page *page) | 
 | { | 
 | 	int ret = -EAGAIN; | 
 | 	struct inode *inode = page->mapping->host; | 
 |  | 
 | 	trace_ext4_readpage(page); | 
 |  | 
 | 	if (ext4_has_inline_data(inode)) | 
 | 		ret = ext4_readpage_inline(inode, page); | 
 |  | 
 | 	if (ret == -EAGAIN) | 
 | 		return ext4_mpage_readpages(page->mapping, NULL, page, 1); | 
 |  | 
 | 	return ret; | 
 | } | 
 |  | 
 | static int | 
 | ext4_readpages(struct file *file, struct address_space *mapping, | 
 | 		struct list_head *pages, unsigned nr_pages) | 
 | { | 
 | 	struct inode *inode = mapping->host; | 
 |  | 
 | 	/* If the file has inline data, no need to do readpages. */ | 
 | 	if (ext4_has_inline_data(inode)) | 
 | 		return 0; | 
 |  | 
 | 	return ext4_mpage_readpages(mapping, pages, NULL, nr_pages); | 
 | } | 
 |  | 
 | static void ext4_invalidatepage(struct page *page, unsigned int offset, | 
 | 				unsigned int length) | 
 | { | 
 | 	trace_ext4_invalidatepage(page, offset, length); | 
 |  | 
 | 	/* No journalling happens on data buffers when this function is used */ | 
 | 	WARN_ON(page_has_buffers(page) && buffer_jbd(page_buffers(page))); | 
 |  | 
 | 	block_invalidatepage(page, offset, length); | 
 | } | 
 |  | 
 | static int __ext4_journalled_invalidatepage(struct page *page, | 
 | 					    unsigned int offset, | 
 | 					    unsigned int length) | 
 | { | 
 | 	journal_t *journal = EXT4_JOURNAL(page->mapping->host); | 
 |  | 
 | 	trace_ext4_journalled_invalidatepage(page, offset, length); | 
 |  | 
 | 	/* | 
 | 	 * If it's a full truncate we just forget about the pending dirtying | 
 | 	 */ | 
 | 	if (offset == 0 && length == PAGE_CACHE_SIZE) | 
 | 		ClearPageChecked(page); | 
 |  | 
 | 	return jbd2_journal_invalidatepage(journal, page, offset, length); | 
 | } | 
 |  | 
 | /* Wrapper for aops... */ | 
 | static void ext4_journalled_invalidatepage(struct page *page, | 
 | 					   unsigned int offset, | 
 | 					   unsigned int length) | 
 | { | 
 | 	WARN_ON(__ext4_journalled_invalidatepage(page, offset, length) < 0); | 
 | } | 
 |  | 
 | static int ext4_releasepage(struct page *page, gfp_t wait) | 
 | { | 
 | 	journal_t *journal = EXT4_JOURNAL(page->mapping->host); | 
 |  | 
 | 	trace_ext4_releasepage(page); | 
 |  | 
 | 	/* Page has dirty journalled data -> cannot release */ | 
 | 	if (PageChecked(page)) | 
 | 		return 0; | 
 | 	if (journal) | 
 | 		return jbd2_journal_try_to_free_buffers(journal, page, wait); | 
 | 	else | 
 | 		return try_to_free_buffers(page); | 
 | } | 
 |  | 
 | /* | 
 |  * ext4_get_block used when preparing for a DIO write or buffer write. | 
 |  * We allocate an uinitialized extent if blocks haven't been allocated. | 
 |  * The extent will be converted to initialized after the IO is complete. | 
 |  */ | 
 | int ext4_get_block_write(struct inode *inode, sector_t iblock, | 
 | 		   struct buffer_head *bh_result, int create) | 
 | { | 
 | 	ext4_debug("ext4_get_block_write: inode %lu, create flag %d\n", | 
 | 		   inode->i_ino, create); | 
 | 	return _ext4_get_block(inode, iblock, bh_result, | 
 | 			       EXT4_GET_BLOCKS_IO_CREATE_EXT); | 
 | } | 
 |  | 
 | static int ext4_get_block_write_nolock(struct inode *inode, sector_t iblock, | 
 | 		   struct buffer_head *bh_result, int create) | 
 | { | 
 | 	ext4_debug("ext4_get_block_write_nolock: inode %lu, create flag %d\n", | 
 | 		   inode->i_ino, create); | 
 | 	return _ext4_get_block(inode, iblock, bh_result, | 
 | 			       EXT4_GET_BLOCKS_NO_LOCK); | 
 | } | 
 |  | 
 | static void ext4_end_io_dio(struct kiocb *iocb, loff_t offset, | 
 | 			    ssize_t size, void *private) | 
 | { | 
 |         ext4_io_end_t *io_end = iocb->private; | 
 |  | 
 | 	/* if not async direct IO just return */ | 
 | 	if (!io_end) | 
 | 		return; | 
 |  | 
 | 	ext_debug("ext4_end_io_dio(): io_end 0x%p " | 
 | 		  "for inode %lu, iocb 0x%p, offset %llu, size %zd\n", | 
 |  		  iocb->private, io_end->inode->i_ino, iocb, offset, | 
 | 		  size); | 
 |  | 
 | 	iocb->private = NULL; | 
 | 	io_end->offset = offset; | 
 | 	io_end->size = size; | 
 | 	ext4_put_io_end(io_end); | 
 | } | 
 |  | 
 | /* | 
 |  * For ext4 extent files, ext4 will do direct-io write to holes, | 
 |  * preallocated extents, and those write extend the file, no need to | 
 |  * fall back to buffered IO. | 
 |  * | 
 |  * For holes, we fallocate those blocks, mark them as unwritten | 
 |  * If those blocks were preallocated, we mark sure they are split, but | 
 |  * still keep the range to write as unwritten. | 
 |  * | 
 |  * The unwritten extents will be converted to written when DIO is completed. | 
 |  * For async direct IO, since the IO may still pending when return, we | 
 |  * set up an end_io call back function, which will do the conversion | 
 |  * when async direct IO completed. | 
 |  * | 
 |  * If the O_DIRECT write will extend the file then add this inode to the | 
 |  * orphan list.  So recovery will truncate it back to the original size | 
 |  * if the machine crashes during the write. | 
 |  * | 
 |  */ | 
 | static ssize_t ext4_ext_direct_IO(struct kiocb *iocb, struct iov_iter *iter, | 
 | 				  loff_t offset) | 
 | { | 
 | 	struct file *file = iocb->ki_filp; | 
 | 	struct inode *inode = file->f_mapping->host; | 
 | 	ssize_t ret; | 
 | 	size_t count = iov_iter_count(iter); | 
 | 	int overwrite = 0; | 
 | 	get_block_t *get_block_func = NULL; | 
 | 	int dio_flags = 0; | 
 | 	loff_t final_size = offset + count; | 
 | 	ext4_io_end_t *io_end = NULL; | 
 |  | 
 | 	/* Use the old path for reads and writes beyond i_size. */ | 
 | 	if (iov_iter_rw(iter) != WRITE || final_size > inode->i_size) | 
 | 		return ext4_ind_direct_IO(iocb, iter, offset); | 
 |  | 
 | 	BUG_ON(iocb->private == NULL); | 
 |  | 
 | 	/* | 
 | 	 * Make all waiters for direct IO properly wait also for extent | 
 | 	 * conversion. This also disallows race between truncate() and | 
 | 	 * overwrite DIO as i_dio_count needs to be incremented under i_mutex. | 
 | 	 */ | 
 | 	if (iov_iter_rw(iter) == WRITE) | 
 | 		inode_dio_begin(inode); | 
 |  | 
 | 	/* If we do a overwrite dio, i_mutex locking can be released */ | 
 | 	overwrite = *((int *)iocb->private); | 
 |  | 
 | 	if (overwrite) { | 
 | 		down_read(&EXT4_I(inode)->i_data_sem); | 
 | 		mutex_unlock(&inode->i_mutex); | 
 | 	} | 
 |  | 
 | 	/* | 
 | 	 * We could direct write to holes and fallocate. | 
 | 	 * | 
 | 	 * Allocated blocks to fill the hole are marked as | 
 | 	 * unwritten to prevent parallel buffered read to expose | 
 | 	 * the stale data before DIO complete the data IO. | 
 | 	 * | 
 | 	 * As to previously fallocated extents, ext4 get_block will | 
 | 	 * just simply mark the buffer mapped but still keep the | 
 | 	 * extents unwritten. | 
 | 	 * | 
 | 	 * For non AIO case, we will convert those unwritten extents | 
 | 	 * to written after return back from blockdev_direct_IO. | 
 | 	 * | 
 | 	 * For async DIO, the conversion needs to be deferred when the | 
 | 	 * IO is completed. The ext4 end_io callback function will be | 
 | 	 * called to take care of the conversion work.  Here for async | 
 | 	 * case, we allocate an io_end structure to hook to the iocb. | 
 | 	 */ | 
 | 	iocb->private = NULL; | 
 | 	ext4_inode_aio_set(inode, NULL); | 
 | 	if (!is_sync_kiocb(iocb)) { | 
 | 		io_end = ext4_init_io_end(inode, GFP_NOFS); | 
 | 		if (!io_end) { | 
 | 			ret = -ENOMEM; | 
 | 			goto retake_lock; | 
 | 		} | 
 | 		/* | 
 | 		 * Grab reference for DIO. Will be dropped in ext4_end_io_dio() | 
 | 		 */ | 
 | 		iocb->private = ext4_get_io_end(io_end); | 
 | 		/* | 
 | 		 * we save the io structure for current async direct | 
 | 		 * IO, so that later ext4_map_blocks() could flag the | 
 | 		 * io structure whether there is a unwritten extents | 
 | 		 * needs to be converted when IO is completed. | 
 | 		 */ | 
 | 		ext4_inode_aio_set(inode, io_end); | 
 | 	} | 
 |  | 
 | 	if (overwrite) { | 
 | 		get_block_func = ext4_get_block_write_nolock; | 
 | 	} else { | 
 | 		get_block_func = ext4_get_block_write; | 
 | 		dio_flags = DIO_LOCKING; | 
 | 	} | 
 | #ifdef CONFIG_EXT4_FS_ENCRYPTION | 
 | 	BUG_ON(ext4_encrypted_inode(inode) && S_ISREG(inode->i_mode)); | 
 | #endif | 
 | 	if (IS_DAX(inode)) | 
 | 		ret = dax_do_io(iocb, inode, iter, offset, get_block_func, | 
 | 				ext4_end_io_dio, dio_flags); | 
 | 	else | 
 | 		ret = __blockdev_direct_IO(iocb, inode, | 
 | 					   inode->i_sb->s_bdev, iter, offset, | 
 | 					   get_block_func, | 
 | 					   ext4_end_io_dio, NULL, dio_flags); | 
 |  | 
 | 	/* | 
 | 	 * Put our reference to io_end. This can free the io_end structure e.g. | 
 | 	 * in sync IO case or in case of error. It can even perform extent | 
 | 	 * conversion if all bios we submitted finished before we got here. | 
 | 	 * Note that in that case iocb->private can be already set to NULL | 
 | 	 * here. | 
 | 	 */ | 
 | 	if (io_end) { | 
 | 		ext4_inode_aio_set(inode, NULL); | 
 | 		ext4_put_io_end(io_end); | 
 | 		/* | 
 | 		 * When no IO was submitted ext4_end_io_dio() was not | 
 | 		 * called so we have to put iocb's reference. | 
 | 		 */ | 
 | 		if (ret <= 0 && ret != -EIOCBQUEUED && iocb->private) { | 
 | 			WARN_ON(iocb->private != io_end); | 
 | 			WARN_ON(io_end->flag & EXT4_IO_END_UNWRITTEN); | 
 | 			ext4_put_io_end(io_end); | 
 | 			iocb->private = NULL; | 
 | 		} | 
 | 	} | 
 | 	if (ret > 0 && !overwrite && ext4_test_inode_state(inode, | 
 | 						EXT4_STATE_DIO_UNWRITTEN)) { | 
 | 		int err; | 
 | 		/* | 
 | 		 * for non AIO case, since the IO is already | 
 | 		 * completed, we could do the conversion right here | 
 | 		 */ | 
 | 		err = ext4_convert_unwritten_extents(NULL, inode, | 
 | 						     offset, ret); | 
 | 		if (err < 0) | 
 | 			ret = err; | 
 | 		ext4_clear_inode_state(inode, EXT4_STATE_DIO_UNWRITTEN); | 
 | 	} | 
 |  | 
 | retake_lock: | 
 | 	if (iov_iter_rw(iter) == WRITE) | 
 | 		inode_dio_end(inode); | 
 | 	/* take i_mutex locking again if we do a ovewrite dio */ | 
 | 	if (overwrite) { | 
 | 		up_read(&EXT4_I(inode)->i_data_sem); | 
 | 		mutex_lock(&inode->i_mutex); | 
 | 	} | 
 |  | 
 | 	return ret; | 
 | } | 
 |  | 
 | static ssize_t ext4_direct_IO(struct kiocb *iocb, struct iov_iter *iter, | 
 | 			      loff_t offset) | 
 | { | 
 | 	struct file *file = iocb->ki_filp; | 
 | 	struct inode *inode = file->f_mapping->host; | 
 | 	size_t count = iov_iter_count(iter); | 
 | 	ssize_t ret; | 
 |  | 
 | #ifdef CONFIG_EXT4_FS_ENCRYPTION | 
 | 	if (ext4_encrypted_inode(inode) && S_ISREG(inode->i_mode)) | 
 | 		return 0; | 
 | #endif | 
 |  | 
 | 	/* | 
 | 	 * If we are doing data journalling we don't support O_DIRECT | 
 | 	 */ | 
