blob: 0d7b6b2412ae6ea39ad7fb2af429b6e56fe41174 [file] [log] [blame]
/*
* NWL DSI drm driver - Northwest Logic MIPI DSI bridge
*
* Copyright (C) 2017 NXP
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* as published by the Free Software Foundation; either version 2
* of the License, or (at your option) any later version.
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*/
#include <asm/unaligned.h>
#include <drm/bridge/nwl_dsi.h>
#include <drm/drmP.h>
#include <drm/drm_atomic_helper.h>
#include <drm/drm_crtc_helper.h>
#include <drm/drm_of.h>
#include <drm/drm_panel.h>
#include <linux/clk-provider.h>
#include <linux/clk.h>
#include <linux/component.h>
#include <linux/interrupt.h>
#include <linux/irq.h>
#include <linux/of.h>
#include <linux/of_graph.h>
#include <linux/of_platform.h>
#include <linux/phy/phy.h>
#include <linux/spinlock.h>
#include <video/mipi_display.h>
#include <video/videomode.h>
#define MIPI_FIFO_TIMEOUT msecs_to_jiffies(500)
/* DSI HOST registers */
#define CFG_NUM_LANES 0x0
#define CFG_NONCONTINUOUS_CLK 0x4
#define CFG_T_PRE 0x8
#define CFG_T_POST 0xc
#define CFG_TX_GAP 0x10
#define CFG_AUTOINSERT_EOTP 0x14
#define CFG_EXTRA_CMDS_AFTER_EOTP 0x18
#define CFG_HTX_TO_COUNT 0x1c
#define CFG_LRX_H_TO_COUNT 0x20
#define CFG_BTA_H_TO_COUNT 0x24
#define CFG_TWAKEUP 0x28
#define CFG_STATUS_OUT 0x2c
#define RX_ERROR_STATUS 0x30
/* DSI DPI registers */
#define PIXEL_PAYLOAD_SIZE 0x200
#define PIXEL_FIFO_SEND_LEVEL 0x204
#define INTERFACE_COLOR_CODING 0x208
#define PIXEL_FORMAT 0x20c
#define VSYNC_POLARITY 0x210
#define HSYNC_POLARITY 0x214
#define VIDEO_MODE 0x218
#define HFP 0x21c
#define HBP 0x220
#define HSA 0x224
#define ENABLE_MULT_PKTS 0x228
#define VBP 0x22c
#define VFP 0x230
#define BLLP_MODE 0x234
#define USE_NULL_PKT_BLLP 0x238
#define VACTIVE 0x23c
#define VC 0x240
/* DSI APB PKT control */
#define TX_PAYLOAD 0x280
#define PKT_CONTROL 0x284
#define SEND_PACKET 0x288
#define PKT_STATUS 0x28c
#define PKT_FIFO_WR_LEVEL 0x290
#define PKT_FIFO_RD_LEVEL 0x294
#define RX_PAYLOAD 0x298
#define RX_PKT_HEADER 0x29c
/* PKT reg bit manipulation */
#define REG_MASK(e, s) (((1 << ((e) - (s) + 1)) - 1) << (s))
#define REG_PUT(x, e, s) (((x) << (s)) & REG_MASK(e, s))
#define REG_GET(x, e, s) (((x) & REG_MASK(e, s)) >> (s))
/*
* PKT_CONTROL format:
* [15: 0] - word count
* [17:16] - virtual channel
* [23:18] - data type
* [24] - LP or HS select (0 - LP, 1 - HS)
* [25] - perform BTA after packet is sent
* [26] - perform BTA only, no packet tx
*/
#define WC(x) REG_PUT((x), 15, 0)
#define TX_VC(x) REG_PUT((x), 17, 16)
#define TX_DT(x) REG_PUT((x), 23, 18)
#define HS_SEL(x) REG_PUT((x), 24, 24)
#define BTA_TX(x) REG_PUT((x), 25, 25)
#define BTA_NO_TX(x) REG_PUT((x), 26, 26)
/*
* RX_PKT_HEADER format:
* [15: 0] - word count
* [21:16] - data type
* [23:22] - virtual channel
*/
#define RX_DT(x) REG_GET((x), 21, 16)
#define RX_VC(x) REG_GET((x), 23, 22)
