|  | /* Common capabilities, needed by capability.o. | 
|  | * | 
|  | *	This program is free software; you can redistribute it and/or modify | 
|  | *	it under the terms of the GNU General Public License as published by | 
|  | *	the Free Software Foundation; either version 2 of the License, or | 
|  | *	(at your option) any later version. | 
|  | * | 
|  | */ | 
|  |  | 
|  | #include <linux/capability.h> | 
|  | #include <linux/audit.h> | 
|  | #include <linux/module.h> | 
|  | #include <linux/init.h> | 
|  | #include <linux/kernel.h> | 
|  | #include <linux/security.h> | 
|  | #include <linux/file.h> | 
|  | #include <linux/mm.h> | 
|  | #include <linux/mman.h> | 
|  | #include <linux/pagemap.h> | 
|  | #include <linux/swap.h> | 
|  | #include <linux/skbuff.h> | 
|  | #include <linux/netlink.h> | 
|  | #include <linux/ptrace.h> | 
|  | #include <linux/xattr.h> | 
|  | #include <linux/hugetlb.h> | 
|  | #include <linux/mount.h> | 
|  | #include <linux/sched.h> | 
|  | #include <linux/prctl.h> | 
|  | #include <linux/securebits.h> | 
|  | #include <linux/user_namespace.h> | 
|  | #include <linux/binfmts.h> | 
|  | #include <linux/personality.h> | 
|  |  | 
|  | /* | 
|  | * If a non-root user executes a setuid-root binary in | 
|  | * !secure(SECURE_NOROOT) mode, then we raise capabilities. | 
|  | * However if fE is also set, then the intent is for only | 
|  | * the file capabilities to be applied, and the setuid-root | 
|  | * bit is left on either to change the uid (plausible) or | 
|  | * to get full privilege on a kernel without file capabilities | 
|  | * support.  So in that case we do not raise capabilities. | 
|  | * | 
|  | * Warn if that happens, once per boot. | 
|  | */ | 
|  | static void warn_setuid_and_fcaps_mixed(const char *fname) | 
|  | { | 
|  | static int warned; | 
|  | if (!warned) { | 
|  | printk(KERN_INFO "warning: `%s' has both setuid-root and" | 
|  | " effective capabilities. Therefore not raising all" | 
|  | " capabilities.\n", fname); | 
|  | warned = 1; | 
|  | } | 
|  | } | 
|  |  | 
|  | int cap_netlink_send(struct sock *sk, struct sk_buff *skb) | 
|  | { | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * cap_capable - Determine whether a task has a particular effective capability | 
|  | * @cred: The credentials to use | 
|  | * @ns:  The user namespace in which we need the capability | 
|  | * @cap: The capability to check for | 
|  | * @audit: Whether to write an audit message or not | 
|  | * | 
|  | * Determine whether the nominated task has the specified capability amongst | 
|  | * its effective set, returning 0 if it does, -ve if it does not. | 
|  | * | 
|  | * NOTE WELL: cap_has_capability() cannot be used like the kernel's capable() | 
|  | * and has_capability() functions.  That is, it has the reverse semantics: | 
|  | * cap_has_capability() returns 0 when a task has a capability, but the | 
|  | * kernel's capable() and has_capability() returns 1 for this case. | 
|  | */ | 
|  | int cap_capable(const struct cred *cred, struct user_namespace *targ_ns, | 
|  | int cap, int audit) | 
|  | { | 
|  | struct user_namespace *ns = targ_ns; | 
|  |  | 
|  | /* See if cred has the capability in the target user namespace | 
|  | * by examining the target user namespace and all of the target | 
|  | * user namespace's parents. | 
|  | */ | 
|  | for (;;) { | 
|  | /* Do we have the necessary capabilities? */ | 
|  | if (ns == cred->user_ns) | 
|  | return cap_raised(cred->cap_effective, cap) ? 0 : -EPERM; | 
|  |  | 
|  | /* Have we tried all of the parent namespaces? */ | 
|  | if (ns == &init_user_ns) | 
|  | return -EPERM; | 
|  |  | 
|  | /* | 
|  | * The owner of the user namespace in the parent of the | 
|  | * user namespace has all caps. | 
|  | */ | 
|  | if ((ns->parent == cred->user_ns) && uid_eq(ns->owner, cred->euid)) | 
|  | return 0; | 
|  |  | 
|  | /* | 
|  | * If you have a capability in a parent user ns, then you have | 
|  | * it over all children user namespaces as well. | 
|  | */ | 
|  | ns = ns->parent; | 
|  | } | 
|  |  | 
|  | /* We never get here */ | 
|  | } | 
|  |  | 
|  | /** | 
|  | * cap_settime - Determine whether the current process may set the system clock | 
|  | * @ts: The time to set | 
|  | * @tz: The timezone to set | 
|  | * | 
|  | * Determine whether the current process may set the system clock and timezone | 
|  | * information, returning 0 if permission granted, -ve if denied. | 