 | 	if (ext4_should_journal_data(inode)) | 
 | 		return 0; | 
 |  | 
 | 	/* Let buffer I/O handle the inline data case. */ | 
 | 	if (ext4_has_inline_data(inode)) | 
 | 		return 0; | 
 |  | 
 | 	trace_ext4_direct_IO_enter(inode, offset, count, iov_iter_rw(iter)); | 
 | 	if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) | 
 | 		ret = ext4_ext_direct_IO(iocb, iter, offset); | 
 | 	else | 
 | 		ret = ext4_ind_direct_IO(iocb, iter, offset); | 
 | 	trace_ext4_direct_IO_exit(inode, offset, count, iov_iter_rw(iter), ret); | 
 | 	return ret; | 
 | } | 
 |  | 
 | /* | 
 |  * Pages can be marked dirty completely asynchronously from ext4's journalling | 
 |  * activity.  By filemap_sync_pte(), try_to_unmap_one(), etc.  We cannot do | 
 |  * much here because ->set_page_dirty is called under VFS locks.  The page is | 
 |  * not necessarily locked. | 
 |  * | 
 |  * We cannot just dirty the page and leave attached buffers clean, because the | 
 |  * buffers' dirty state is "definitive".  We cannot just set the buffers dirty | 
 |  * or jbddirty because all the journalling code will explode. | 
 |  * | 
 |  * So what we do is to mark the page "pending dirty" and next time writepage | 
 |  * is called, propagate that into the buffers appropriately. | 
 |  */ | 
 | static int ext4_journalled_set_page_dirty(struct page *page) | 
 | { | 
 | 	SetPageChecked(page); | 
 | 	return __set_page_dirty_nobuffers(page); | 
 | } | 
 |  | 
 | static const struct address_space_operations ext4_aops = { | 
 | 	.readpage		= ext4_readpage, | 
 | 	.readpages		= ext4_readpages, | 
 | 	.writepage		= ext4_writepage, | 
 | 	.writepages		= ext4_writepages, | 
 | 	.write_begin		= ext4_write_begin, | 
 | 	.write_end		= ext4_write_end, | 
 | 	.bmap			= ext4_bmap, | 
 | 	.invalidatepage		= ext4_invalidatepage, | 
 | 	.releasepage		= ext4_releasepage, | 
 | 	.direct_IO		= ext4_direct_IO, | 
 | 	.migratepage		= buffer_migrate_page, | 
 | 	.is_partially_uptodate  = block_is_partially_uptodate, | 
 | 	.error_remove_page	= generic_error_remove_page, | 
 | }; | 
 |  | 
 | static const struct address_space_operations ext4_journalled_aops = { | 
 | 	.readpage		= ext4_readpage, | 
 | 	.readpages		= ext4_readpages, | 
 | 	.writepage		= ext4_writepage, | 
 | 	.writepages		= ext4_writepages, | 
 | 	.write_begin		= ext4_write_begin, | 
 | 	.write_end		= ext4_journalled_write_end, | 
 | 	.set_page_dirty		= ext4_journalled_set_page_dirty, | 
 | 	.bmap			= ext4_bmap, | 
 | 	.invalidatepage		= ext4_journalled_invalidatepage, | 
 | 	.releasepage		= ext4_releasepage, | 
 | 	.direct_IO		= ext4_direct_IO, | 
 | 	.is_partially_uptodate  = block_is_partially_uptodate, | 
 | 	.error_remove_page	= generic_error_remove_page, | 
 | }; | 
 |  | 
 | static const struct address_space_operations ext4_da_aops = { | 
 | 	.readpage		= ext4_readpage, | 
 | 	.readpages		= ext4_readpages, | 
 | 	.writepage		= ext4_writepage, | 
 | 	.writepages		= ext4_writepages, | 
 | 	.write_begin		= ext4_da_write_begin, | 
 | 	.write_end		= ext4_da_write_end, | 
 | 	.bmap			= ext4_bmap, | 
 | 	.invalidatepage		= ext4_da_invalidatepage, | 
 | 	.releasepage		= ext4_releasepage, | 
 | 	.direct_IO		= ext4_direct_IO, | 
 | 	.migratepage		= buffer_migrate_page, | 
 | 	.is_partially_uptodate  = block_is_partially_uptodate, | 
 | 	.error_remove_page	= generic_error_remove_page, | 
 | }; | 
 |  | 
 | void ext4_set_aops(struct inode *inode) | 
 | { | 
 | 	switch (ext4_inode_journal_mode(inode)) { | 
 | 	case EXT4_INODE_ORDERED_DATA_MODE: | 
 | 		ext4_set_inode_state(inode, EXT4_STATE_ORDERED_MODE); | 
 | 		break; | 
 | 	case EXT4_INODE_WRITEBACK_DATA_MODE: | 
 | 		ext4_clear_inode_state(inode, EXT4_STATE_ORDERED_MODE); | 
 | 		break; | 
 | 	case EXT4_INODE_JOURNAL_DATA_MODE: | 
 | 		inode->i_mapping->a_ops = &ext4_journalled_aops; | 
 | 		return; | 
 | 	default: | 
 | 		BUG(); | 
 | 	} | 
 | 	if (test_opt(inode->i_sb, DELALLOC)) | 
 | 		inode->i_mapping->a_ops = &ext4_da_aops; | 
 | 	else | 
 | 		inode->i_mapping->a_ops = &ext4_aops; | 
 | } | 
 |  | 
 | static int __ext4_block_zero_page_range(handle_t *handle, | 
 | 		struct address_space *mapping, loff_t from, loff_t length) | 
 | { | 
 | 	ext4_fsblk_t index = from >> PAGE_CACHE_SHIFT; | 
 | 	unsigned offset = from & (PAGE_CACHE_SIZE-1); | 
 | 	unsigned blocksize, pos; | 
 | 	ext4_lblk_t iblock; | 
 | 	struct inode *inode = mapping->host; | 
 | 	struct buffer_head *bh; | 
 | 	struct page *page; | 
 | 	int err = 0; | 
 |  | 
 | 	page = find_or_create_page(mapping, from >> PAGE_CACHE_SHIFT, | 
 | 				   mapping_gfp_mask(mapping) & ~__GFP_FS); | 
 | 	if (!page) | 
 | 		return -ENOMEM; | 
 |  | 
 | 	blocksize = inode->i_sb->s_blocksize; | 
 |  | 
 | 	iblock = index << (PAGE_CACHE_SHIFT - inode->i_sb->s_blocksize_bits); | 
 |  | 
 | 	if (!page_has_buffers(page)) | 
 | 		create_empty_buffers(page, blocksize, 0); | 
 |  | 
 | 	/* Find the buffer that contains "offset" */ | 
 | 	bh = page_buffers(page); | 
 | 	pos = blocksize; | 
 | 	while (offset >= pos) { | 
 | 		bh = bh->b_this_page; | 
 | 		iblock++; | 
 | 		pos += blocksize; | 
 | 	} | 
 | 	if (buffer_freed(bh)) { | 
 | 		BUFFER_TRACE(bh, "freed: skip"); | 
 | 		goto unlock; | 
 | 	} | 
 | 	if (!buffer_mapped(bh)) { | 
 | 		BUFFER_TRACE(bh, "unmapped"); | 
 | 		ext4_get_block(inode, iblock, bh, 0); | 
 | 		/* unmapped? It's a hole - nothing to do */ | 
 | 		if (!buffer_mapped(bh)) { | 
 | 			BUFFER_TRACE(bh, "still unmapped"); | 
 | 			goto unlock; | 
 | 		} | 
 | 	} | 
 |  | 
 | 	/* Ok, it's mapped. Make sure it's up-to-date */ | 
 | 	if (PageUptodate(page)) | 
 | 		set_buffer_uptodate(bh); | 
 |  | 
 | 	if (!buffer_uptodate(bh)) { | 
 | 		err = -EIO; | 
 | 		ll_rw_block(READ, 1, &bh); | 
 | 		wait_on_buffer(bh); | 
 | 		/* Uhhuh. Read error. Complain and punt. */ | 
 | 		if (!buffer_uptodate(bh)) | 
 | 			goto unlock; | 
 | 		if (S_ISREG(inode->i_mode) && | 
 | 		    ext4_encrypted_inode(inode)) { | 
 | 			/* We expect the key to be set. */ | 
 | 			BUG_ON(!ext4_has_encryption_key(inode)); | 
 | 			BUG_ON(blocksize != PAGE_CACHE_SIZE); | 
 | 			WARN_ON_ONCE(ext4_decrypt_one(inode, page)); | 
 | 		} | 
 | 	} | 
 | 	if (ext4_should_journal_data(inode)) { | 
 | 		BUFFER_TRACE(bh, "get write access"); | 
 | 		err = ext4_journal_get_write_access(handle, bh); | 
 | 		if (err) | 
 | 			goto unlock; | 
 | 	} | 
 | 	zero_user(page, offset, length); | 
 | 	BUFFER_TRACE(bh, "zeroed end of block"); | 
 |  | 
 | 	if (ext4_should_journal_data(inode)) { | 
 | 		err = ext4_handle_dirty_metadata(handle, inode, bh); | 
 | 	} else { | 
 | 		err = 0; | 
 | 		mark_buffer_dirty(bh); | 
 | 		if (ext4_test_inode_state(inode, EXT4_STATE_ORDERED_MODE)) | 
 | 			err = ext4_jbd2_file_inode(handle, inode); | 
 | 	} | 
 |  | 
 | unlock: | 
 | 	unlock_page(page); | 
 | 	page_cache_release(page); | 
 | 	return err; | 
 | } | 
 |  | 
 | /* | 
 |  * ext4_block_zero_page_range() zeros out a mapping of length 'length' | 
 |  * starting from file offset 'from'.  The range to be zero'd must | 
 |  * be contained with in one block.  If the specified range exceeds | 
 |  * the end of the block it will be shortened to end of the block | 
 |  * that cooresponds to 'from' | 
 |  */ | 
 | static int ext4_block_zero_page_range(handle_t *handle, | 
 | 		struct address_space *mapping, loff_t from, loff_t length) | 
 | { | 
 | 	struct inode *inode = mapping->host; | 
 | 	unsigned offset = from & (PAGE_CACHE_SIZE-1); | 
 | 	unsigned blocksize = inode->i_sb->s_blocksize; | 
 | 	unsigned max = blocksize - (offset & (blocksize - 1)); | 
 |  | 
 | 	/* | 
 | 	 * correct length if it does not fall between | 
 | 	 * 'from' and the end of the block | 
 | 	 */ | 
 | 	if (length > max || length < 0) | 
 | 		length = max; | 
 |  | 
 | 	if (IS_DAX(inode)) | 
 | 		return dax_zero_page_range(inode, from, length, ext4_get_block); | 
 | 	return __ext4_block_zero_page_range(handle, mapping, from, length); | 
 | } | 
 |  | 
 | /* | 
 |  * ext4_block_truncate_page() zeroes out a mapping from file offset `from' | 
 |  * up to the end of the block which corresponds to `from'. | 
 |  * This required during truncate. We need to physically zero the tail end | 
 |  * of that block so it doesn't yield old data if the file is later grown. | 
 |  */ | 
 | static int ext4_block_truncate_page(handle_t *handle, | 
 | 		struct address_space *mapping, loff_t from) | 
 | { | 
 | 	unsigned offset = from & (PAGE_CACHE_SIZE-1); | 
 | 	unsigned length; | 
 | 	unsigned blocksize; | 
 | 	struct inode *inode = mapping->host; | 
 |  | 
 | 	blocksize = inode->i_sb->s_blocksize; | 
 | 	length = blocksize - (offset & (blocksize - 1)); | 
 |  | 
 | 	return ext4_block_zero_page_range(handle, mapping, from, length); | 
 | } | 
 |  | 
 | int ext4_zero_partial_blocks(handle_t *handle, struct inode *inode, | 
 | 			     loff_t lstart, loff_t length) | 
 | { | 
 | 	struct super_block *sb = inode->i_sb; | 
 | 	struct address_space *mapping = inode->i_mapping; | 
 | 	unsigned partial_start, partial_end; | 
 | 	ext4_fsblk_t start, end; | 
 | 	loff_t byte_end = (lstart + length - 1); | 
 | 	int err = 0; | 
 |  | 
 | 	partial_start = lstart & (sb->s_blocksize - 1); | 
 | 	partial_end = byte_end & (sb->s_blocksize - 1); | 
 |  | 
 | 	start = lstart >> sb->s_blocksize_bits; | 
 | 	end = byte_end >> sb->s_blocksize_bits; | 
 |  | 
 | 	/* Handle partial zero within the single block */ | 
 | 	if (start == end && | 
 | 	    (partial_start || (partial_end != sb->s_blocksize - 1))) { | 
 | 		err = ext4_block_zero_page_range(handle, mapping, | 
 | 						 lstart, length); | 
 | 		return err; | 
 | 	} | 
 | 	/* Handle partial zero out on the start of the range */ | 
 | 	if (partial_start) { | 
 | 		err = ext4_block_zero_page_range(handle, mapping, | 
 | 						 lstart, sb->s_blocksize); | 
 | 		if (err) | 
 | 			return err; | 
 | 	} | 
 | 	/* Handle partial zero out on the end of the range */ | 
 | 	if (partial_end != sb->s_blocksize - 1) | 
 | 		err = ext4_block_zero_page_range(handle, mapping, | 
 | 						 byte_end - partial_end, | 
 | 						 partial_end + 1); | 
 | 	return err; | 
 | } | 
 |  | 
 | int ext4_can_truncate(struct inode *inode) | 
 | { | 
 | 	if (S_ISREG(inode->i_mode)) | 
 | 		return 1; | 
 | 	if (S_ISDIR(inode->i_mode)) | 
 | 		return 1; | 
 | 	if (S_ISLNK(inode->i_mode)) | 
 | 		return !ext4_inode_is_fast_symlink(inode); | 
 | 	return 0; | 
 | } | 
 |  | 
 | /* | 
 |  * ext4_punch_hole: punches a hole in a file by releaseing the blocks | 
 |  * associated with the given offset and length | 
 |  * | 
 |  * @inode:  File inode | 
 |  * @offset: The offset where the hole will begin | 