/* DSI IRQ handling */
#define IRQ_STATUS 0x2a0
#define SM_NOT_IDLE BIT(0)
#define TX_PKT_DONE BIT(1)
#define DPHY_DIRECTION BIT(2)
#define TX_FIFO_OVFLW BIT(3)
#define TX_FIFO_UDFLW BIT(4)
#define RX_FIFO_OVFLW BIT(5)
#define RX_FIFO_UDFLW BIT(6)
#define RX_PKT_HDR_RCVD BIT(7)
#define RX_PKT_PAYLOAD_DATA_RCVD BIT(8)
#define BTA_TIMEOUT BIT(29)
#define LP_RX_TIMEOUT BIT(30)
#define HS_TX_TIMEOUT BIT(31)
#define IRQ_STATUS2 0x2a4
#define SINGLE_BIT_ECC_ERR BIT(0)
#define MULTI_BIT_ECC_ERR BIT(1)
#define CRC_ERR BIT(2)
#define IRQ_MASK 0x2a8
#define SM_NOT_IDLE_MASK BIT(0)
#define TX_PKT_DONE_MASK BIT(1)
#define DPHY_DIRECTION_MASK BIT(2)
#define TX_FIFO_OVFLW_MASK BIT(3)
#define TX_FIFO_UDFLW_MASK BIT(4)
#define RX_FIFO_OVFLW_MASK BIT(5)
#define RX_FIFO_UDFLW_MASK BIT(6)
#define RX_PKT_HDR_RCVD_MASK BIT(7)
#define RX_PKT_PAYLOAD_DATA_RCVD_MASK BIT(8)
#define BTA_TIMEOUT_MASK BIT(29)
#define LP_RX_TIMEOUT_MASK BIT(30)
#define HS_TX_TIMEOUT_MASK BIT(31)
#define IRQ_MASK2 0x2ac
#define SINGLE_BIT_ECC_ERR_MASK BIT(0)
#define MULTI_BIT_ECC_ERR_MASK BIT(1)
#define CRC_ERR_MASK BIT(2)
static const char IRQ_NAME[] = "nwl-dsi";
enum {
CLK_PHY_REF = BIT(1),
CLK_RX_ESC = BIT(2),
CLK_TX_ESC = BIT(3)
};
enum transfer_direction {
DSI_PACKET_SEND,
DSI_PACKET_RECEIVE
};
struct mipi_dsi_transfer {
const struct mipi_dsi_msg *msg;
struct mipi_dsi_packet packet;
struct completion completed;
int status; /* status of transmission */
enum transfer_direction direction;
bool need_bta;
u8 cmd;
u16 rx_word_count;
size_t tx_len; /* bytes sent */
size_t rx_len; /* bytes received */
};
struct clk_config {
struct clk *clk;
unsigned long rate;
bool enabled;
};
struct nwl_mipi_dsi {
struct device *dev;
struct drm_panel *panel;
struct drm_bridge *next_bridge;
struct drm_bridge bridge;
struct drm_connector connector;
struct mipi_dsi_host host;
struct mipi_dsi_device *dsi_device;
struct phy *phy;
/* Mandatory clocks */
struct clk_config phy_ref;
struct clk_config rx_esc;
struct clk_config tx_esc;
void __iomem *base;
int irq;
enum mipi_dsi_pixel_format format;
struct videomode vm;
struct mipi_dsi_transfer *xfer;
u32 lanes;
u32 vc;
unsigned long dsi_mode_flags;
bool enabled;
};
static inline void nwl_dsi_write(struct nwl_mipi_dsi *dsi, u32 reg, u32 val)
{
writel(val, dsi->base + reg);
}
static inline u32 nwl_dsi_read(struct nwl_mipi_dsi *dsi, u32 reg)
{
return readl(dsi->base + reg);
}
static enum mipi_dsi_pixel_format mipi_dsi_format_from_bus_format(
u32 bus_format)
{
switch (bus_format) {
case MEDIA_BUS_FMT_RGB565_1X16:
return MIPI_DSI_FMT_RGB565;
case MEDIA_BUS_FMT_RGB666_1X18:
return MIPI_DSI_FMT_RGB666;
case MEDIA_BUS_FMT_RGB888_1X24:
return MIPI_DSI_FMT_RGB888;
default:
return MIPI_DSI_FMT_RGB888;
}
}
static enum dpi_interface_color_coding nwl_dsi_get_dpi_interface_color_coding(
enum mipi_dsi_pixel_format format)
{
switch (format) {
case MIPI_DSI_FMT_RGB565:
return DPI_16_BIT_565_PACKED;