|  | */ | 
|  | int cap_settime(const struct timespec *ts, const struct timezone *tz) | 
|  | { | 
|  | if (!capable(CAP_SYS_TIME)) | 
|  | return -EPERM; | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * cap_ptrace_access_check - Determine whether the current process may access | 
|  | *			   another | 
|  | * @child: The process to be accessed | 
|  | * @mode: The mode of attachment. | 
|  | * | 
|  | * If we are in the same or an ancestor user_ns and have all the target | 
|  | * task's capabilities, then ptrace access is allowed. | 
|  | * If we have the ptrace capability to the target user_ns, then ptrace | 
|  | * access is allowed. | 
|  | * Else denied. | 
|  | * | 
|  | * Determine whether a process may access another, returning 0 if permission | 
|  | * granted, -ve if denied. | 
|  | */ | 
|  | int cap_ptrace_access_check(struct task_struct *child, unsigned int mode) | 
|  | { | 
|  | int ret = 0; | 
|  | const struct cred *cred, *child_cred; | 
|  |  | 
|  | rcu_read_lock(); | 
|  | cred = current_cred(); | 
|  | child_cred = __task_cred(child); | 
|  | if (cred->user_ns == child_cred->user_ns && | 
|  | cap_issubset(child_cred->cap_permitted, cred->cap_permitted)) | 
|  | goto out; | 
|  | if (ns_capable(child_cred->user_ns, CAP_SYS_PTRACE)) | 
|  | goto out; | 
|  | ret = -EPERM; | 
|  | out: | 
|  | rcu_read_unlock(); | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * cap_ptrace_traceme - Determine whether another process may trace the current | 
|  | * @parent: The task proposed to be the tracer | 
|  | * | 
|  | * If parent is in the same or an ancestor user_ns and has all current's | 
|  | * capabilities, then ptrace access is allowed. | 
|  | * If parent has the ptrace capability to current's user_ns, then ptrace | 
|  | * access is allowed. | 
|  | * Else denied. | 
|  | * | 
|  | * Determine whether the nominated task is permitted to trace the current | 
|  | * process, returning 0 if permission is granted, -ve if denied. | 
|  | */ | 
|  | int cap_ptrace_traceme(struct task_struct *parent) | 
|  | { | 
|  | int ret = 0; | 
|  | const struct cred *cred, *child_cred; | 
|  |  | 
|  | rcu_read_lock(); | 
|  | cred = __task_cred(parent); | 
|  | child_cred = current_cred(); | 
|  | if (cred->user_ns == child_cred->user_ns && | 
|  | cap_issubset(child_cred->cap_permitted, cred->cap_permitted)) | 
|  | goto out; | 
|  | if (has_ns_capability(parent, child_cred->user_ns, CAP_SYS_PTRACE)) | 
|  | goto out; | 
|  | ret = -EPERM; | 
|  | out: | 
|  | rcu_read_unlock(); | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * cap_capget - Retrieve a task's capability sets | 
|  | * @target: The task from which to retrieve the capability sets | 
|  | * @effective: The place to record the effective set | 
|  | * @inheritable: The place to record the inheritable set | 
|  | * @permitted: The place to record the permitted set | 
|  | * | 
|  | * This function retrieves the capabilities of the nominated task and returns | 
|  | * them to the caller. | 
|  | */ | 
|  | int cap_capget(struct task_struct *target, kernel_cap_t *effective, | 
|  | kernel_cap_t *inheritable, kernel_cap_t *permitted) | 
|  | { | 
|  | const struct cred *cred; | 
|  |  | 
|  | /* Derived from kernel/capability.c:sys_capget. */ | 
|  | rcu_read_lock(); | 
|  | cred = __task_cred(target); | 
|  | *effective   = cred->cap_effective; | 
|  | *inheritable = cred->cap_inheritable; | 
|  | *permitted   = cred->cap_permitted; | 
|  | rcu_read_unlock(); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Determine whether the inheritable capabilities are limited to the old | 
|  | * permitted set.  Returns 1 if they are limited, 0 if they are not. | 
|  | */ | 
|  | static inline int cap_inh_is_capped(void) | 
|  | { | 
|  |  | 
|  | /* they are so limited unless the current task has the CAP_SETPCAP | 
|  | * capability | 
|  | */ | 
|  | if (cap_capable(current_cred(), current_cred()->user_ns, | 
|  | CAP_SETPCAP, SECURITY_CAP_AUDIT) == 0) | 
|  | return 0; | 
|  | return 1; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * cap_capset - Validate and apply proposed changes to current's capabilities | 
|  | * @new: The proposed new credentials; alterations should be made here | 
|  | * @old: The current task's current credentials | 
|  | * @effective: A pointer to the proposed new effective capabilities set | 