 |  * @len:    The length of the hole | 
 |  * | 
 |  * Returns: 0 on success or negative on failure | 
 |  */ | 
 |  | 
 | int ext4_punch_hole(struct inode *inode, loff_t offset, loff_t length) | 
 | { | 
 | 	struct super_block *sb = inode->i_sb; | 
 | 	ext4_lblk_t first_block, stop_block; | 
 | 	struct address_space *mapping = inode->i_mapping; | 
 | 	loff_t first_block_offset, last_block_offset; | 
 | 	handle_t *handle; | 
 | 	unsigned int credits; | 
 | 	int ret = 0; | 
 |  | 
 | 	if (!S_ISREG(inode->i_mode)) | 
 | 		return -EOPNOTSUPP; | 
 |  | 
 | 	trace_ext4_punch_hole(inode, offset, length, 0); | 
 |  | 
 | 	/* | 
 | 	 * Write out all dirty pages to avoid race conditions | 
 | 	 * Then release them. | 
 | 	 */ | 
 | 	if (mapping->nrpages && mapping_tagged(mapping, PAGECACHE_TAG_DIRTY)) { | 
 | 		ret = filemap_write_and_wait_range(mapping, offset, | 
 | 						   offset + length - 1); | 
 | 		if (ret) | 
 | 			return ret; | 
 | 	} | 
 |  | 
 | 	mutex_lock(&inode->i_mutex); | 
 |  | 
 | 	/* No need to punch hole beyond i_size */ | 
 | 	if (offset >= inode->i_size) | 
 | 		goto out_mutex; | 
 |  | 
 | 	/* | 
 | 	 * If the hole extends beyond i_size, set the hole | 
 | 	 * to end after the page that contains i_size | 
 | 	 */ | 
 | 	if (offset + length > inode->i_size) { | 
 | 		length = inode->i_size + | 
 | 		   PAGE_CACHE_SIZE - (inode->i_size & (PAGE_CACHE_SIZE - 1)) - | 
 | 		   offset; | 
 | 	} | 
 |  | 
 | 	if (offset & (sb->s_blocksize - 1) || | 
 | 	    (offset + length) & (sb->s_blocksize - 1)) { | 
 | 		/* | 
 | 		 * Attach jinode to inode for jbd2 if we do any zeroing of | 
 | 		 * partial block | 
 | 		 */ | 
 | 		ret = ext4_inode_attach_jinode(inode); | 
 | 		if (ret < 0) | 
 | 			goto out_mutex; | 
 |  | 
 | 	} | 
 |  | 
 | 	first_block_offset = round_up(offset, sb->s_blocksize); | 
 | 	last_block_offset = round_down((offset + length), sb->s_blocksize) - 1; | 
 |  | 
 | 	/* Now release the pages and zero block aligned part of pages*/ | 
 | 	if (last_block_offset > first_block_offset) | 
 | 		truncate_pagecache_range(inode, first_block_offset, | 
 | 					 last_block_offset); | 
 |  | 
 | 	/* Wait all existing dio workers, newcomers will block on i_mutex */ | 
 | 	ext4_inode_block_unlocked_dio(inode); | 
 | 	inode_dio_wait(inode); | 
 |  | 
 | 	if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) | 
 | 		credits = ext4_writepage_trans_blocks(inode); | 
 | 	else | 
 | 		credits = ext4_blocks_for_truncate(inode); | 
 | 	handle = ext4_journal_start(inode, EXT4_HT_TRUNCATE, credits); | 
 | 	if (IS_ERR(handle)) { | 
 | 		ret = PTR_ERR(handle); | 
 | 		ext4_std_error(sb, ret); | 
 | 		goto out_dio; | 
 | 	} | 
 |  | 
 | 	ret = ext4_zero_partial_blocks(handle, inode, offset, | 
 | 				       length); | 
 | 	if (ret) | 
 | 		goto out_stop; | 
 |  | 
 | 	first_block = (offset + sb->s_blocksize - 1) >> | 
 | 		EXT4_BLOCK_SIZE_BITS(sb); | 
 | 	stop_block = (offset + length) >> EXT4_BLOCK_SIZE_BITS(sb); | 
 |  | 
 | 	/* If there are no blocks to remove, return now */ | 
 | 	if (first_block >= stop_block) | 
 | 		goto out_stop; | 
 |  | 
 | 	down_write(&EXT4_I(inode)->i_data_sem); | 
 | 	ext4_discard_preallocations(inode); | 
 |  | 
 | 	ret = ext4_es_remove_extent(inode, first_block, | 
 | 				    stop_block - first_block); | 
 | 	if (ret) { | 
 | 		up_write(&EXT4_I(inode)->i_data_sem); | 
 | 		goto out_stop; | 
 | 	} | 
 |  | 
 | 	if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) | 
 | 		ret = ext4_ext_remove_space(inode, first_block, | 
 | 					    stop_block - 1); | 
 | 	else | 
 | 		ret = ext4_ind_remove_space(handle, inode, first_block, | 
 | 					    stop_block); | 
 |  | 
 | 	up_write(&EXT4_I(inode)->i_data_sem); | 
 | 	if (IS_SYNC(inode)) | 
 | 		ext4_handle_sync(handle); | 
 |  | 
 | 	/* Now release the pages again to reduce race window */ | 
 | 	if (last_block_offset > first_block_offset) | 
 | 		truncate_pagecache_range(inode, first_block_offset, | 
 | 					 last_block_offset); | 
 |  | 
 | 	inode->i_mtime = inode->i_ctime = ext4_current_time(inode); | 
 | 	ext4_mark_inode_dirty(handle, inode); | 
 | out_stop: | 
 | 	ext4_journal_stop(handle); | 
 | out_dio: | 
 | 	ext4_inode_resume_unlocked_dio(inode); | 
 | out_mutex: | 
 | 	mutex_unlock(&inode->i_mutex); | 
 | 	return ret; | 
 | } | 
 |  | 
 | int ext4_inode_attach_jinode(struct inode *inode) | 
 | { | 
 | 	struct ext4_inode_info *ei = EXT4_I(inode); | 
 | 	struct jbd2_inode *jinode; | 
 |  | 
 | 	if (ei->jinode || !EXT4_SB(inode->i_sb)->s_journal) | 
 | 		return 0; | 
 |  | 
 | 	jinode = jbd2_alloc_inode(GFP_KERNEL); | 
 | 	spin_lock(&inode->i_lock); | 
 | 	if (!ei->jinode) { | 
 | 		if (!jinode) { | 
 | 			spin_unlock(&inode->i_lock); | 
 | 			return -ENOMEM; | 
 | 		} | 
 | 		ei->jinode = jinode; | 
 | 		jbd2_journal_init_jbd_inode(ei->jinode, inode); | 
 | 		jinode = NULL; | 
 | 	} | 
 | 	spin_unlock(&inode->i_lock); | 
 | 	if (unlikely(jinode != NULL)) | 
 | 		jbd2_free_inode(jinode); | 
 | 	return 0; | 
 | } | 
 |  | 
 | /* | 
 |  * ext4_truncate() | 
 |  * | 
 |  * We block out ext4_get_block() block instantiations across the entire | 
 |  * transaction, and VFS/VM ensures that ext4_truncate() cannot run | 
 |  * simultaneously on behalf of the same inode. | 
 |  * | 
 |  * As we work through the truncate and commit bits of it to the journal there | 
 |  * is one core, guiding principle: the file's tree must always be consistent on | 
 |  * disk.  We must be able to restart the truncate after a crash. | 
 |  * | 
 |  * The file's tree may be transiently inconsistent in memory (although it | 
 |  * probably isn't), but whenever we close off and commit a journal transaction, | 
 |  * the contents of (the filesystem + the journal) must be consistent and | 
 |  * restartable.  It's pretty simple, really: bottom up, right to left (although | 
 |  * left-to-right works OK too). | 
 |  * | 
 |  * Note that at recovery time, journal replay occurs *before* the restart of | 
 |  * truncate against the orphan inode list. | 
 |  * | 
 |  * The committed inode has the new, desired i_size (which is the same as | 
 |  * i_disksize in this case).  After a crash, ext4_orphan_cleanup() will see | 
 |  * that this inode's truncate did not complete and it will again call | 
 |  * ext4_truncate() to have another go.  So there will be instantiated blocks | 
 |  * to the right of the truncation point in a crashed ext4 filesystem.  But | 
 |  * that's fine - as long as they are linked from the inode, the post-crash | 
 |  * ext4_truncate() run will find them and release them. | 
 |  */ | 
 | void ext4_truncate(struct inode *inode) | 
 | { | 
 | 	struct ext4_inode_info *ei = EXT4_I(inode); | 
 | 	unsigned int credits; | 
 | 	handle_t *handle; | 
 | 	struct address_space *mapping = inode->i_mapping; | 
 |  | 
 | 	/* | 
 | 	 * There is a possibility that we're either freeing the inode | 
 | 	 * or it's a completely new inode. In those cases we might not | 
 | 	 * have i_mutex locked because it's not necessary. | 
 | 	 */ | 
 | 	if (!(inode->i_state & (I_NEW|I_FREEING))) | 
 | 		WARN_ON(!mutex_is_locked(&inode->i_mutex)); | 
 | 	trace_ext4_truncate_enter(inode); | 
 |  | 
 | 	if (!ext4_can_truncate(inode)) | 
 | 		return; | 
 |  | 
 | 	ext4_clear_inode_flag(inode, EXT4_INODE_EOFBLOCKS); | 
 |  | 
 | 	if (inode->i_size == 0 && !test_opt(inode->i_sb, NO_AUTO_DA_ALLOC)) | 
 | 		ext4_set_inode_state(inode, EXT4_STATE_DA_ALLOC_CLOSE); | 
 |  | 
 | 	if (ext4_has_inline_data(inode)) { | 
 | 		int has_inline = 1; | 
 |  | 
 | 		ext4_inline_data_truncate(inode, &has_inline); | 
 | 		if (has_inline) | 
 | 			return; | 
 | 	} | 
 |  | 
 | 	/* If we zero-out tail of the page, we have to create jinode for jbd2 */ | 
 | 	if (inode->i_size & (inode->i_sb->s_blocksize - 1)) { | 
 | 		if (ext4_inode_attach_jinode(inode) < 0) | 
 | 			return; | 
 | 	} | 
 |  | 
 | 	if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) | 
 | 		credits = ext4_writepage_trans_blocks(inode); | 
 | 	else | 
 | 		credits = ext4_blocks_for_truncate(inode); | 
 |  | 
 | 	handle = ext4_journal_start(inode, EXT4_HT_TRUNCATE, credits); | 
 | 	if (IS_ERR(handle)) { | 
 | 		ext4_std_error(inode->i_sb, PTR_ERR(handle)); | 
 | 		return; | 
 | 	} | 
 |  | 
 | 	if (inode->i_size & (inode->i_sb->s_blocksize - 1)) | 
 | 		ext4_block_truncate_page(handle, mapping, inode->i_size); | 
 |  | 
 | 	/* | 
 | 	 * We add the inode to the orphan list, so that if this | 
 | 	 * truncate spans multiple transactions, and we crash, we will | 
 | 	 * resume the truncate when the filesystem recovers.  It also | 
 | 	 * marks the inode dirty, to catch the new size. | 
 | 	 * | 
 | 	 * Implication: the file must always be in a sane, consistent | 
 | 	 * truncatable state while each transaction commits. | 
 | 	 */ | 
 | 	if (ext4_orphan_add(handle, inode)) | 
 | 		goto out_stop; | 
 |  | 
 | 	down_write(&EXT4_I(inode)->i_data_sem); | 
 |  | 
 | 	ext4_discard_preallocations(inode); | 
 |  | 
 | 	if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) | 
 | 		ext4_ext_truncate(handle, inode); | 
 | 	else | 
 | 		ext4_ind_truncate(handle, inode); | 
 |  | 
 | 	up_write(&ei->i_data_sem); | 
 |  | 
 | 	if (IS_SYNC(inode)) | 
 | 		ext4_handle_sync(handle); | 
 |  | 
 | out_stop: | 
 | 	/* | 
 | 	 * If this was a simple ftruncate() and the file will remain alive, | 
 | 	 * then we need to clear up the orphan record which we created above. | 
 | 	 * However, if this was a real unlink then we were called by | 
 | 	 * ext4_evict_inode(), and we allow that function to clean up the | 
 | 	 * orphan info for us. | 
 | 	 */ | 
 | 	if (inode->i_nlink) | 
 | 		ext4_orphan_del(handle, inode); | 
 |  | 
 | 	inode->i_mtime = inode->i_ctime = ext4_current_time(inode); | 
 | 	ext4_mark_inode_dirty(handle, inode); | 
 | 	ext4_journal_stop(handle); | 
 |  | 
 | 	trace_ext4_truncate_exit(inode); | 
 | } | 
 |  | 
 | /* | 
 |  * ext4_get_inode_loc returns with an extra refcount against the inode's | 
 |  * underlying buffer_head on success. If 'in_mem' is true, we have all | 
 |  * data in memory that is needed to recreate the on-disk version of this | 
 |  * inode. | 
 |  */ | 
 | static int __ext4_get_inode_loc(struct inode *inode, | 
 | 				struct ext4_iloc *iloc, int in_mem) | 
 | { | 
 | 	struct ext4_group_desc	*gdp; | 
 | 	struct buffer_head	*bh; | 
 | 	struct super_block	*sb = inode->i_sb; | 
 | 	ext4_fsblk_t		block; | 
 | 	int			inodes_per_block, inode_offset; | 
 |  | 
 | 	iloc->bh = NULL; | 
 | 	if (!ext4_valid_inum(sb, inode->i_ino)) | 
 | 		return -EIO; | 
 |  | 
 | 	iloc->block_group = (inode->i_ino - 1) / EXT4_INODES_PER_GROUP(sb); | 