case MIPI_DSI_FMT_RGB666:
return DPI_18_BIT_ALIGNED;
case MIPI_DSI_FMT_RGB666_PACKED:
return DPI_18_BIT_PACKED;
case MIPI_DSI_FMT_RGB888:
return DPI_24_BIT;
default:
return DPI_24_BIT;
}
}
static enum dpi_pixel_format nwl_dsi_get_dpi_pixel_format(
enum mipi_dsi_pixel_format format)
{
switch (format) {
case MIPI_DSI_FMT_RGB565:
return DPI_FMT_16_BIT;
case MIPI_DSI_FMT_RGB666:
return DPI_FMT_18_BIT;
case MIPI_DSI_FMT_RGB666_PACKED:
return DPI_FMT_18_BIT_LOOSELY_PACKED;
case MIPI_DSI_FMT_RGB888:
return DPI_FMT_24_BIT;
default:
return DPI_FMT_24_BIT;
}
}
/* Adds a bridge to encoder bridge chain */
bool nwl_dsi_add_bridge(struct drm_encoder *encoder,
struct drm_bridge *next_bridge)
{
struct drm_bridge *bridge = encoder->bridge;
if (!next_bridge)
return false;
next_bridge->encoder = encoder;
if (!bridge) {
encoder->bridge = bridge;
return true;
}
while (bridge != next_bridge && bridge->next)
bridge = bridge->next;
/* Avoid adding an existing bridge to the chain */
if (bridge == next_bridge) {
next_bridge->encoder = NULL;
return false;
}
bridge->next = next_bridge;
return true;
}
EXPORT_SYMBOL_GPL(nwl_dsi_add_bridge);
/* Removes last bridge from encoder bridge chain */
bool nwl_dsi_del_bridge(struct drm_encoder *encoder,
struct drm_bridge *bridge)
{
struct drm_bridge *b = encoder->bridge;
struct drm_bridge *prev = NULL;
if (!b || !bridge)
return false;
while (b->next) {
prev = b;
b = b->next;
}
bridge->encoder = NULL;
if (prev)
prev->next = NULL;
else
encoder->bridge = NULL;
return true;
}
EXPORT_SYMBOL_GPL(nwl_dsi_del_bridge);
unsigned long nwl_dsi_get_bit_clock(struct drm_bridge *bridge,
unsigned long pixclock)
{
struct nwl_mipi_dsi *dsi;
int bpp;
u32 bus_format;
struct drm_crtc *crtc = 0;
/* Make sure the bridge is correctly initialized */
if (!bridge || !bridge->driver_private)
return 0;
dsi = bridge->driver_private;
if (dsi->lanes < 1 || dsi->lanes > 4)
return 0;
/* if CTRC updated the bus format, update dsi->format */
if (dsi->bridge.encoder)
crtc = dsi->bridge.encoder->crtc;
if (crtc && crtc->mode.private_flags & 0x1) {
bus_format = (crtc->mode.private_flags & 0x1FFFE) >> 1;
dsi->format = mipi_dsi_format_from_bus_format(bus_format);
/* propagate the format to the attached panel/bridge */
dsi->dsi_device->format = dsi->format;
/* clear bus format change indication*/
crtc->mode.private_flags &= ~0x1;
}
bpp = mipi_dsi_pixel_format_to_bpp(dsi->format);
return (pixclock / dsi->lanes) * bpp;
}
EXPORT_SYMBOL_GPL(nwl_dsi_get_bit_clock);
static void nwl_dsi_config_host(struct nwl_mipi_dsi *dsi)
{
if (dsi->lanes < 1 || dsi->lanes > 4)
return;
nwl_dsi_write(dsi, CFG_NUM_LANES, dsi->lanes - 1);
if (dsi->dsi_mode_flags & MIPI_DSI_CLOCK_NON_CONTINUOUS) {
nwl_dsi_write(dsi, CFG_NONCONTINUOUS_CLK, 0x01);
nwl_dsi_write(dsi, CFG_AUTOINSERT_EOTP, 0x01);
} else {
nwl_dsi_write(dsi, CFG_NONCONTINUOUS_CLK, 0x00);
nwl_dsi_write(dsi, CFG_AUTOINSERT_EOTP, 0x00);