|  | * @inheritable: A pointer to the proposed new inheritable capabilities set | 
|  | * @permitted: A pointer to the proposed new permitted capabilities set | 
|  | * | 
|  | * This function validates and applies a proposed mass change to the current | 
|  | * process's capability sets.  The changes are made to the proposed new | 
|  | * credentials, and assuming no error, will be committed by the caller of LSM. | 
|  | */ | 
|  | int cap_capset(struct cred *new, | 
|  | const struct cred *old, | 
|  | const kernel_cap_t *effective, | 
|  | const kernel_cap_t *inheritable, | 
|  | const kernel_cap_t *permitted) | 
|  | { | 
|  | if (cap_inh_is_capped() && | 
|  | !cap_issubset(*inheritable, | 
|  | cap_combine(old->cap_inheritable, | 
|  | old->cap_permitted))) | 
|  | /* incapable of using this inheritable set */ | 
|  | return -EPERM; | 
|  |  | 
|  | if (!cap_issubset(*inheritable, | 
|  | cap_combine(old->cap_inheritable, | 
|  | old->cap_bset))) | 
|  | /* no new pI capabilities outside bounding set */ | 
|  | return -EPERM; | 
|  |  | 
|  | /* verify restrictions on target's new Permitted set */ | 
|  | if (!cap_issubset(*permitted, old->cap_permitted)) | 
|  | return -EPERM; | 
|  |  | 
|  | /* verify the _new_Effective_ is a subset of the _new_Permitted_ */ | 
|  | if (!cap_issubset(*effective, *permitted)) | 
|  | return -EPERM; | 
|  |  | 
|  | new->cap_effective   = *effective; | 
|  | new->cap_inheritable = *inheritable; | 
|  | new->cap_permitted   = *permitted; | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Clear proposed capability sets for execve(). | 
|  | */ | 
|  | static inline void bprm_clear_caps(struct linux_binprm *bprm) | 
|  | { | 
|  | cap_clear(bprm->cred->cap_permitted); | 
|  | bprm->cap_effective = false; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * cap_inode_need_killpriv - Determine if inode change affects privileges | 
|  | * @dentry: The inode/dentry in being changed with change marked ATTR_KILL_PRIV | 
|  | * | 
|  | * Determine if an inode having a change applied that's marked ATTR_KILL_PRIV | 
|  | * affects the security markings on that inode, and if it is, should | 
|  | * inode_killpriv() be invoked or the change rejected? | 
|  | * | 
|  | * Returns 0 if granted; +ve if granted, but inode_killpriv() is required; and | 
|  | * -ve to deny the change. | 
|  | */ | 
|  | int cap_inode_need_killpriv(struct dentry *dentry) | 
|  | { | 
|  | struct inode *inode = d_backing_inode(dentry); | 
|  | int error; | 
|  |  | 
|  | if (!inode->i_op->getxattr) | 
|  | return 0; | 
|  |  | 
|  | error = inode->i_op->getxattr(dentry, XATTR_NAME_CAPS, NULL, 0); | 
|  | if (error <= 0) | 
|  | return 0; | 
|  | return 1; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * cap_inode_killpriv - Erase the security markings on an inode | 
|  | * @dentry: The inode/dentry to alter | 
|  | * | 
|  | * Erase the privilege-enhancing security markings on an inode. | 
|  | * | 
|  | * Returns 0 if successful, -ve on error. | 
|  | */ | 
|  | int cap_inode_killpriv(struct dentry *dentry) | 
|  | { | 
|  | struct inode *inode = d_backing_inode(dentry); | 
|  |  | 
|  | if (!inode->i_op->removexattr) | 
|  | return 0; | 
|  |  | 
|  | return inode->i_op->removexattr(dentry, XATTR_NAME_CAPS); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Calculate the new process capability sets from the capability sets attached | 
|  | * to a file. | 
|  | */ | 
|  | static inline int bprm_caps_from_vfs_caps(struct cpu_vfs_cap_data *caps, | 
|  | struct linux_binprm *bprm, | 
|  | bool *effective, | 
|  | bool *has_cap) | 
|  | { | 
|  | struct cred *new = bprm->cred; | 
|  | unsigned i; | 
|  | int ret = 0; | 
|  |  | 
|  | if (caps->magic_etc & VFS_CAP_FLAGS_EFFECTIVE) | 
|  | *effective = true; | 
|  |  | 
|  | if (caps->magic_etc & VFS_CAP_REVISION_MASK) | 
|  | *has_cap = true; | 
|  |  | 
|  | CAP_FOR_EACH_U32(i) { | 
|  | __u32 permitted = caps->permitted.cap[i]; | 
|  | __u32 inheritable = caps->inheritable.cap[i]; | 
|  |  | 
|  | /* | 
|  | * pP' = (X & fP) | (pI & fI) | 
|  | */ | 
|  | new->cap_permitted.cap[i] = | 
|  | (new->cap_bset.cap[i] & permitted) | | 
|  | (new->cap_inheritable.cap[i] & inheritable); | 
|  |  | 
|  | if (permitted & ~new->cap_permitted.cap[i]) | 
|  | /* insufficient to execute correctly */ | 
|  | ret = -EPERM; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * For legacy apps, with no internal support for recognizing they | 