 | 	gdp = ext4_get_group_desc(sb, iloc->block_group, NULL); | 
 | 	if (!gdp) | 
 | 		return -EIO; | 
 |  | 
 | 	/* | 
 | 	 * Figure out the offset within the block group inode table | 
 | 	 */ | 
 | 	inodes_per_block = EXT4_SB(sb)->s_inodes_per_block; | 
 | 	inode_offset = ((inode->i_ino - 1) % | 
 | 			EXT4_INODES_PER_GROUP(sb)); | 
 | 	block = ext4_inode_table(sb, gdp) + (inode_offset / inodes_per_block); | 
 | 	iloc->offset = (inode_offset % inodes_per_block) * EXT4_INODE_SIZE(sb); | 
 |  | 
 | 	bh = sb_getblk(sb, block); | 
 | 	if (unlikely(!bh)) | 
 | 		return -ENOMEM; | 
 | 	if (!buffer_uptodate(bh)) { | 
 | 		lock_buffer(bh); | 
 |  | 
 | 		/* | 
 | 		 * If the buffer has the write error flag, we have failed | 
 | 		 * to write out another inode in the same block.  In this | 
 | 		 * case, we don't have to read the block because we may | 
 | 		 * read the old inode data successfully. | 
 | 		 */ | 
 | 		if (buffer_write_io_error(bh) && !buffer_uptodate(bh)) | 
 | 			set_buffer_uptodate(bh); | 
 |  | 
 | 		if (buffer_uptodate(bh)) { | 
 | 			/* someone brought it uptodate while we waited */ | 
 | 			unlock_buffer(bh); | 
 | 			goto has_buffer; | 
 | 		} | 
 |  | 
 | 		/* | 
 | 		 * If we have all information of the inode in memory and this | 
 | 		 * is the only valid inode in the block, we need not read the | 
 | 		 * block. | 
 | 		 */ | 
 | 		if (in_mem) { | 
 | 			struct buffer_head *bitmap_bh; | 
 | 			int i, start; | 
 |  | 
 | 			start = inode_offset & ~(inodes_per_block - 1); | 
 |  | 
 | 			/* Is the inode bitmap in cache? */ | 
 | 			bitmap_bh = sb_getblk(sb, ext4_inode_bitmap(sb, gdp)); | 
 | 			if (unlikely(!bitmap_bh)) | 
 | 				goto make_io; | 
 |  | 
 | 			/* | 
 | 			 * If the inode bitmap isn't in cache then the | 
 | 			 * optimisation may end up performing two reads instead | 
 | 			 * of one, so skip it. | 
 | 			 */ | 
 | 			if (!buffer_uptodate(bitmap_bh)) { | 
 | 				brelse(bitmap_bh); | 
 | 				goto make_io; | 
 | 			} | 
 | 			for (i = start; i < start + inodes_per_block; i++) { | 
 | 				if (i == inode_offset) | 
 | 					continue; | 
 | 				if (ext4_test_bit(i, bitmap_bh->b_data)) | 
 | 					break; | 
 | 			} | 
 | 			brelse(bitmap_bh); | 
 | 			if (i == start + inodes_per_block) { | 
 | 				/* all other inodes are free, so skip I/O */ | 
 | 				memset(bh->b_data, 0, bh->b_size); | 
 | 				set_buffer_uptodate(bh); | 
 | 				unlock_buffer(bh); | 
 | 				goto has_buffer; | 
 | 			} | 
 | 		} | 
 |  | 
 | make_io: | 
 | 		/* | 
 | 		 * If we need to do any I/O, try to pre-readahead extra | 
 | 		 * blocks from the inode table. | 
 | 		 */ | 
 | 		if (EXT4_SB(sb)->s_inode_readahead_blks) { | 
 | 			ext4_fsblk_t b, end, table; | 
 | 			unsigned num; | 
 | 			__u32 ra_blks = EXT4_SB(sb)->s_inode_readahead_blks; | 
 |  | 
 | 			table = ext4_inode_table(sb, gdp); | 
 | 			/* s_inode_readahead_blks is always a power of 2 */ | 
 | 			b = block & ~((ext4_fsblk_t) ra_blks - 1); | 
 | 			if (table > b) | 
 | 				b = table; | 
 | 			end = b + ra_blks; | 
 | 			num = EXT4_INODES_PER_GROUP(sb); | 
 | 			if (ext4_has_group_desc_csum(sb)) | 
 | 				num -= ext4_itable_unused_count(sb, gdp); | 
 | 			table += num / inodes_per_block; | 
 | 			if (end > table) | 
 | 				end = table; | 
 | 			while (b <= end) | 
 | 				sb_breadahead(sb, b++); | 
 | 		} | 
 |  | 
 | 		/* | 
 | 		 * There are other valid inodes in the buffer, this inode | 
 | 		 * has in-inode xattrs, or we don't have this inode in memory. | 
 | 		 * Read the block from disk. | 
 | 		 */ | 
 | 		trace_ext4_load_inode(inode); | 
 | 		get_bh(bh); | 
 | 		bh->b_end_io = end_buffer_read_sync; | 
 | 		submit_bh(READ | REQ_META | REQ_PRIO, bh); | 
 | 		wait_on_buffer(bh); | 
 | 		if (!buffer_uptodate(bh)) { | 
 | 			EXT4_ERROR_INODE_BLOCK(inode, block, | 
 | 					       "unable to read itable block"); | 
 | 			brelse(bh); | 
 | 			return -EIO; | 
 | 		} | 
 | 	} | 
 | has_buffer: | 
 | 	iloc->bh = bh; | 
 | 	return 0; | 
 | } | 
 |  | 
 | int ext4_get_inode_loc(struct inode *inode, struct ext4_iloc *iloc) | 
 | { | 
 | 	/* We have all inode data except xattrs in memory here. */ | 
 | 	return __ext4_get_inode_loc(inode, iloc, | 
 | 		!ext4_test_inode_state(inode, EXT4_STATE_XATTR)); | 
 | } | 
 |  | 
 | void ext4_set_inode_flags(struct inode *inode) | 
 | { | 
 | 	unsigned int flags = EXT4_I(inode)->i_flags; | 
 | 	unsigned int new_fl = 0; | 
 |  | 
 | 	if (flags & EXT4_SYNC_FL) | 
 | 		new_fl |= S_SYNC; | 
 | 	if (flags & EXT4_APPEND_FL) | 
 | 		new_fl |= S_APPEND; | 
 | 	if (flags & EXT4_IMMUTABLE_FL) | 
 | 		new_fl |= S_IMMUTABLE; | 
 | 	if (flags & EXT4_NOATIME_FL) | 
 | 		new_fl |= S_NOATIME; | 
 | 	if (flags & EXT4_DIRSYNC_FL) | 
 | 		new_fl |= S_DIRSYNC; | 
 | 	if (test_opt(inode->i_sb, DAX)) | 
 | 		new_fl |= S_DAX; | 
 | 	inode_set_flags(inode, new_fl, | 
 | 			S_SYNC|S_APPEND|S_IMMUTABLE|S_NOATIME|S_DIRSYNC|S_DAX); | 
 | } | 
 |  | 
 | /* Propagate flags from i_flags to EXT4_I(inode)->i_flags */ | 
 | void ext4_get_inode_flags(struct ext4_inode_info *ei) | 
 | { | 
 | 	unsigned int vfs_fl; | 
 | 	unsigned long old_fl, new_fl; | 
 |  | 
 | 	do { | 
 | 		vfs_fl = ei->vfs_inode.i_flags; | 
 | 		old_fl = ei->i_flags; | 
 | 		new_fl = old_fl & ~(EXT4_SYNC_FL|EXT4_APPEND_FL| | 
 | 				EXT4_IMMUTABLE_FL|EXT4_NOATIME_FL| | 
 | 				EXT4_DIRSYNC_FL); | 
 | 		if (vfs_fl & S_SYNC) | 
 | 			new_fl |= EXT4_SYNC_FL; | 
 | 		if (vfs_fl & S_APPEND) | 
 | 			new_fl |= EXT4_APPEND_FL; | 
 | 		if (vfs_fl & S_IMMUTABLE) | 
 | 			new_fl |= EXT4_IMMUTABLE_FL; | 
 | 		if (vfs_fl & S_NOATIME) | 
 | 			new_fl |= EXT4_NOATIME_FL; | 
 | 		if (vfs_fl & S_DIRSYNC) | 
 | 			new_fl |= EXT4_DIRSYNC_FL; | 
 | 	} while (cmpxchg(&ei->i_flags, old_fl, new_fl) != old_fl); | 
 | } | 
 |  | 
 | static blkcnt_t ext4_inode_blocks(struct ext4_inode *raw_inode, | 
 | 				  struct ext4_inode_info *ei) | 
 | { | 
 | 	blkcnt_t i_blocks ; | 
 | 	struct inode *inode = &(ei->vfs_inode); | 
 | 	struct super_block *sb = inode->i_sb; | 
 |  | 
 | 	if (EXT4_HAS_RO_COMPAT_FEATURE(sb, | 
 | 				EXT4_FEATURE_RO_COMPAT_HUGE_FILE)) { | 
 | 		/* we are using combined 48 bit field */ | 
 | 		i_blocks = ((u64)le16_to_cpu(raw_inode->i_blocks_high)) << 32 | | 
 | 					le32_to_cpu(raw_inode->i_blocks_lo); | 
 | 		if (ext4_test_inode_flag(inode, EXT4_INODE_HUGE_FILE)) { | 
 | 			/* i_blocks represent file system block size */ | 
 | 			return i_blocks  << (inode->i_blkbits - 9); | 
 | 		} else { | 
 | 			return i_blocks; | 
 | 		} | 
 | 	} else { | 
 | 		return le32_to_cpu(raw_inode->i_blocks_lo); | 
 | 	} | 
 | } | 
 |  | 
 | static inline void ext4_iget_extra_inode(struct inode *inode, | 
 | 					 struct ext4_inode *raw_inode, | 
 | 					 struct ext4_inode_info *ei) | 
 | { | 
 | 	__le32 *magic = (void *)raw_inode + | 
 | 			EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize; | 
 | 	if (*magic == cpu_to_le32(EXT4_XATTR_MAGIC)) { | 
 | 		ext4_set_inode_state(inode, EXT4_STATE_XATTR); | 
 | 		ext4_find_inline_data_nolock(inode); | 
 | 	} else | 
 | 		EXT4_I(inode)->i_inline_off = 0; | 
 | } | 
 |  | 
 | struct inode *ext4_iget(struct super_block *sb, unsigned long ino) | 
 | { | 
 | 	struct ext4_iloc iloc; | 
 | 	struct ext4_inode *raw_inode; | 
 | 	struct ext4_inode_info *ei; | 
 | 	struct inode *inode; | 
 | 	journal_t *journal = EXT4_SB(sb)->s_journal; | 
 | 	long ret; | 
 | 	int block; | 
 | 	uid_t i_uid; | 
 | 	gid_t i_gid; | 
 |  | 
 | 	inode = iget_locked(sb, ino); | 
 | 	if (!inode) | 
 | 		return ERR_PTR(-ENOMEM); | 
 | 	if (!(inode->i_state & I_NEW)) | 
 | 		return inode; | 
 |  | 
 | 	ei = EXT4_I(inode); | 
 | 	iloc.bh = NULL; | 
 |  | 
 | 	ret = __ext4_get_inode_loc(inode, &iloc, 0); | 
 | 	if (ret < 0) | 
 | 		goto bad_inode; | 
 | 	raw_inode = ext4_raw_inode(&iloc); | 
 |  | 
 | 	if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) { | 
 | 		ei->i_extra_isize = le16_to_cpu(raw_inode->i_extra_isize); | 
 | 		if (EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize > | 
 | 		    EXT4_INODE_SIZE(inode->i_sb)) { | 
 | 			EXT4_ERROR_INODE(inode, "bad extra_isize (%u != %u)", | 
 | 				EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize, | 
 | 				EXT4_INODE_SIZE(inode->i_sb)); | 
 | 			ret = -EIO; | 
 | 			goto bad_inode; | 
 | 		} | 
 | 	} else | 
 | 		ei->i_extra_isize = 0; | 
 |  | 
 | 	/* Precompute checksum seed for inode metadata */ | 
 | 	if (ext4_has_metadata_csum(sb)) { | 
 | 		struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb); | 
 | 		__u32 csum; | 
 | 		__le32 inum = cpu_to_le32(inode->i_ino); | 
 | 		__le32 gen = raw_inode->i_generation; | 
 | 		csum = ext4_chksum(sbi, sbi->s_csum_seed, (__u8 *)&inum, | 
 | 				   sizeof(inum)); | 
 | 		ei->i_csum_seed = ext4_chksum(sbi, csum, (__u8 *)&gen, | 
 | 					      sizeof(gen)); | 
 | 	} | 
 |  | 
 | 	if (!ext4_inode_csum_verify(inode, raw_inode, ei)) { | 
 | 		EXT4_ERROR_INODE(inode, "checksum invalid"); | 
 | 		ret = -EIO; | 
 | 		goto bad_inode; | 
 | 	} | 
 |  | 
 | 	inode->i_mode = le16_to_cpu(raw_inode->i_mode); | 
 | 	i_uid = (uid_t)le16_to_cpu(raw_inode->i_uid_low); | 
 | 	i_gid = (gid_t)le16_to_cpu(raw_inode->i_gid_low); | 
 | 	if (!(test_opt(inode->i_sb, NO_UID32))) { | 
 | 		i_uid |= le16_to_cpu(raw_inode->i_uid_high) << 16; | 
 | 		i_gid |= le16_to_cpu(raw_inode->i_gid_high) << 16; | 
 | 	} | 
 | 	i_uid_write(inode, i_uid); | 
 | 	i_gid_write(inode, i_gid); | 
 | 	set_nlink(inode, le16_to_cpu(raw_inode->i_links_count)); | 
 |  | 
 | 	ext4_clear_state_flags(ei);	/* Only relevant on 32-bit archs */ | 
 | 	ei->i_inline_off = 0; | 
 | 	ei->i_dir_start_lookup = 0; | 
 | 	ei->i_dtime = le32_to_cpu(raw_inode->i_dtime); | 
 | 	/* We now have enough fields to check if the inode was active or not. | 
 | 	 * This is needed because nfsd might try to access dead inodes | 
 | 	 * the test is that same one that e2fsck uses | 
 | 	 * NeilBrown 1999oct15 | 
 | 	 */ | 
 | 	if (inode->i_nlink == 0) { | 
 | 		if ((inode->i_mode == 0 || | 
 | 		     !(EXT4_SB(inode->i_sb)->s_mount_state & EXT4_ORPHAN_FS)) && | 
 | 		    ino != EXT4_BOOT_LOADER_INO) { | 
 | 			/* this inode is deleted */ | 
 | 			ret = -ESTALE; | 
 | 			goto bad_inode; | 
 | 		} | 
 | 		/* The only unlinked inodes we let through here have | 
 | 		 * valid i_mode and are being read by the orphan | 
 | 		 * recovery code: that's fine, we're about to complete | 
 | 		 * the process of deleting those. | 
 | 		 * OR it is the EXT4_BOOT_LOADER_INO which is | 
 | 		 * not initialized on a new filesystem. */ | 
 | 	} | 
 | 	ei->i_flags = le32_to_cpu(raw_inode->i_flags); | 
 | 	inode->i_blocks = ext4_inode_blocks(raw_inode, ei); | 