}
nwl_dsi_write(dsi, CFG_T_PRE, 0x01);
nwl_dsi_write(dsi, CFG_T_POST, 0x34);
nwl_dsi_write(dsi, CFG_TX_GAP, 0x0D);
nwl_dsi_write(dsi, CFG_EXTRA_CMDS_AFTER_EOTP, 0x00);
nwl_dsi_write(dsi, CFG_HTX_TO_COUNT, 0x00);
nwl_dsi_write(dsi, CFG_LRX_H_TO_COUNT, 0x00);
nwl_dsi_write(dsi, CFG_BTA_H_TO_COUNT, 0x00);
nwl_dsi_write(dsi, CFG_TWAKEUP, 0x3a98);
}
static void nwl_dsi_config_dpi(struct nwl_mipi_dsi *dsi)
{
struct device *dev = dsi->dev;
struct videomode *vm = &dsi->vm;
enum dpi_pixel_format pixel_format =
nwl_dsi_get_dpi_pixel_format(dsi->format);
enum dpi_interface_color_coding color_coding =
nwl_dsi_get_dpi_interface_color_coding(dsi->format);
bool burst_mode;
nwl_dsi_write(dsi, INTERFACE_COLOR_CODING, color_coding);
nwl_dsi_write(dsi, PIXEL_FORMAT, pixel_format);
DRM_DEV_DEBUG_DRIVER(dev, "DSI format is: %d (CC=%d, PF=%d)\n",
dsi->format, color_coding, pixel_format);
/*TODO: need to make polarity configurable */
nwl_dsi_write(dsi, VSYNC_POLARITY, 0x00);
nwl_dsi_write(dsi, HSYNC_POLARITY, 0x00);
burst_mode = (dsi->dsi_mode_flags & MIPI_DSI_MODE_VIDEO_BURST) &&
!(dsi->dsi_mode_flags & MIPI_DSI_MODE_VIDEO_SYNC_PULSE);
if (burst_mode) {
nwl_dsi_write(dsi, VIDEO_MODE, 0x2);
nwl_dsi_write(dsi, PIXEL_FIFO_SEND_LEVEL, 256);
} else {
nwl_dsi_write(dsi, VIDEO_MODE, 0x0);
nwl_dsi_write(dsi, PIXEL_FIFO_SEND_LEVEL, vm->hactive);
}
nwl_dsi_write(dsi, HFP, vm->hfront_porch);
nwl_dsi_write(dsi, HBP, vm->hback_porch);
nwl_dsi_write(dsi, HSA, vm->hsync_len);
nwl_dsi_write(dsi, ENABLE_MULT_PKTS, 0x0);
nwl_dsi_write(dsi, BLLP_MODE, 0x1);
nwl_dsi_write(dsi, ENABLE_MULT_PKTS, 0x0);
nwl_dsi_write(dsi, USE_NULL_PKT_BLLP, 0x0);
nwl_dsi_write(dsi, VC, 0x0);
nwl_dsi_write(dsi, PIXEL_PAYLOAD_SIZE, vm->hactive);
nwl_dsi_write(dsi, VACTIVE, vm->vactive - 1);
nwl_dsi_write(dsi, VBP, vm->vback_porch);
nwl_dsi_write(dsi, VFP, vm->vfront_porch);
}
static void nwl_dsi_enable_clocks(struct nwl_mipi_dsi *dsi, u32 clks)
{
struct device *dev = dsi->dev;
unsigned long rate;
if (clks & CLK_PHY_REF && !dsi->phy_ref.enabled) {
clk_prepare_enable(dsi->phy_ref.clk);
dsi->phy_ref.enabled = true;
rate = clk_get_rate(dsi->phy_ref.clk);
DRM_DEV_DEBUG_DRIVER(dev,
"Enabled phy_ref clk (rate=%lu)\n", rate);
}
if (clks & CLK_RX_ESC && !dsi->rx_esc.enabled) {
clk_set_rate(dsi->rx_esc.clk, dsi->rx_esc.rate);
clk_prepare_enable(dsi->rx_esc.clk);
dsi->rx_esc.enabled = true;
rate = clk_get_rate(dsi->rx_esc.clk);
}
if (clks & CLK_TX_ESC && !dsi->tx_esc.enabled) {
clk_set_rate(dsi->tx_esc.clk, dsi->tx_esc.rate);
clk_prepare_enable(dsi->tx_esc.clk);
dsi->tx_esc.enabled = true;
rate = clk_get_rate(dsi->tx_esc.clk);
DRM_DEV_DEBUG_DRIVER(dev,
"Enabled tx_esc clk (rate=%lu)\n", rate);
}
}
static void nwl_dsi_disable_clocks(struct nwl_mipi_dsi *dsi, u32 clks)
{
struct device *dev = dsi->dev;
if (clks & CLK_PHY_REF && dsi->phy_ref.enabled) {
clk_disable_unprepare(dsi->phy_ref.clk);
dsi->phy_ref.enabled = false;