|  | * do not have enough capabilities, we return an error if they are | 
|  | * missing some "forced" (aka file-permitted) capabilities. | 
|  | */ | 
|  | return *effective ? ret : 0; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Extract the on-exec-apply capability sets for an executable file. | 
|  | */ | 
|  | int get_vfs_caps_from_disk(const struct dentry *dentry, struct cpu_vfs_cap_data *cpu_caps) | 
|  | { | 
|  | struct inode *inode = d_backing_inode(dentry); | 
|  | __u32 magic_etc; | 
|  | unsigned tocopy, i; | 
|  | int size; | 
|  | struct vfs_cap_data caps; | 
|  |  | 
|  | memset(cpu_caps, 0, sizeof(struct cpu_vfs_cap_data)); | 
|  |  | 
|  | if (!inode || !inode->i_op->getxattr) | 
|  | return -ENODATA; | 
|  |  | 
|  | size = inode->i_op->getxattr((struct dentry *)dentry, XATTR_NAME_CAPS, &caps, | 
|  | XATTR_CAPS_SZ); | 
|  | if (size == -ENODATA || size == -EOPNOTSUPP) | 
|  | /* no data, that's ok */ | 
|  | return -ENODATA; | 
|  | if (size < 0) | 
|  | return size; | 
|  |  | 
|  | if (size < sizeof(magic_etc)) | 
|  | return -EINVAL; | 
|  |  | 
|  | cpu_caps->magic_etc = magic_etc = le32_to_cpu(caps.magic_etc); | 
|  |  | 
|  | switch (magic_etc & VFS_CAP_REVISION_MASK) { | 
|  | case VFS_CAP_REVISION_1: | 
|  | if (size != XATTR_CAPS_SZ_1) | 
|  | return -EINVAL; | 
|  | tocopy = VFS_CAP_U32_1; | 
|  | break; | 
|  | case VFS_CAP_REVISION_2: | 
|  | if (size != XATTR_CAPS_SZ_2) | 
|  | return -EINVAL; | 
|  | tocopy = VFS_CAP_U32_2; | 
|  | break; | 
|  | default: | 
|  | return -EINVAL; | 
|  | } | 
|  |  | 
|  | CAP_FOR_EACH_U32(i) { | 
|  | if (i >= tocopy) | 
|  | break; | 
|  | cpu_caps->permitted.cap[i] = le32_to_cpu(caps.data[i].permitted); | 
|  | cpu_caps->inheritable.cap[i] = le32_to_cpu(caps.data[i].inheritable); | 
|  | } | 
|  |  | 
|  | cpu_caps->permitted.cap[CAP_LAST_U32] &= CAP_LAST_U32_VALID_MASK; | 
|  | cpu_caps->inheritable.cap[CAP_LAST_U32] &= CAP_LAST_U32_VALID_MASK; | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Attempt to get the on-exec apply capability sets for an executable file from | 
|  | * its xattrs and, if present, apply them to the proposed credentials being | 
|  | * constructed by execve(). | 
|  | */ | 
|  | static int get_file_caps(struct linux_binprm *bprm, bool *effective, bool *has_cap) | 
|  | { | 
|  | int rc = 0; | 
|  | struct cpu_vfs_cap_data vcaps; | 
|  |  | 
|  | bprm_clear_caps(bprm); | 
|  |  | 
|  | if (!file_caps_enabled) | 
|  | return 0; | 
|  |  | 
|  | if (bprm->file->f_path.mnt->mnt_flags & MNT_NOSUID) | 
|  | return 0; | 
|  |  | 
|  | rc = get_vfs_caps_from_disk(bprm->file->f_path.dentry, &vcaps); | 
|  | if (rc < 0) { | 
|  | if (rc == -EINVAL) | 
|  | printk(KERN_NOTICE "%s: get_vfs_caps_from_disk returned %d for %s\n", | 
|  | __func__, rc, bprm->filename); | 
|  | else if (rc == -ENODATA) | 
|  | rc = 0; | 
|  | goto out; | 
|  | } | 
|  |  | 
|  | rc = bprm_caps_from_vfs_caps(&vcaps, bprm, effective, has_cap); | 
|  | if (rc == -EINVAL) | 
|  | printk(KERN_NOTICE "%s: cap_from_disk returned %d for %s\n", | 
|  | __func__, rc, bprm->filename); | 
|  |  | 
|  | out: | 
|  | if (rc) | 
|  | bprm_clear_caps(bprm); | 
|  |  | 
|  | return rc; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * cap_bprm_set_creds - Set up the proposed credentials for execve(). | 
|  | * @bprm: The execution parameters, including the proposed creds | 
|  | * | 
|  | * Set up the proposed credentials for a new execution context being | 
|  | * constructed by execve().  The proposed creds in @bprm->cred is altered, | 
|  | * which won't take effect immediately.  Returns 0 if successful, -ve on error. | 
|  | */ | 
|  | int cap_bprm_set_creds(struct linux_binprm *bprm) | 
|  | { | 
|  | const struct cred *old = current_cred(); | 
|  | struct cred *new = bprm->cred; | 
|  | bool effective, has_cap = false; | 
|  | int ret; | 
|  | kuid_t root_uid; | 
|  |  | 
|  | effective = false; | 
|  | ret = get_file_caps(bprm, &effective, &has_cap); | 
|  | if (ret < 0) | 
|  | return ret; | 
|  |  | 
|  | root_uid = make_kuid(new->user_ns, 0); | 
|  |  | 
|  | if (!issecure(SECURE_NOROOT)) { | 
|  | /* | 
|  | * If the legacy file capability is set, then don't set privs | 
|  | * for a setuid root binary run by a non-root user.  Do set it | 
|  | * for a root user just to cause least surprise to an admin. | 
|  | */ | 