 | 	ei->i_file_acl = le32_to_cpu(raw_inode->i_file_acl_lo); | 
 | 	if (EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_64BIT)) | 
 | 		ei->i_file_acl |= | 
 | 			((__u64)le16_to_cpu(raw_inode->i_file_acl_high)) << 32; | 
 | 	inode->i_size = ext4_isize(raw_inode); | 
 | 	ei->i_disksize = inode->i_size; | 
 | #ifdef CONFIG_QUOTA | 
 | 	ei->i_reserved_quota = 0; | 
 | #endif | 
 | 	inode->i_generation = le32_to_cpu(raw_inode->i_generation); | 
 | 	ei->i_block_group = iloc.block_group; | 
 | 	ei->i_last_alloc_group = ~0; | 
 | 	/* | 
 | 	 * NOTE! The in-memory inode i_data array is in little-endian order | 
 | 	 * even on big-endian machines: we do NOT byteswap the block numbers! | 
 | 	 */ | 
 | 	for (block = 0; block < EXT4_N_BLOCKS; block++) | 
 | 		ei->i_data[block] = raw_inode->i_block[block]; | 
 | 	INIT_LIST_HEAD(&ei->i_orphan); | 
 |  | 
 | 	/* | 
 | 	 * Set transaction id's of transactions that have to be committed | 
 | 	 * to finish f[data]sync. We set them to currently running transaction | 
 | 	 * as we cannot be sure that the inode or some of its metadata isn't | 
 | 	 * part of the transaction - the inode could have been reclaimed and | 
 | 	 * now it is reread from disk. | 
 | 	 */ | 
 | 	if (journal) { | 
 | 		transaction_t *transaction; | 
 | 		tid_t tid; | 
 |  | 
 | 		read_lock(&journal->j_state_lock); | 
 | 		if (journal->j_running_transaction) | 
 | 			transaction = journal->j_running_transaction; | 
 | 		else | 
 | 			transaction = journal->j_committing_transaction; | 
 | 		if (transaction) | 
 | 			tid = transaction->t_tid; | 
 | 		else | 
 | 			tid = journal->j_commit_sequence; | 
 | 		read_unlock(&journal->j_state_lock); | 
 | 		ei->i_sync_tid = tid; | 
 | 		ei->i_datasync_tid = tid; | 
 | 	} | 
 |  | 
 | 	if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) { | 
 | 		if (ei->i_extra_isize == 0) { | 
 | 			/* The extra space is currently unused. Use it. */ | 
 | 			ei->i_extra_isize = sizeof(struct ext4_inode) - | 
 | 					    EXT4_GOOD_OLD_INODE_SIZE; | 
 | 		} else { | 
 | 			ext4_iget_extra_inode(inode, raw_inode, ei); | 
 | 		} | 
 | 	} | 
 |  | 
 | 	EXT4_INODE_GET_XTIME(i_ctime, inode, raw_inode); | 
 | 	EXT4_INODE_GET_XTIME(i_mtime, inode, raw_inode); | 
 | 	EXT4_INODE_GET_XTIME(i_atime, inode, raw_inode); | 
 | 	EXT4_EINODE_GET_XTIME(i_crtime, ei, raw_inode); | 
 |  | 
 | 	if (likely(!test_opt2(inode->i_sb, HURD_COMPAT))) { | 
 | 		inode->i_version = le32_to_cpu(raw_inode->i_disk_version); | 
 | 		if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) { | 
 | 			if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi)) | 
 | 				inode->i_version |= | 
 | 		    (__u64)(le32_to_cpu(raw_inode->i_version_hi)) << 32; | 
 | 		} | 
 | 	} | 
 |  | 
 | 	ret = 0; | 
 | 	if (ei->i_file_acl && | 
 | 	    !ext4_data_block_valid(EXT4_SB(sb), ei->i_file_acl, 1)) { | 
 | 		EXT4_ERROR_INODE(inode, "bad extended attribute block %llu", | 
 | 				 ei->i_file_acl); | 
 | 		ret = -EIO; | 
 | 		goto bad_inode; | 
 | 	} else if (!ext4_has_inline_data(inode)) { | 
 | 		if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) { | 
 | 			if ((S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) || | 
 | 			    (S_ISLNK(inode->i_mode) && | 
 | 			     !ext4_inode_is_fast_symlink(inode)))) | 
 | 				/* Validate extent which is part of inode */ | 
 | 				ret = ext4_ext_check_inode(inode); | 
 | 		} else if (S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) || | 
 | 			   (S_ISLNK(inode->i_mode) && | 
 | 			    !ext4_inode_is_fast_symlink(inode))) { | 
 | 			/* Validate block references which are part of inode */ | 
 | 			ret = ext4_ind_check_inode(inode); | 
 | 		} | 
 | 	} | 
 | 	if (ret) | 
 | 		goto bad_inode; | 
 |  | 
 | 	if (S_ISREG(inode->i_mode)) { | 
 | 		inode->i_op = &ext4_file_inode_operations; | 
 | 		inode->i_fop = &ext4_file_operations; | 
 | 		ext4_set_aops(inode); | 
 | 	} else if (S_ISDIR(inode->i_mode)) { | 
 | 		inode->i_op = &ext4_dir_inode_operations; | 
 | 		inode->i_fop = &ext4_dir_operations; | 
 | 	} else if (S_ISLNK(inode->i_mode)) { | 
 | 		if (ext4_inode_is_fast_symlink(inode) && | 
 | 		    !ext4_encrypted_inode(inode)) { | 
 | 			inode->i_op = &ext4_fast_symlink_inode_operations; | 
 | 			nd_terminate_link(ei->i_data, inode->i_size, | 
 | 				sizeof(ei->i_data) - 1); | 
 | 		} else { | 
 | 			inode->i_op = &ext4_symlink_inode_operations; | 
 | 			ext4_set_aops(inode); | 
 | 		} | 
 | 	} else if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode) || | 
 | 	      S_ISFIFO(inode->i_mode) || S_ISSOCK(inode->i_mode)) { | 
 | 		inode->i_op = &ext4_special_inode_operations; | 
 | 		if (raw_inode->i_block[0]) | 
 | 			init_special_inode(inode, inode->i_mode, | 
 | 			   old_decode_dev(le32_to_cpu(raw_inode->i_block[0]))); | 
 | 		else | 
 | 			init_special_inode(inode, inode->i_mode, | 
 | 			   new_decode_dev(le32_to_cpu(raw_inode->i_block[1]))); | 
 | 	} else if (ino == EXT4_BOOT_LOADER_INO) { | 
 | 		make_bad_inode(inode); | 
 | 	} else { | 
 | 		ret = -EIO; | 
 | 		EXT4_ERROR_INODE(inode, "bogus i_mode (%o)", inode->i_mode); | 
 | 		goto bad_inode; | 
 | 	} | 
 | 	brelse(iloc.bh); | 
 | 	ext4_set_inode_flags(inode); | 
 | 	unlock_new_inode(inode); | 
 | 	return inode; | 
 |  | 
 | bad_inode: | 
 | 	brelse(iloc.bh); | 
 | 	iget_failed(inode); | 
 | 	return ERR_PTR(ret); | 
 | } | 
 |  | 
 | struct inode *ext4_iget_normal(struct super_block *sb, unsigned long ino) | 
 | { | 
 | 	if (ino < EXT4_FIRST_INO(sb) && ino != EXT4_ROOT_INO) | 
 | 		return ERR_PTR(-EIO); | 
 | 	return ext4_iget(sb, ino); | 
 | } | 
 |  | 
 | static int ext4_inode_blocks_set(handle_t *handle, | 
 | 				struct ext4_inode *raw_inode, | 
 | 				struct ext4_inode_info *ei) | 
 | { | 
 | 	struct inode *inode = &(ei->vfs_inode); | 
 | 	u64 i_blocks = inode->i_blocks; | 
 | 	struct super_block *sb = inode->i_sb; | 
 |  | 
 | 	if (i_blocks <= ~0U) { | 
 | 		/* | 
 | 		 * i_blocks can be represented in a 32 bit variable | 
 | 		 * as multiple of 512 bytes | 
 | 		 */ | 
 | 		raw_inode->i_blocks_lo   = cpu_to_le32(i_blocks); | 
 | 		raw_inode->i_blocks_high = 0; | 
 | 		ext4_clear_inode_flag(inode, EXT4_INODE_HUGE_FILE); | 
 | 		return 0; | 
 | 	} | 
 | 	if (!EXT4_HAS_RO_COMPAT_FEATURE(sb, EXT4_FEATURE_RO_COMPAT_HUGE_FILE)) | 
 | 		return -EFBIG; | 
 |  | 
 | 	if (i_blocks <= 0xffffffffffffULL) { | 
 | 		/* | 
 | 		 * i_blocks can be represented in a 48 bit variable | 
 | 		 * as multiple of 512 bytes | 
 | 		 */ | 
 | 		raw_inode->i_blocks_lo   = cpu_to_le32(i_blocks); | 
 | 		raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32); | 
 | 		ext4_clear_inode_flag(inode, EXT4_INODE_HUGE_FILE); | 
 | 	} else { | 
 | 		ext4_set_inode_flag(inode, EXT4_INODE_HUGE_FILE); | 
 | 		/* i_block is stored in file system block size */ | 
 | 		i_blocks = i_blocks >> (inode->i_blkbits - 9); | 
 | 		raw_inode->i_blocks_lo   = cpu_to_le32(i_blocks); | 
 | 		raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32); | 
 | 	} | 
 | 	return 0; | 
 | } | 
 |  | 
 | struct other_inode { | 
 | 	unsigned long		orig_ino; | 
 | 	struct ext4_inode	*raw_inode; | 
 | }; | 
 |  | 
 | static int other_inode_match(struct inode * inode, unsigned long ino, | 
 | 			     void *data) | 
 | { | 
 | 	struct other_inode *oi = (struct other_inode *) data; | 
 |  | 
 | 	if ((inode->i_ino != ino) || | 
 | 	    (inode->i_state & (I_FREEING | I_WILL_FREE | I_NEW | | 
 | 			       I_DIRTY_SYNC | I_DIRTY_DATASYNC)) || | 
 | 	    ((inode->i_state & I_DIRTY_TIME) == 0)) | 
 | 		return 0; | 
 | 	spin_lock(&inode->i_lock); | 
 | 	if (((inode->i_state & (I_FREEING | I_WILL_FREE | I_NEW | | 
 | 				I_DIRTY_SYNC | I_DIRTY_DATASYNC)) == 0) && | 
 | 	    (inode->i_state & I_DIRTY_TIME)) { | 
 | 		struct ext4_inode_info	*ei = EXT4_I(inode); | 
 |  | 
 | 		inode->i_state &= ~(I_DIRTY_TIME | I_DIRTY_TIME_EXPIRED); | 
 | 		spin_unlock(&inode->i_lock); | 
 |  | 
 | 		spin_lock(&ei->i_raw_lock); | 
 | 		EXT4_INODE_SET_XTIME(i_ctime, inode, oi->raw_inode); | 
 | 		EXT4_INODE_SET_XTIME(i_mtime, inode, oi->raw_inode); | 
 | 		EXT4_INODE_SET_XTIME(i_atime, inode, oi->raw_inode); | 
 | 		ext4_inode_csum_set(inode, oi->raw_inode, ei); | 
 | 		spin_unlock(&ei->i_raw_lock); | 
 | 		trace_ext4_other_inode_update_time(inode, oi->orig_ino); | 
 | 		return -1; | 
 | 	} | 
 | 	spin_unlock(&inode->i_lock); | 
 | 	return -1; | 
 | } | 
 |  | 
 | /* | 
 |  * Opportunistically update the other time fields for other inodes in | 
 |  * the same inode table block. | 
 |  */ | 
 | static void ext4_update_other_inodes_time(struct super_block *sb, | 
 | 					  unsigned long orig_ino, char *buf) | 
 | { | 
 | 	struct other_inode oi; | 
 | 	unsigned long ino; | 
 | 	int i, inodes_per_block = EXT4_SB(sb)->s_inodes_per_block; | 
 | 	int inode_size = EXT4_INODE_SIZE(sb); | 
 |  | 
 | 	oi.orig_ino = orig_ino; | 
 | 	/* | 
 | 	 * Calculate the first inode in the inode table block.  Inode | 
 | 	 * numbers are one-based.  That is, the first inode in a block | 
 | 	 * (assuming 4k blocks and 256 byte inodes) is (n*16 + 1). | 
 | 	 */ | 
 | 	ino = ((orig_ino - 1) & ~(inodes_per_block - 1)) + 1; | 
 | 	for (i = 0; i < inodes_per_block; i++, ino++, buf += inode_size) { | 
 | 		if (ino == orig_ino) | 
 | 			continue; | 
 | 		oi.raw_inode = (struct ext4_inode *) buf; | 
 | 		(void) find_inode_nowait(sb, ino, other_inode_match, &oi); | 
 | 	} | 
 | } | 
 |  | 
 | /* | 
 |  * Post the struct inode info into an on-disk inode location in the | 
 |  * buffer-cache.  This gobbles the caller's reference to the | 
 |  * buffer_head in the inode location struct. | 
 |  * | 
 |  * The caller must have write access to iloc->bh. | 
 |  */ | 
 | static int ext4_do_update_inode(handle_t *handle, | 
 | 				struct inode *inode, | 
 | 				struct ext4_iloc *iloc) | 
 | { | 
 | 	struct ext4_inode *raw_inode = ext4_raw_inode(iloc); | 
 | 	struct ext4_inode_info *ei = EXT4_I(inode); | 
 | 	struct buffer_head *bh = iloc->bh; | 
 | 	struct super_block *sb = inode->i_sb; | 
 | 	int err = 0, rc, block; | 
 | 	int need_datasync = 0, set_large_file = 0; | 
 | 	uid_t i_uid; | 
 | 	gid_t i_gid; | 
 |  | 
 | 	spin_lock(&ei->i_raw_lock); | 
 |  | 
 | 	/* For fields not tracked in the in-memory inode, | 
 | 	 * initialise them to zero for new inodes. */ | 
 | 	if (ext4_test_inode_state(inode, EXT4_STATE_NEW)) | 
 | 		memset(raw_inode, 0, EXT4_SB(inode->i_sb)->s_inode_size); | 
 |  | 
 | 	ext4_get_inode_flags(ei); | 
 | 	raw_inode->i_mode = cpu_to_le16(inode->i_mode); | 
 | 	i_uid = i_uid_read(inode); | 
 | 	i_gid = i_gid_read(inode); | 
 | 	if (!(test_opt(inode->i_sb, NO_UID32))) { | 