|  | if (has_cap && !uid_eq(new->uid, root_uid) && uid_eq(new->euid, root_uid)) { | 
|  | warn_setuid_and_fcaps_mixed(bprm->filename); | 
|  | goto skip; | 
|  | } | 
|  | /* | 
|  | * To support inheritance of root-permissions and suid-root | 
|  | * executables under compatibility mode, we override the | 
|  | * capability sets for the file. | 
|  | * | 
|  | * If only the real uid is 0, we do not set the effective bit. | 
|  | */ | 
|  | if (uid_eq(new->euid, root_uid) || uid_eq(new->uid, root_uid)) { | 
|  | /* pP' = (cap_bset & ~0) | (pI & ~0) */ | 
|  | new->cap_permitted = cap_combine(old->cap_bset, | 
|  | old->cap_inheritable); | 
|  | } | 
|  | if (uid_eq(new->euid, root_uid)) | 
|  | effective = true; | 
|  | } | 
|  | skip: | 
|  |  | 
|  | /* if we have fs caps, clear dangerous personality flags */ | 
|  | if (!cap_issubset(new->cap_permitted, old->cap_permitted)) | 
|  | bprm->per_clear |= PER_CLEAR_ON_SETID; | 
|  |  | 
|  |  | 
|  | /* Don't let someone trace a set[ug]id/setpcap binary with the revised | 
|  | * credentials unless they have the appropriate permit. | 
|  | * | 
|  | * In addition, if NO_NEW_PRIVS, then ensure we get no new privs. | 
|  | */ | 
|  | if ((!uid_eq(new->euid, old->uid) || | 
|  | !gid_eq(new->egid, old->gid) || | 
|  | !cap_issubset(new->cap_permitted, old->cap_permitted)) && | 
|  | bprm->unsafe & ~LSM_UNSAFE_PTRACE_CAP) { | 
|  | /* downgrade; they get no more than they had, and maybe less */ | 
|  | if (!capable(CAP_SETUID) || | 
|  | (bprm->unsafe & LSM_UNSAFE_NO_NEW_PRIVS)) { | 
|  | new->euid = new->uid; | 
|  | new->egid = new->gid; | 
|  | } | 
|  | new->cap_permitted = cap_intersect(new->cap_permitted, | 
|  | old->cap_permitted); | 
|  | } | 
|  |  | 
|  | new->suid = new->fsuid = new->euid; | 
|  | new->sgid = new->fsgid = new->egid; | 
|  |  | 
|  | if (effective) | 
|  | new->cap_effective = new->cap_permitted; | 
|  | else | 
|  | cap_clear(new->cap_effective); | 
|  | bprm->cap_effective = effective; | 
|  |  | 
|  | /* | 
|  | * Audit candidate if current->cap_effective is set | 
|  | * | 
|  | * We do not bother to audit if 3 things are true: | 
|  | *   1) cap_effective has all caps | 
|  | *   2) we are root | 
|  | *   3) root is supposed to have all caps (SECURE_NOROOT) | 
|  | * Since this is just a normal root execing a process. | 
|  | * | 
|  | * Number 1 above might fail if you don't have a full bset, but I think | 
|  | * that is interesting information to audit. | 
|  | */ | 
|  | if (!cap_isclear(new->cap_effective)) { | 
|  | if (!cap_issubset(CAP_FULL_SET, new->cap_effective) || | 
|  | !uid_eq(new->euid, root_uid) || !uid_eq(new->uid, root_uid) || | 
|  | issecure(SECURE_NOROOT)) { | 
|  | ret = audit_log_bprm_fcaps(bprm, new, old); | 
|  | if (ret < 0) | 
|  | return ret; | 
|  | } | 
|  | } | 
|  |  | 
|  | new->securebits &= ~issecure_mask(SECURE_KEEP_CAPS); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * cap_bprm_secureexec - Determine whether a secure execution is required | 
|  | * @bprm: The execution parameters | 
|  | * | 
|  | * Determine whether a secure execution is required, return 1 if it is, and 0 | 
|  | * if it is not. | 
|  | * | 
|  | * The credentials have been committed by this point, and so are no longer | 
|  | * available through @bprm->cred. | 
|  | */ | 
|  | int cap_bprm_secureexec(struct linux_binprm *bprm) | 
|  | { | 
|  | const struct cred *cred = current_cred(); | 
|  | kuid_t root_uid = make_kuid(cred->user_ns, 0); | 
|  |  | 
|  | if (!uid_eq(cred->uid, root_uid)) { | 
|  | if (bprm->cap_effective) | 
|  | return 1; | 
|  | if (!cap_isclear(cred->cap_permitted)) | 
|  | return 1; | 
|  | } | 
|  |  | 
|  | return (!uid_eq(cred->euid, cred->uid) || | 
|  | !gid_eq(cred->egid, cred->gid)); | 
|  | } | 
|  |  | 
|  | /** | 
|  | * cap_inode_setxattr - Determine whether an xattr may be altered | 
|  | * @dentry: The inode/dentry being altered | 
|  | * @name: The name of the xattr to be changed | 
|  | * @value: The value that the xattr will be changed to | 
|  | * @size: The size of value | 
|  | * @flags: The replacement flag | 
|  | * | 
|  | * Determine whether an xattr may be altered or set on an inode, returning 0 if | 
|  | * permission is granted, -ve if denied. | 
|  | * | 
|  | * This is used to make sure security xattrs don't get updated or set by those | 
|  | * who aren't privileged to do so. | 
|  | */ | 
|  | int cap_inode_setxattr(struct dentry *dentry, const char *name, | 