 | 		raw_inode->i_uid_low = cpu_to_le16(low_16_bits(i_uid)); | 
 | 		raw_inode->i_gid_low = cpu_to_le16(low_16_bits(i_gid)); | 
 | /* | 
 |  * Fix up interoperability with old kernels. Otherwise, old inodes get | 
 |  * re-used with the upper 16 bits of the uid/gid intact | 
 |  */ | 
 | 		if (!ei->i_dtime) { | 
 | 			raw_inode->i_uid_high = | 
 | 				cpu_to_le16(high_16_bits(i_uid)); | 
 | 			raw_inode->i_gid_high = | 
 | 				cpu_to_le16(high_16_bits(i_gid)); | 
 | 		} else { | 
 | 			raw_inode->i_uid_high = 0; | 
 | 			raw_inode->i_gid_high = 0; | 
 | 		} | 
 | 	} else { | 
 | 		raw_inode->i_uid_low = cpu_to_le16(fs_high2lowuid(i_uid)); | 
 | 		raw_inode->i_gid_low = cpu_to_le16(fs_high2lowgid(i_gid)); | 
 | 		raw_inode->i_uid_high = 0; | 
 | 		raw_inode->i_gid_high = 0; | 
 | 	} | 
 | 	raw_inode->i_links_count = cpu_to_le16(inode->i_nlink); | 
 |  | 
 | 	EXT4_INODE_SET_XTIME(i_ctime, inode, raw_inode); | 
 | 	EXT4_INODE_SET_XTIME(i_mtime, inode, raw_inode); | 
 | 	EXT4_INODE_SET_XTIME(i_atime, inode, raw_inode); | 
 | 	EXT4_EINODE_SET_XTIME(i_crtime, ei, raw_inode); | 
 |  | 
 | 	err = ext4_inode_blocks_set(handle, raw_inode, ei); | 
 | 	if (err) { | 
 | 		spin_unlock(&ei->i_raw_lock); | 
 | 		goto out_brelse; | 
 | 	} | 
 | 	raw_inode->i_dtime = cpu_to_le32(ei->i_dtime); | 
 | 	raw_inode->i_flags = cpu_to_le32(ei->i_flags & 0xFFFFFFFF); | 
 | 	if (likely(!test_opt2(inode->i_sb, HURD_COMPAT))) | 
 | 		raw_inode->i_file_acl_high = | 
 | 			cpu_to_le16(ei->i_file_acl >> 32); | 
 | 	raw_inode->i_file_acl_lo = cpu_to_le32(ei->i_file_acl); | 
 | 	if (ei->i_disksize != ext4_isize(raw_inode)) { | 
 | 		ext4_isize_set(raw_inode, ei->i_disksize); | 
 | 		need_datasync = 1; | 
 | 	} | 
 | 	if (ei->i_disksize > 0x7fffffffULL) { | 
 | 		if (!EXT4_HAS_RO_COMPAT_FEATURE(sb, | 
 | 				EXT4_FEATURE_RO_COMPAT_LARGE_FILE) || | 
 | 				EXT4_SB(sb)->s_es->s_rev_level == | 
 | 		    cpu_to_le32(EXT4_GOOD_OLD_REV)) | 
 | 			set_large_file = 1; | 
 | 	} | 
 | 	raw_inode->i_generation = cpu_to_le32(inode->i_generation); | 
 | 	if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode)) { | 
 | 		if (old_valid_dev(inode->i_rdev)) { | 
 | 			raw_inode->i_block[0] = | 
 | 				cpu_to_le32(old_encode_dev(inode->i_rdev)); | 
 | 			raw_inode->i_block[1] = 0; | 
 | 		} else { | 
 | 			raw_inode->i_block[0] = 0; | 
 | 			raw_inode->i_block[1] = | 
 | 				cpu_to_le32(new_encode_dev(inode->i_rdev)); | 
 | 			raw_inode->i_block[2] = 0; | 
 | 		} | 
 | 	} else if (!ext4_has_inline_data(inode)) { | 
 | 		for (block = 0; block < EXT4_N_BLOCKS; block++) | 
 | 			raw_inode->i_block[block] = ei->i_data[block]; | 
 | 	} | 
 |  | 
 | 	if (likely(!test_opt2(inode->i_sb, HURD_COMPAT))) { | 
 | 		raw_inode->i_disk_version = cpu_to_le32(inode->i_version); | 
 | 		if (ei->i_extra_isize) { | 
 | 			if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi)) | 
 | 				raw_inode->i_version_hi = | 
 | 					cpu_to_le32(inode->i_version >> 32); | 
 | 			raw_inode->i_extra_isize = | 
 | 				cpu_to_le16(ei->i_extra_isize); | 
 | 		} | 
 | 	} | 
 | 	ext4_inode_csum_set(inode, raw_inode, ei); | 
 | 	spin_unlock(&ei->i_raw_lock); | 
 | 	if (inode->i_sb->s_flags & MS_LAZYTIME) | 
 | 		ext4_update_other_inodes_time(inode->i_sb, inode->i_ino, | 
 | 					      bh->b_data); | 
 |  | 
 | 	BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata"); | 
 | 	rc = ext4_handle_dirty_metadata(handle, NULL, bh); | 
 | 	if (!err) | 
 | 		err = rc; | 
 | 	ext4_clear_inode_state(inode, EXT4_STATE_NEW); | 
 | 	if (set_large_file) { | 
 | 		BUFFER_TRACE(EXT4_SB(sb)->s_sbh, "get write access"); | 
 | 		err = ext4_journal_get_write_access(handle, EXT4_SB(sb)->s_sbh); | 
 | 		if (err) | 
 | 			goto out_brelse; | 
 | 		ext4_update_dynamic_rev(sb); | 
 | 		EXT4_SET_RO_COMPAT_FEATURE(sb, | 
 | 					   EXT4_FEATURE_RO_COMPAT_LARGE_FILE); | 
 | 		ext4_handle_sync(handle); | 
 | 		err = ext4_handle_dirty_super(handle, sb); | 
 | 	} | 
 | 	ext4_update_inode_fsync_trans(handle, inode, need_datasync); | 
 | out_brelse: | 
 | 	brelse(bh); | 
 | 	ext4_std_error(inode->i_sb, err); | 
 | 	return err; | 
 | } | 
 |  | 
 | /* | 
 |  * ext4_write_inode() | 
 |  * | 
 |  * We are called from a few places: | 
 |  * | 
 |  * - Within generic_file_aio_write() -> generic_write_sync() for O_SYNC files. | 
 |  *   Here, there will be no transaction running. We wait for any running | 
 |  *   transaction to commit. | 
 |  * | 
 |  * - Within flush work (sys_sync(), kupdate and such). | 
 |  *   We wait on commit, if told to. | 
 |  * | 
 |  * - Within iput_final() -> write_inode_now() | 
 |  *   We wait on commit, if told to. | 
 |  * | 
 |  * In all cases it is actually safe for us to return without doing anything, | 
 |  * because the inode has been copied into a raw inode buffer in | 
 |  * ext4_mark_inode_dirty().  This is a correctness thing for WB_SYNC_ALL | 
 |  * writeback. | 
 |  * | 
 |  * Note that we are absolutely dependent upon all inode dirtiers doing the | 
 |  * right thing: they *must* call mark_inode_dirty() after dirtying info in | 
 |  * which we are interested. | 
 |  * | 
 |  * It would be a bug for them to not do this.  The code: | 
 |  * | 
 |  *	mark_inode_dirty(inode) | 
 |  *	stuff(); | 
 |  *	inode->i_size = expr; | 
 |  * | 
 |  * is in error because write_inode() could occur while `stuff()' is running, | 
 |  * and the new i_size will be lost.  Plus the inode will no longer be on the | 
 |  * superblock's dirty inode list. | 
 |  */ | 
 | int ext4_write_inode(struct inode *inode, struct writeback_control *wbc) | 
 | { | 
 | 	int err; | 
 |  | 
 | 	if (WARN_ON_ONCE(current->flags & PF_MEMALLOC)) | 
 | 		return 0; | 
 |  | 
 | 	if (EXT4_SB(inode->i_sb)->s_journal) { | 
 | 		if (ext4_journal_current_handle()) { | 
 | 			jbd_debug(1, "called recursively, non-PF_MEMALLOC!\n"); | 
 | 			dump_stack(); | 
 | 			return -EIO; | 
 | 		} | 
 |  | 
 | 		/* | 
 | 		 * No need to force transaction in WB_SYNC_NONE mode. Also | 
 | 		 * ext4_sync_fs() will force the commit after everything is | 
 | 		 * written. | 
 | 		 */ | 
 | 		if (wbc->sync_mode != WB_SYNC_ALL || wbc->for_sync) | 
 | 			return 0; | 
 |  | 
 | 		err = ext4_force_commit(inode->i_sb); | 
 | 	} else { | 
 | 		struct ext4_iloc iloc; | 
 |  | 
 | 		err = __ext4_get_inode_loc(inode, &iloc, 0); | 
 | 		if (err) | 
 | 			return err; | 
 | 		/* | 
 | 		 * sync(2) will flush the whole buffer cache. No need to do | 
 | 		 * it here separately for each inode. | 
 | 		 */ | 
 | 		if (wbc->sync_mode == WB_SYNC_ALL && !wbc->for_sync) | 
 | 			sync_dirty_buffer(iloc.bh); | 
 | 		if (buffer_req(iloc.bh) && !buffer_uptodate(iloc.bh)) { | 
 | 			EXT4_ERROR_INODE_BLOCK(inode, iloc.bh->b_blocknr, | 
 | 					 "IO error syncing inode"); | 
 | 			err = -EIO; | 
 | 		} | 
 | 		brelse(iloc.bh); | 
 | 	} | 
 | 	return err; | 
 | } | 
 |  | 
 | /* | 
 |  * In data=journal mode ext4_journalled_invalidatepage() may fail to invalidate | 
 |  * buffers that are attached to a page stradding i_size and are undergoing | 
 |  * commit. In that case we have to wait for commit to finish and try again. | 
 |  */ | 
 | static void ext4_wait_for_tail_page_commit(struct inode *inode) | 
 | { | 
 | 	struct page *page; | 
 | 	unsigned offset; | 
 | 	journal_t *journal = EXT4_SB(inode->i_sb)->s_journal; | 
 | 	tid_t commit_tid = 0; | 
 | 	int ret; | 
 |  | 
 | 	offset = inode->i_size & (PAGE_CACHE_SIZE - 1); | 
 | 	/* | 
 | 	 * All buffers in the last page remain valid? Then there's nothing to | 
 | 	 * do. We do the check mainly to optimize the common PAGE_CACHE_SIZE == | 
 | 	 * blocksize case | 
 | 	 */ | 
 | 	if (offset > PAGE_CACHE_SIZE - (1 << inode->i_blkbits)) | 
 | 		return; | 
 | 	while (1) { | 
 | 		page = find_lock_page(inode->i_mapping, | 
 | 				      inode->i_size >> PAGE_CACHE_SHIFT); | 
 | 		if (!page) | 
 | 			return; | 
 | 		ret = __ext4_journalled_invalidatepage(page, offset, | 
 | 						PAGE_CACHE_SIZE - offset); | 
 | 		unlock_page(page); | 
 | 		page_cache_release(page); | 
 | 		if (ret != -EBUSY) | 
 | 			return; | 
 | 		commit_tid = 0; | 
 | 		read_lock(&journal->j_state_lock); | 
 | 		if (journal->j_committing_transaction) | 
 | 			commit_tid = journal->j_committing_transaction->t_tid; | 
 | 		read_unlock(&journal->j_state_lock); | 
 | 		if (commit_tid) | 
 | 			jbd2_log_wait_commit(journal, commit_tid); | 
 | 	} | 
 | } | 
 |  | 
 | /* | 
 |  * ext4_setattr() | 
 |  * | 
 |  * Called from notify_change. | 
 |  * | 
 |  * We want to trap VFS attempts to truncate the file as soon as | 
 |  * possible.  In particular, we want to make sure that when the VFS | 
 |  * shrinks i_size, we put the inode on the orphan list and modify | 
 |  * i_disksize immediately, so that during the subsequent flushing of | 
 |  * dirty pages and freeing of disk blocks, we can guarantee that any | 
 |  * commit will leave the blocks being flushed in an unused state on | 
 |  * disk.  (On recovery, the inode will get truncated and the blocks will | 
 |  * be freed, so we have a strong guarantee that no future commit will | 
 |  * leave these blocks visible to the user.) | 
 |  * | 
 |  * Another thing we have to assure is that if we are in ordered mode | 
 |  * and inode is still attached to the committing transaction, we must | 
 |  * we start writeout of all the dirty pages which are being truncated. | 
 |  * This way we are sure that all the data written in the previous | 
 |  * transaction are already on disk (truncate waits for pages under | 
 |  * writeback). | 
 |  * | 
 |  * Called with inode->i_mutex down. | 
 |  */ | 
 | int ext4_setattr(struct dentry *dentry, struct iattr *attr) | 
 | { | 
 | 	struct inode *inode = d_inode(dentry); | 
 | 	int error, rc = 0; | 
 | 	int orphan = 0; | 
 | 	const unsigned int ia_valid = attr->ia_valid; | 
 |  | 
 | 	error = inode_change_ok(inode, attr); | 
 | 	if (error) | 
 | 		return error; | 
 |  | 
 | 	if (is_quota_modification(inode, attr)) | 
 | 		dquot_initialize(inode); | 
 | 	if ((ia_valid & ATTR_UID && !uid_eq(attr->ia_uid, inode->i_uid)) || | 
 | 	    (ia_valid & ATTR_GID && !gid_eq(attr->ia_gid, inode->i_gid))) { | 
 | 		handle_t *handle; | 
 |  | 
 | 		/* (user+group)*(old+new) structure, inode write (sb, | 
 | 		 * inode block, ? - but truncate inode update has it) */ | 
 | 		handle = ext4_journal_start(inode, EXT4_HT_QUOTA, | 
 | 			(EXT4_MAXQUOTAS_INIT_BLOCKS(inode->i_sb) + | 
 | 			 EXT4_MAXQUOTAS_DEL_BLOCKS(inode->i_sb)) + 3); | 
 | 		if (IS_ERR(handle)) { | 
 | 			error = PTR_ERR(handle); | 
 | 			goto err_out; | 
 | 		} | 
 | 		error = dquot_transfer(inode, attr); | 