|  | const void *value, size_t size, int flags) | 
|  | { | 
|  | if (!strcmp(name, XATTR_NAME_CAPS)) { | 
|  | if (!capable(CAP_SETFCAP)) | 
|  | return -EPERM; | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | if (!strncmp(name, XATTR_SECURITY_PREFIX, | 
|  | sizeof(XATTR_SECURITY_PREFIX) - 1) && | 
|  | !capable(CAP_SYS_ADMIN)) | 
|  | return -EPERM; | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * cap_inode_removexattr - Determine whether an xattr may be removed | 
|  | * @dentry: The inode/dentry being altered | 
|  | * @name: The name of the xattr to be changed | 
|  | * | 
|  | * Determine whether an xattr may be removed from an inode, returning 0 if | 
|  | * permission is granted, -ve if denied. | 
|  | * | 
|  | * This is used to make sure security xattrs don't get removed by those who | 
|  | * aren't privileged to remove them. | 
|  | */ | 
|  | int cap_inode_removexattr(struct dentry *dentry, const char *name) | 
|  | { | 
|  | if (!strcmp(name, XATTR_NAME_CAPS)) { | 
|  | if (!capable(CAP_SETFCAP)) | 
|  | return -EPERM; | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | if (!strncmp(name, XATTR_SECURITY_PREFIX, | 
|  | sizeof(XATTR_SECURITY_PREFIX) - 1) && | 
|  | !capable(CAP_SYS_ADMIN)) | 
|  | return -EPERM; | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * cap_emulate_setxuid() fixes the effective / permitted capabilities of | 
|  | * a process after a call to setuid, setreuid, or setresuid. | 
|  | * | 
|  | *  1) When set*uiding _from_ one of {r,e,s}uid == 0 _to_ all of | 
|  | *  {r,e,s}uid != 0, the permitted and effective capabilities are | 
|  | *  cleared. | 
|  | * | 
|  | *  2) When set*uiding _from_ euid == 0 _to_ euid != 0, the effective | 
|  | *  capabilities of the process are cleared. | 
|  | * | 
|  | *  3) When set*uiding _from_ euid != 0 _to_ euid == 0, the effective | 
|  | *  capabilities are set to the permitted capabilities. | 
|  | * | 
|  | *  fsuid is handled elsewhere. fsuid == 0 and {r,e,s}uid!= 0 should | 
|  | *  never happen. | 
|  | * | 
|  | *  -astor | 
|  | * | 
|  | * cevans - New behaviour, Oct '99 | 
|  | * A process may, via prctl(), elect to keep its capabilities when it | 
|  | * calls setuid() and switches away from uid==0. Both permitted and | 
|  | * effective sets will be retained. | 
|  | * Without this change, it was impossible for a daemon to drop only some | 
|  | * of its privilege. The call to setuid(!=0) would drop all privileges! | 
|  | * Keeping uid 0 is not an option because uid 0 owns too many vital | 
|  | * files.. | 
|  | * Thanks to Olaf Kirch and Peter Benie for spotting this. | 
|  | */ | 
|  | static inline void cap_emulate_setxuid(struct cred *new, const struct cred *old) | 
|  | { | 
|  | kuid_t root_uid = make_kuid(old->user_ns, 0); | 
|  |  | 
|  | if ((uid_eq(old->uid, root_uid) || | 
|  | uid_eq(old->euid, root_uid) || | 
|  | uid_eq(old->suid, root_uid)) && | 
|  | (!uid_eq(new->uid, root_uid) && | 
|  | !uid_eq(new->euid, root_uid) && | 
|  | !uid_eq(new->suid, root_uid)) && | 
|  | !issecure(SECURE_KEEP_CAPS)) { | 
|  | cap_clear(new->cap_permitted); | 
|  | cap_clear(new->cap_effective); | 
|  | } | 
|  | if (uid_eq(old->euid, root_uid) && !uid_eq(new->euid, root_uid)) | 
|  | cap_clear(new->cap_effective); | 
|  | if (!uid_eq(old->euid, root_uid) && uid_eq(new->euid, root_uid)) | 
|  | new->cap_effective = new->cap_permitted; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * cap_task_fix_setuid - Fix up the results of setuid() call | 
|  | * @new: The proposed credentials | 
|  | * @old: The current task's current credentials | 
|  | * @flags: Indications of what has changed | 
|  | * | 
|  | * Fix up the results of setuid() call before the credential changes are | 
|  | * actually applied, returning 0 to grant the changes, -ve to deny them. | 
|  | */ | 
|  | int cap_task_fix_setuid(struct cred *new, const struct cred *old, int flags) | 
|  | { | 
|  | switch (flags) { | 
|  | case LSM_SETID_RE: | 
|  | case LSM_SETID_ID: | 
|  | case LSM_SETID_RES: | 
|  | /* juggle the capabilities to follow [RES]UID changes unless | 
|  | * otherwise suppressed */ | 
|  | if (!issecure(SECURE_NO_SETUID_FIXUP)) | 
|  | cap_emulate_setxuid(new, old); | 
|  | break; | 
|  |  | 
|  | case LSM_SETID_FS: | 
|  | /* juggle the capabilties to follow FSUID changes, unless | 
|  | * otherwise suppressed | 
|  | * | 
|  | * FIXME - is fsuser used for all CAP_FS_MASK capabilities? | 
|  | *          if not, we might be a bit too harsh here. | 
|  | */ | 
|  | if (!issecure(SECURE_NO_SETUID_FIXUP)) { | 
|  | kuid_t root_uid = make_kuid(old->user_ns, 0); | 
|  | if (uid_eq(old->fsuid, root_uid) && !uid_eq(new->fsuid, root_uid)) | 
|  | new->cap_effective = | 
|  | cap_drop_fs_set(new->cap_effective); | 
|  |  | 
|  | if (!uid_eq(old->fsuid, root_uid) && uid_eq(new->fsuid, root_uid)) | 
|  | new->cap_effective = | 
|  | cap_raise_fs_set(new->cap_effective, | 
|  | new->cap_permitted); | 
|  | } | 
|  | break; | 
|  |  | 
|  | default: | 
|  | return -EINVAL; | 
|  | } | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Rationale: code calling task_setscheduler, task_setioprio, and | 
|  | * task_setnice, assumes that | 
|  | *   . if capable(cap_sys_nice), then those actions should be allowed | 
|  | *   . if not capable(cap_sys_nice), but acting on your own processes, | 
|  | *   	then those actions should be allowed | 
|  | * This is insufficient now since you can call code without suid, but | 
|  | * yet with increased caps. | 
|  | * So we check for increased caps on the target process. | 
|  | */ | 
|  | static int cap_safe_nice(struct task_struct *p) | 
|  | { | 
|  | int is_subset, ret = 0; | 
|  |  | 
|  | rcu_read_lock(); | 
|  | is_subset = cap_issubset(__task_cred(p)->cap_permitted, | 
|  | current_cred()->cap_permitted); | 
|  | if (!is_subset && !ns_capable(__task_cred(p)->user_ns, CAP_SYS_NICE)) | 
|  | ret = -EPERM; | 
|  | rcu_read_unlock(); | 
|  |  | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * cap_task_setscheduler - Detemine if scheduler policy change is permitted | 
|  | * @p: The task to affect | 
|  | * | 
|  | * Detemine if the requested scheduler policy change is permitted for the | 
|  | * specified task, returning 0 if permission is granted, -ve if denied. | 
|  | */ | 
|  | int cap_task_setscheduler(struct task_struct *p) | 
|  | { | 
|  | return cap_safe_nice(p); | 
|  | } | 
|  |  | 
|  | /** | 
|  | * cap_task_ioprio - Detemine if I/O priority change is permitted | 
|  | * @p: The task to affect | 
|  | * @ioprio: The I/O priority to set | 
|  | * | 
|  | * Detemine if the requested I/O priority change is permitted for the specified | 
|  | * task, returning 0 if permission is granted, -ve if denied. | 
|  | */ | 
|  | int cap_task_setioprio(struct task_struct *p, int ioprio) | 
|  | { | 
|  | return cap_safe_nice(p); | 
|  | } | 
|  |  | 
|  | /** | 
|  | * cap_task_ioprio - Detemine if task priority change is permitted | 
|  | * @p: The task to affect | 
|  | * @nice: The nice value to set | 
|  | * | 
|  | * Detemine if the requested task priority change is permitted for the | 
|  | * specified task, returning 0 if permission is granted, -ve if denied. | 
|  | */ | 
|  | int cap_task_setnice(struct task_struct *p, int nice) | 
|  | { | 
|  | return cap_safe_nice(p); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Implement PR_CAPBSET_DROP.  Attempt to remove the specified capability from | 
|  | * the current task's bounding set.  Returns 0 on success, -ve on error. | 
|  | */ | 
|  | static int cap_prctl_drop(unsigned long cap) | 
|  | { | 
|  | struct cred *new; | 
|  |  | 
|  | if (!ns_capable(current_user_ns(), CAP_SETPCAP)) | 
|  | return -EPERM; | 
|  | if (!cap_valid(cap)) | 
|  | return -EINVAL; | 
|  |  | 
|  | new = prepare_creds(); | 
|  | if (!new) | 
|  | return -ENOMEM; | 
|  | cap_lower(new->cap_bset, cap); | 
|  | return commit_creds(new); | 
|  | } | 
|  |  | 
|  | /** | 
|  | * cap_task_prctl - Implement process control functions for this security module | 
|  | * @option: The process control function requested | 
|  | * @arg2, @arg3, @arg4, @arg5: The argument data for this function | 
|  | * | 
|  | * Allow process control functions (sys_prctl()) to alter capabilities; may | 
|  | * also deny access to other functions not otherwise implemented here. | 
|  | * | 
|  | * Returns 0 or +ve on success, -ENOSYS if this function is not implemented | 
|  | * here, other -ve on error.  If -ENOSYS is returned, sys_prctl() and other LSM | 
|  | * modules will consider performing the function. | 
|  | */ | 
|  | int cap_task_prctl(int option, unsigned long arg2, unsigned long arg3, | 
|  | unsigned long arg4, unsigned long arg5) | 
|  | { | 
|  | const struct cred *old = current_cred(); | 
|  | struct cred *new; | 