 | 		if (error) { | 
 | 			ext4_journal_stop(handle); | 
 | 			return error; | 
 | 		} | 
 | 		/* Update corresponding info in inode so that everything is in | 
 | 		 * one transaction */ | 
 | 		if (attr->ia_valid & ATTR_UID) | 
 | 			inode->i_uid = attr->ia_uid; | 
 | 		if (attr->ia_valid & ATTR_GID) | 
 | 			inode->i_gid = attr->ia_gid; | 
 | 		error = ext4_mark_inode_dirty(handle, inode); | 
 | 		ext4_journal_stop(handle); | 
 | 	} | 
 |  | 
 | 	if (attr->ia_valid & ATTR_SIZE && attr->ia_size != inode->i_size) { | 
 | 		handle_t *handle; | 
 |  | 
 | 		if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))) { | 
 | 			struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb); | 
 |  | 
 | 			if (attr->ia_size > sbi->s_bitmap_maxbytes) | 
 | 				return -EFBIG; | 
 | 		} | 
 |  | 
 | 		if (IS_I_VERSION(inode) && attr->ia_size != inode->i_size) | 
 | 			inode_inc_iversion(inode); | 
 |  | 
 | 		if (S_ISREG(inode->i_mode) && | 
 | 		    (attr->ia_size < inode->i_size)) { | 
 | 			if (ext4_should_order_data(inode)) { | 
 | 				error = ext4_begin_ordered_truncate(inode, | 
 | 							    attr->ia_size); | 
 | 				if (error) | 
 | 					goto err_out; | 
 | 			} | 
 | 			handle = ext4_journal_start(inode, EXT4_HT_INODE, 3); | 
 | 			if (IS_ERR(handle)) { | 
 | 				error = PTR_ERR(handle); | 
 | 				goto err_out; | 
 | 			} | 
 | 			if (ext4_handle_valid(handle)) { | 
 | 				error = ext4_orphan_add(handle, inode); | 
 | 				orphan = 1; | 
 | 			} | 
 | 			down_write(&EXT4_I(inode)->i_data_sem); | 
 | 			EXT4_I(inode)->i_disksize = attr->ia_size; | 
 | 			rc = ext4_mark_inode_dirty(handle, inode); | 
 | 			if (!error) | 
 | 				error = rc; | 
 | 			/* | 
 | 			 * We have to update i_size under i_data_sem together | 
 | 			 * with i_disksize to avoid races with writeback code | 
 | 			 * running ext4_wb_update_i_disksize(). | 
 | 			 */ | 
 | 			if (!error) | 
 | 				i_size_write(inode, attr->ia_size); | 
 | 			up_write(&EXT4_I(inode)->i_data_sem); | 
 | 			ext4_journal_stop(handle); | 
 | 			if (error) { | 
 | 				ext4_orphan_del(NULL, inode); | 
 | 				goto err_out; | 
 | 			} | 
 | 		} else { | 
 | 			loff_t oldsize = inode->i_size; | 
 |  | 
 | 			i_size_write(inode, attr->ia_size); | 
 | 			pagecache_isize_extended(inode, oldsize, inode->i_size); | 
 | 		} | 
 |  | 
 | 		/* | 
 | 		 * Blocks are going to be removed from the inode. Wait | 
 | 		 * for dio in flight.  Temporarily disable | 
 | 		 * dioread_nolock to prevent livelock. | 
 | 		 */ | 
 | 		if (orphan) { | 
 | 			if (!ext4_should_journal_data(inode)) { | 
 | 				ext4_inode_block_unlocked_dio(inode); | 
 | 				inode_dio_wait(inode); | 
 | 				ext4_inode_resume_unlocked_dio(inode); | 
 | 			} else | 
 | 				ext4_wait_for_tail_page_commit(inode); | 
 | 		} | 
 | 		/* | 
 | 		 * Truncate pagecache after we've waited for commit | 
 | 		 * in data=journal mode to make pages freeable. | 
 | 		 */ | 
 | 		truncate_pagecache(inode, inode->i_size); | 
 | 	} | 
 | 	/* | 
 | 	 * We want to call ext4_truncate() even if attr->ia_size == | 
 | 	 * inode->i_size for cases like truncation of fallocated space | 
 | 	 */ | 
 | 	if (attr->ia_valid & ATTR_SIZE) | 
 | 		ext4_truncate(inode); | 
 |  | 
 | 	if (!rc) { | 
 | 		setattr_copy(inode, attr); | 
 | 		mark_inode_dirty(inode); | 
 | 	} | 
 |  | 
 | 	/* | 
 | 	 * If the call to ext4_truncate failed to get a transaction handle at | 
 | 	 * all, we need to clean up the in-core orphan list manually. | 
 | 	 */ | 
 | 	if (orphan && inode->i_nlink) | 
 | 		ext4_orphan_del(NULL, inode); | 
 |  | 
 | 	if (!rc && (ia_valid & ATTR_MODE)) | 
 | 		rc = posix_acl_chmod(inode, inode->i_mode); | 
 |  | 
 | err_out: | 
 | 	ext4_std_error(inode->i_sb, error); | 
 | 	if (!error) | 
 | 		error = rc; | 
 | 	return error; | 
 | } | 
 |  | 
 | int ext4_getattr(struct vfsmount *mnt, struct dentry *dentry, | 
 | 		 struct kstat *stat) | 
 | { | 
 | 	struct inode *inode; | 
 | 	unsigned long long delalloc_blocks; | 
 |  | 
 | 	inode = d_inode(dentry); | 
 | 	generic_fillattr(inode, stat); | 
 |  | 
 | 	/* | 
 | 	 * If there is inline data in the inode, the inode will normally not | 
 | 	 * have data blocks allocated (it may have an external xattr block). | 
 | 	 * Report at least one sector for such files, so tools like tar, rsync, | 
 | 	 * others doen't incorrectly think the file is completely sparse. | 
 | 	 */ | 
 | 	if (unlikely(ext4_has_inline_data(inode))) | 
 | 		stat->blocks += (stat->size + 511) >> 9; | 
 |  | 
 | 	/* | 
 | 	 * We can't update i_blocks if the block allocation is delayed | 
 | 	 * otherwise in the case of system crash before the real block | 
 | 	 * allocation is done, we will have i_blocks inconsistent with | 
 | 	 * on-disk file blocks. | 
 | 	 * We always keep i_blocks updated together with real | 
 | 	 * allocation. But to not confuse with user, stat | 
 | 	 * will return the blocks that include the delayed allocation | 
 | 	 * blocks for this file. | 
 | 	 */ | 
 | 	delalloc_blocks = EXT4_C2B(EXT4_SB(inode->i_sb), | 
 | 				   EXT4_I(inode)->i_reserved_data_blocks); | 
 | 	stat->blocks += delalloc_blocks << (inode->i_sb->s_blocksize_bits - 9); | 
 | 	return 0; | 
 | } | 
 |  | 
 | static int ext4_index_trans_blocks(struct inode *inode, int lblocks, | 
 | 				   int pextents) | 
 | { | 
 | 	if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))) | 
 | 		return ext4_ind_trans_blocks(inode, lblocks); | 
 | 	return ext4_ext_index_trans_blocks(inode, pextents); | 
 | } | 
 |  | 
 | /* | 
 |  * Account for index blocks, block groups bitmaps and block group | 
 |  * descriptor blocks if modify datablocks and index blocks | 
 |  * worse case, the indexs blocks spread over different block groups | 
 |  * | 
 |  * If datablocks are discontiguous, they are possible to spread over | 
 |  * different block groups too. If they are contiguous, with flexbg, | 
 |  * they could still across block group boundary. | 
 |  * | 
 |  * Also account for superblock, inode, quota and xattr blocks | 
 |  */ | 
 | static int ext4_meta_trans_blocks(struct inode *inode, int lblocks, | 
 | 				  int pextents) | 
 | { | 
 | 	ext4_group_t groups, ngroups = ext4_get_groups_count(inode->i_sb); | 
 | 	int gdpblocks; | 
 | 	int idxblocks; | 
 | 	int ret = 0; | 
 |  | 
 | 	/* | 
 | 	 * How many index blocks need to touch to map @lblocks logical blocks | 
 | 	 * to @pextents physical extents? | 
 | 	 */ | 
 | 	idxblocks = ext4_index_trans_blocks(inode, lblocks, pextents); | 
 |  | 
 | 	ret = idxblocks; | 
 |  | 
 | 	/* | 
 | 	 * Now let's see how many group bitmaps and group descriptors need | 
 | 	 * to account | 
 | 	 */ | 
 | 	groups = idxblocks + pextents; | 
 | 	gdpblocks = groups; | 
 | 	if (groups > ngroups) | 
 | 		groups = ngroups; | 
 | 	if (groups > EXT4_SB(inode->i_sb)->s_gdb_count) | 
 | 		gdpblocks = EXT4_SB(inode->i_sb)->s_gdb_count; | 
 |  | 
 | 	/* bitmaps and block group descriptor blocks */ | 
 | 	ret += groups + gdpblocks; | 
 |  | 
 | 	/* Blocks for super block, inode, quota and xattr blocks */ | 
 | 	ret += EXT4_META_TRANS_BLOCKS(inode->i_sb); | 
 |  | 
 | 	return ret; | 
 | } | 
 |  | 
 | /* | 
 |  * Calculate the total number of credits to reserve to fit | 
 |  * the modification of a single pages into a single transaction, | 
 |  * which may include multiple chunks of block allocations. | 
 |  * | 
 |  * This could be called via ext4_write_begin() | 
 |  * | 
 |  * We need to consider the worse case, when | 
 |  * one new block per extent. | 
 |  */ | 
 | int ext4_writepage_trans_blocks(struct inode *inode) | 
 | { | 
 | 	int bpp = ext4_journal_blocks_per_page(inode); | 
 | 	int ret; | 
 |  | 
 | 	ret = ext4_meta_trans_blocks(inode, bpp, bpp); | 
 |  | 
 | 	/* Account for data blocks for journalled mode */ | 
 | 	if (ext4_should_journal_data(inode)) | 
 | 		ret += bpp; | 
 | 	return ret; | 
 | } | 
 |  | 
 | /* | 
 |  * Calculate the journal credits for a chunk of data modification. | 
 |  * | 
 |  * This is called from DIO, fallocate or whoever calling | 
 |  * ext4_map_blocks() to map/allocate a chunk of contiguous disk blocks. | 
 |  * | 
 |  * journal buffers for data blocks are not included here, as DIO | 
 |  * and fallocate do no need to journal data buffers. | 
 |  */ | 
 | int ext4_chunk_trans_blocks(struct inode *inode, int nrblocks) | 
 | { | 
 | 	return ext4_meta_trans_blocks(inode, nrblocks, 1); | 
 | } | 
 |  | 
 | /* | 
 |  * The caller must have previously called ext4_reserve_inode_write(). | 
 |  * Give this, we know that the caller already has write access to iloc->bh. | 
 |  */ | 
 | int ext4_mark_iloc_dirty(handle_t *handle, | 
 | 			 struct inode *inode, struct ext4_iloc *iloc) | 
 | { | 
 | 	int err = 0; | 
 |  | 
 | 	if (IS_I_VERSION(inode)) | 
 | 		inode_inc_iversion(inode); | 
 |  | 
 | 	/* the do_update_inode consumes one bh->b_count */ | 
 | 	get_bh(iloc->bh); | 
 |  | 
 | 	/* ext4_do_update_inode() does jbd2_journal_dirty_metadata */ | 
 | 	err = ext4_do_update_inode(handle, inode, iloc); | 
 | 	put_bh(iloc->bh); | 
 | 	return err; | 
 | } | 
 |  | 
 | /* | 
 |  * On success, We end up with an outstanding reference count against | 
 |  * iloc->bh.  This _must_ be cleaned up later. | 
 |  */ | 
 |  | 
 | int | 
 | ext4_reserve_inode_write(handle_t *handle, struct inode *inode, | 
 | 			 struct ext4_iloc *iloc) | 
 | { | 
 | 	int err; | 
 |  | 
 | 	err = ext4_get_inode_loc(inode, iloc); | 
 | 	if (!err) { | 
 | 		BUFFER_TRACE(iloc->bh, "get_write_access"); | 
 | 		err = ext4_journal_get_write_access(handle, iloc->bh); | 
 | 		if (err) { | 
 | 			brelse(iloc->bh); | 
 | 			iloc->bh = NULL; | 
 | 		} | 
 | 	} | 
 | 	ext4_std_error(inode->i_sb, err); | 
 | 	return err; | 
 | } | 
 |  | 
 | /* | 
 |  * Expand an inode by new_extra_isize bytes. | 
 |  * Returns 0 on success or negative error number on failure. | 
 |  */ | 
 | static int ext4_expand_extra_isize(struct inode *inode, | 
 | 				   unsigned int new_extra_isize, | 
 | 				   struct ext4_iloc iloc, | 
 | 				   handle_t *handle) | 
 | { | 
 | 	struct ext4_inode *raw_inode; | 
 | 	struct ext4_xattr_ibody_header *header; | 
 |  | 
 | 	if (EXT4_I(inode)->i_extra_isize >= new_extra_isize) | 
 | 		return 0; | 
 |  | 
 | 	raw_inode = ext4_raw_inode(&iloc); | 
 |  | 
 | 	header = IHDR(inode, raw_inode); | 
 |  | 
 | 	/* No extended attributes present */ | 
 | 	if (!ext4_test_inode_state(inode, EXT4_STATE_XATTR) || | 
 | 	    header->h_magic != cpu_to_le32(EXT4_XATTR_MAGIC)) { | 
 | 		memset((void *)raw_inode + EXT4_GOOD_OLD_INODE_SIZE, 0, | 
 | 			new_extra_isize); | 
 | 		EXT4_I(inode)->i_extra_isize = new_extra_isize; | 