|  |  | 
|  | switch (option) { | 
|  | case PR_CAPBSET_READ: | 
|  | if (!cap_valid(arg2)) | 
|  | return -EINVAL; | 
|  | return !!cap_raised(old->cap_bset, arg2); | 
|  |  | 
|  | case PR_CAPBSET_DROP: | 
|  | return cap_prctl_drop(arg2); | 
|  |  | 
|  | /* | 
|  | * The next four prctl's remain to assist with transitioning a | 
|  | * system from legacy UID=0 based privilege (when filesystem | 
|  | * capabilities are not in use) to a system using filesystem | 
|  | * capabilities only - as the POSIX.1e draft intended. | 
|  | * | 
|  | * Note: | 
|  | * | 
|  | *  PR_SET_SECUREBITS = | 
|  | *      issecure_mask(SECURE_KEEP_CAPS_LOCKED) | 
|  | *    | issecure_mask(SECURE_NOROOT) | 
|  | *    | issecure_mask(SECURE_NOROOT_LOCKED) | 
|  | *    | issecure_mask(SECURE_NO_SETUID_FIXUP) | 
|  | *    | issecure_mask(SECURE_NO_SETUID_FIXUP_LOCKED) | 
|  | * | 
|  | * will ensure that the current process and all of its | 
|  | * children will be locked into a pure | 
|  | * capability-based-privilege environment. | 
|  | */ | 
|  | case PR_SET_SECUREBITS: | 
|  | if ((((old->securebits & SECURE_ALL_LOCKS) >> 1) | 
|  | & (old->securebits ^ arg2))			/*[1]*/ | 
|  | || ((old->securebits & SECURE_ALL_LOCKS & ~arg2))	/*[2]*/ | 
|  | || (arg2 & ~(SECURE_ALL_LOCKS | SECURE_ALL_BITS))	/*[3]*/ | 
|  | || (cap_capable(current_cred(), | 
|  | current_cred()->user_ns, CAP_SETPCAP, | 
|  | SECURITY_CAP_AUDIT) != 0)		/*[4]*/ | 
|  | /* | 
|  | * [1] no changing of bits that are locked | 
|  | * [2] no unlocking of locks | 
|  | * [3] no setting of unsupported bits | 
|  | * [4] doing anything requires privilege (go read about | 
|  | *     the "sendmail capabilities bug") | 
|  | */ | 
|  | ) | 
|  | /* cannot change a locked bit */ | 
|  | return -EPERM; | 
|  |  | 
|  | new = prepare_creds(); | 
|  | if (!new) | 
|  | return -ENOMEM; | 
|  | new->securebits = arg2; | 
|  | return commit_creds(new); | 
|  |  | 
|  | case PR_GET_SECUREBITS: | 
|  | return old->securebits; | 
|  |  | 
|  | case PR_GET_KEEPCAPS: | 
|  | return !!issecure(SECURE_KEEP_CAPS); | 
|  |  | 
|  | case PR_SET_KEEPCAPS: | 
|  | if (arg2 > 1) /* Note, we rely on arg2 being unsigned here */ | 
|  | return -EINVAL; | 
|  | if (issecure(SECURE_KEEP_CAPS_LOCKED)) | 
|  | return -EPERM; | 
|  |  | 
|  | new = prepare_creds(); | 
|  | if (!new) | 
|  | return -ENOMEM; | 
|  | if (arg2) | 
|  | new->securebits |= issecure_mask(SECURE_KEEP_CAPS); | 
|  | else | 
|  | new->securebits &= ~issecure_mask(SECURE_KEEP_CAPS); | 
|  | return commit_creds(new); | 
|  |  | 
|  | default: | 
|  | /* No functionality available - continue with default */ | 
|  | return -ENOSYS; | 
|  | } | 
|  | } | 
|  |  | 
|  | /** | 
|  | * cap_vm_enough_memory - Determine whether a new virtual mapping is permitted | 
|  | * @mm: The VM space in which the new mapping is to be made | 
|  | * @pages: The size of the mapping | 
|  | * | 
|  | * Determine whether the allocation of a new virtual mapping by the current | 
|  | * task is permitted, returning 0 if permission is granted, -ve if not. | 
|  | */ | 
|  | int cap_vm_enough_memory(struct mm_struct *mm, long pages) | 
|  | { | 
|  | int cap_sys_admin = 0; | 
|  |  | 
|  | if (cap_capable(current_cred(), &init_user_ns, CAP_SYS_ADMIN, | 
|  | SECURITY_CAP_NOAUDIT) == 0) | 
|  | cap_sys_admin = 1; | 
|  | return __vm_enough_memory(mm, pages, cap_sys_admin); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * cap_mmap_addr - check if able to map given addr | 
|  | * @addr: address attempting to be mapped | 
|  | * | 
|  | * If the process is attempting to map memory below dac_mmap_min_addr they need | 
|  | * CAP_SYS_RAWIO.  The other parameters to this function are unused by the | 
|  | * capability security module.  Returns 0 if this mapping should be allowed | 
|  | * -EPERM if not. | 
|  | */ | 
|  | int cap_mmap_addr(unsigned long addr) | 
|  | { | 
|  | int ret = 0; | 
|  |  | 
|  | if (addr < dac_mmap_min_addr) { | 
|  | ret = cap_capable(current_cred(), &init_user_ns, CAP_SYS_RAWIO, | 
|  | SECURITY_CAP_AUDIT); | 
|  | /* set PF_SUPERPRIV if it turns out we allow the low mmap */ | 
|  | if (ret == 0) | 
|  | current->flags |= PF_SUPERPRIV; | 
|  | } | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | int cap_mmap_file(struct file *file, unsigned long reqprot, | 
|  | unsigned long prot, unsigned long flags) | 
|  | { | 
|  | return 0; | 
|  | } |