 | 		return 0; | 
 | 	} | 
 |  | 
 | 	/* try to expand with EAs present */ | 
 | 	return ext4_expand_extra_isize_ea(inode, new_extra_isize, | 
 | 					  raw_inode, handle); | 
 | } | 
 |  | 
 | /* | 
 |  * What we do here is to mark the in-core inode as clean with respect to inode | 
 |  * dirtiness (it may still be data-dirty). | 
 |  * This means that the in-core inode may be reaped by prune_icache | 
 |  * without having to perform any I/O.  This is a very good thing, | 
 |  * because *any* task may call prune_icache - even ones which | 
 |  * have a transaction open against a different journal. | 
 |  * | 
 |  * Is this cheating?  Not really.  Sure, we haven't written the | 
 |  * inode out, but prune_icache isn't a user-visible syncing function. | 
 |  * Whenever the user wants stuff synced (sys_sync, sys_msync, sys_fsync) | 
 |  * we start and wait on commits. | 
 |  */ | 
 | int ext4_mark_inode_dirty(handle_t *handle, struct inode *inode) | 
 | { | 
 | 	struct ext4_iloc iloc; | 
 | 	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb); | 
 | 	static unsigned int mnt_count; | 
 | 	int err, ret; | 
 |  | 
 | 	might_sleep(); | 
 | 	trace_ext4_mark_inode_dirty(inode, _RET_IP_); | 
 | 	err = ext4_reserve_inode_write(handle, inode, &iloc); | 
 | 	if (ext4_handle_valid(handle) && | 
 | 	    EXT4_I(inode)->i_extra_isize < sbi->s_want_extra_isize && | 
 | 	    !ext4_test_inode_state(inode, EXT4_STATE_NO_EXPAND)) { | 
 | 		/* | 
 | 		 * We need extra buffer credits since we may write into EA block | 
 | 		 * with this same handle. If journal_extend fails, then it will | 
 | 		 * only result in a minor loss of functionality for that inode. | 
 | 		 * If this is felt to be critical, then e2fsck should be run to | 
 | 		 * force a large enough s_min_extra_isize. | 
 | 		 */ | 
 | 		if ((jbd2_journal_extend(handle, | 
 | 			     EXT4_DATA_TRANS_BLOCKS(inode->i_sb))) == 0) { | 
 | 			ret = ext4_expand_extra_isize(inode, | 
 | 						      sbi->s_want_extra_isize, | 
 | 						      iloc, handle); | 
 | 			if (ret) { | 
 | 				ext4_set_inode_state(inode, | 
 | 						     EXT4_STATE_NO_EXPAND); | 
 | 				if (mnt_count != | 
 | 					le16_to_cpu(sbi->s_es->s_mnt_count)) { | 
 | 					ext4_warning(inode->i_sb, | 
 | 					"Unable to expand inode %lu. Delete" | 
 | 					" some EAs or run e2fsck.", | 
 | 					inode->i_ino); | 
 | 					mnt_count = | 
 | 					  le16_to_cpu(sbi->s_es->s_mnt_count); | 
 | 				} | 
 | 			} | 
 | 		} | 
 | 	} | 
 | 	if (!err) | 
 | 		err = ext4_mark_iloc_dirty(handle, inode, &iloc); | 
 | 	return err; | 
 | } | 
 |  | 
 | /* | 
 |  * ext4_dirty_inode() is called from __mark_inode_dirty() | 
 |  * | 
 |  * We're really interested in the case where a file is being extended. | 
 |  * i_size has been changed by generic_commit_write() and we thus need | 
 |  * to include the updated inode in the current transaction. | 
 |  * | 
 |  * Also, dquot_alloc_block() will always dirty the inode when blocks | 
 |  * are allocated to the file. | 
 |  * | 
 |  * If the inode is marked synchronous, we don't honour that here - doing | 
 |  * so would cause a commit on atime updates, which we don't bother doing. | 
 |  * We handle synchronous inodes at the highest possible level. | 
 |  * | 
 |  * If only the I_DIRTY_TIME flag is set, we can skip everything.  If | 
 |  * I_DIRTY_TIME and I_DIRTY_SYNC is set, the only inode fields we need | 
 |  * to copy into the on-disk inode structure are the timestamp files. | 
 |  */ | 
 | void ext4_dirty_inode(struct inode *inode, int flags) | 
 | { | 
 | 	handle_t *handle; | 
 |  | 
 | 	if (flags == I_DIRTY_TIME) | 
 | 		return; | 
 | 	handle = ext4_journal_start(inode, EXT4_HT_INODE, 2); | 
 | 	if (IS_ERR(handle)) | 
 | 		goto out; | 
 |  | 
 | 	ext4_mark_inode_dirty(handle, inode); | 
 |  | 
 | 	ext4_journal_stop(handle); | 
 | out: | 
 | 	return; | 
 | } | 
 |  | 
 | #if 0 | 
 | /* | 
 |  * Bind an inode's backing buffer_head into this transaction, to prevent | 
 |  * it from being flushed to disk early.  Unlike | 
 |  * ext4_reserve_inode_write, this leaves behind no bh reference and | 
 |  * returns no iloc structure, so the caller needs to repeat the iloc | 
 |  * lookup to mark the inode dirty later. | 
 |  */ | 
 | static int ext4_pin_inode(handle_t *handle, struct inode *inode) | 
 | { | 
 | 	struct ext4_iloc iloc; | 
 |  | 
 | 	int err = 0; | 
 | 	if (handle) { | 
 | 		err = ext4_get_inode_loc(inode, &iloc); | 
 | 		if (!err) { | 
 | 			BUFFER_TRACE(iloc.bh, "get_write_access"); | 
 | 			err = jbd2_journal_get_write_access(handle, iloc.bh); | 
 | 			if (!err) | 
 | 				err = ext4_handle_dirty_metadata(handle, | 
 | 								 NULL, | 
 | 								 iloc.bh); | 
 | 			brelse(iloc.bh); | 
 | 		} | 
 | 	} | 
 | 	ext4_std_error(inode->i_sb, err); | 
 | 	return err; | 
 | } | 
 | #endif | 
 |  | 
 | int ext4_change_inode_journal_flag(struct inode *inode, int val) | 
 | { | 
 | 	journal_t *journal; | 
 | 	handle_t *handle; | 
 | 	int err; | 
 |  | 
 | 	/* | 
 | 	 * We have to be very careful here: changing a data block's | 
 | 	 * journaling status dynamically is dangerous.  If we write a | 
 | 	 * data block to the journal, change the status and then delete | 
 | 	 * that block, we risk forgetting to revoke the old log record | 
 | 	 * from the journal and so a subsequent replay can corrupt data. | 
 | 	 * So, first we make sure that the journal is empty and that | 
 | 	 * nobody is changing anything. | 
 | 	 */ | 
 |  | 
 | 	journal = EXT4_JOURNAL(inode); | 
 | 	if (!journal) | 
 | 		return 0; | 
 | 	if (is_journal_aborted(journal)) | 
 | 		return -EROFS; | 
 | 	/* We have to allocate physical blocks for delalloc blocks | 
 | 	 * before flushing journal. otherwise delalloc blocks can not | 
 | 	 * be allocated any more. even more truncate on delalloc blocks | 
 | 	 * could trigger BUG by flushing delalloc blocks in journal. | 
 | 	 * There is no delalloc block in non-journal data mode. | 
 | 	 */ | 
 | 	if (val && test_opt(inode->i_sb, DELALLOC)) { | 
 | 		err = ext4_alloc_da_blocks(inode); | 
 | 		if (err < 0) | 
 | 			return err; | 
 | 	} | 
 |  | 
 | 	/* Wait for all existing dio workers */ | 
 | 	ext4_inode_block_unlocked_dio(inode); | 
 | 	inode_dio_wait(inode); | 
 |  | 
 | 	jbd2_journal_lock_updates(journal); | 
 |  | 
 | 	/* | 
 | 	 * OK, there are no updates running now, and all cached data is | 
 | 	 * synced to disk.  We are now in a completely consistent state | 
 | 	 * which doesn't have anything in the journal, and we know that | 
 | 	 * no filesystem updates are running, so it is safe to modify | 
 | 	 * the inode's in-core data-journaling state flag now. | 
 | 	 */ | 
 |  | 
 | 	if (val) | 
 | 		ext4_set_inode_flag(inode, EXT4_INODE_JOURNAL_DATA); | 
 | 	else { | 
 | 		err = jbd2_journal_flush(journal); | 
 | 		if (err < 0) { | 
 | 			jbd2_journal_unlock_updates(journal); | 
 | 			ext4_inode_resume_unlocked_dio(inode); | 
 | 			return err; | 
 | 		} | 
 | 		ext4_clear_inode_flag(inode, EXT4_INODE_JOURNAL_DATA); | 
 | 	} | 
 | 	ext4_set_aops(inode); | 
 |  | 
 | 	jbd2_journal_unlock_updates(journal); | 
 | 	ext4_inode_resume_unlocked_dio(inode); | 
 |  | 
 | 	/* Finally we can mark the inode as dirty. */ | 
 |  | 
 | 	handle = ext4_journal_start(inode, EXT4_HT_INODE, 1); | 
 | 	if (IS_ERR(handle)) | 
 | 		return PTR_ERR(handle); | 
 |  | 
 | 	err = ext4_mark_inode_dirty(handle, inode); | 
 | 	ext4_handle_sync(handle); | 
 | 	ext4_journal_stop(handle); | 
 | 	ext4_std_error(inode->i_sb, err); | 
 |  | 
 | 	return err; | 
 | } | 
 |  | 
 | static int ext4_bh_unmapped(handle_t *handle, struct buffer_head *bh) | 
 | { | 
 | 	return !buffer_mapped(bh); | 
 | } | 
 |  | 
 | int ext4_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf) | 
 | { | 
 | 	struct page *page = vmf->page; | 
 | 	loff_t size; | 
 | 	unsigned long len; | 
 | 	int ret; | 
 | 	struct file *file = vma->vm_file; | 
 | 	struct inode *inode = file_inode(file); | 
 | 	struct address_space *mapping = inode->i_mapping; | 
 | 	handle_t *handle; | 
 | 	get_block_t *get_block; | 
 | 	int retries = 0; | 
 |  | 
 | 	sb_start_pagefault(inode->i_sb); | 
 | 	file_update_time(vma->vm_file); | 
 | 	/* Delalloc case is easy... */ | 
 | 	if (test_opt(inode->i_sb, DELALLOC) && | 
 | 	    !ext4_should_journal_data(inode) && | 
 | 	    !ext4_nonda_switch(inode->i_sb)) { | 
 | 		do { | 
 | 			ret = __block_page_mkwrite(vma, vmf, | 
 | 						   ext4_da_get_block_prep); | 
 | 		} while (ret == -ENOSPC && | 
 | 		       ext4_should_retry_alloc(inode->i_sb, &retries)); | 
 | 		goto out_ret; | 
 | 	} | 
 |  | 
 | 	lock_page(page); | 
 | 	size = i_size_read(inode); | 
 | 	/* Page got truncated from under us? */ | 
 | 	if (page->mapping != mapping || page_offset(page) > size) { | 
 | 		unlock_page(page); | 
 | 		ret = VM_FAULT_NOPAGE; | 
 | 		goto out; | 
 | 	} | 
 |  | 
 | 	if (page->index == size >> PAGE_CACHE_SHIFT) | 
 | 		len = size & ~PAGE_CACHE_MASK; | 
 | 	else | 
 | 		len = PAGE_CACHE_SIZE; | 
 | 	/* | 
 | 	 * Return if we have all the buffers mapped. This avoids the need to do | 
 | 	 * journal_start/journal_stop which can block and take a long time | 
 | 	 */ | 
 | 	if (page_has_buffers(page)) { | 
 | 		if (!ext4_walk_page_buffers(NULL, page_buffers(page), | 
 | 					    0, len, NULL, | 
 | 					    ext4_bh_unmapped)) { | 
 | 			/* Wait so that we don't change page under IO */ | 
 | 			wait_for_stable_page(page); | 
 | 			ret = VM_FAULT_LOCKED; | 
 | 			goto out; | 
 | 		} | 
 | 	} | 
 | 	unlock_page(page); | 
 | 	/* OK, we need to fill the hole... */ | 
 | 	if (ext4_should_dioread_nolock(inode)) | 
 | 		get_block = ext4_get_block_write; | 
 | 	else | 
 | 		get_block = ext4_get_block; | 
 | retry_alloc: | 
 | 	handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE, | 
 | 				    ext4_writepage_trans_blocks(inode)); | 
 | 	if (IS_ERR(handle)) { | 
 | 		ret = VM_FAULT_SIGBUS; | 
 | 		goto out; | 
 | 	} | 
 | 	ret = __block_page_mkwrite(vma, vmf, get_block); | 
 | 	if (!ret && ext4_should_journal_data(inode)) { | 
 | 		if (ext4_walk_page_buffers(handle, page_buffers(page), 0, | 
 | 			  PAGE_CACHE_SIZE, NULL, do_journal_get_write_access)) { | 
 | 			unlock_page(page); | 
 | 			ret = VM_FAULT_SIGBUS; | 
 | 			ext4_journal_stop(handle); | 
 | 			goto out; | 
 | 		} | 
 | 		ext4_set_inode_state(inode, EXT4_STATE_JDATA); | 
 | 	} | 
 | 	ext4_journal_stop(handle); | 
 | 	if (ret == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries)) | 
 | 		goto retry_alloc; | 
 | out_ret: | 
 | 	ret = block_page_mkwrite_return(ret); | 
 | out: | 
 | 	sb_end_pagefault(inode->i_sb); | 
 | 	return ret; | 
 | } |