DRM_DEV_DEBUG_DRIVER(dev, "Disabled phy_ref clk\n");
}
if (clks & CLK_RX_ESC && dsi->rx_esc.enabled) {
clk_disable_unprepare(dsi->rx_esc.clk);
dsi->rx_esc.enabled = false;
}
if (clks & CLK_TX_ESC && dsi->tx_esc.enabled) {
clk_disable_unprepare(dsi->tx_esc.clk);
dsi->tx_esc.enabled = false;
DRM_DEV_DEBUG_DRIVER(dev, "Disabled tx_esc clk\n");
}
}
static void nwl_dsi_init_interrupts(struct nwl_mipi_dsi *dsi)
{
u32 irq_enable;
nwl_dsi_write(dsi, IRQ_MASK, 0xffffffff);
nwl_dsi_write(dsi, IRQ_MASK2, 0x7);
irq_enable = ~(u32)(TX_PKT_DONE_MASK |
RX_PKT_HDR_RCVD_MASK);
nwl_dsi_write(dsi, IRQ_MASK, irq_enable);
}
static bool nwl_dsi_bridge_mode_fixup(struct drm_bridge *bridge,
const struct drm_display_mode *mode,
struct drm_display_mode *adjusted_mode)
{
struct nwl_mipi_dsi *dsi = bridge->driver_private;
int bpp = mipi_dsi_pixel_format_to_bpp(dsi->format);
unsigned long pixclock = adjusted_mode->clock * 1000;
unsigned long data_rate;
if (dsi->lanes < 1 || dsi->lanes > 4)
return false;
/* Data rate is in bit clock for each lane */
data_rate = (pixclock / dsi->lanes) * bpp;
/* Max data rate for this controller is 1.5Gbps */
if (data_rate > 1500000000)
return false;
return true;
}
static void nwl_dsi_bridge_mode_set(struct drm_bridge *bridge,
struct drm_display_mode *mode,
struct drm_display_mode *adjusted)
{
struct nwl_mipi_dsi *dsi = bridge->driver_private;
drm_display_mode_to_videomode(adjusted, &dsi->vm);
DRM_DEV_DEBUG_DRIVER(dsi->dev, "\n");
drm_mode_debug_printmodeline(adjusted);
}
static int nwl_dsi_host_attach(struct mipi_dsi_host *host,
struct mipi_dsi_device *device)
{
struct nwl_mipi_dsi *dsi = container_of(host,
struct nwl_mipi_dsi,
host);
struct device *dev = dsi->dev;
DRM_DEV_INFO(dev, "lanes=%u, format=0x%x flags=0x%lx\n",
device->lanes, device->format, device->mode_flags);
if (device->lanes < 1 || device->lanes > 4)
return -EINVAL;
dsi->dsi_device = device;
/*
* Someone has attached to us; it could be a panel or another bridge.
* Check to is if this is a panel or not.
*/
if (!dsi->next_bridge ||
device->dev.of_node != dsi->next_bridge->of_node)
dsi->panel = of_drm_find_panel(device->dev.of_node);
/*
* Bridge has priority in front of panel.
* Since the panel driver cannot tell if there is a physical
* panel connected, we'll asume that there is no physical panel if there
* is a bridge registered.
*/
if (dsi->next_bridge &&
device->dev.of_node != NULL &&
device->dev.of_node != dsi->next_bridge->of_node) {
dsi->panel = NULL;
return -EPERM;
}
if (dsi->panel)
DRM_DEV_DEBUG_DRIVER(dsi->dev, "Panel attached\n");
else
DRM_DEV_DEBUG_DRIVER(dsi->dev, "Bridge attached\n");
dsi->lanes = device->lanes;
dsi->format = device->format;
dsi->dsi_mode_flags = device->mode_flags;
if (dsi->connector.dev)
drm_helper_hpd_irq_event(dsi->connector.dev);
return 0;
}
static int nwl_dsi_host_detach(struct mipi_dsi_host *host,
struct mipi_dsi_device *device)
{
struct nwl_mipi_dsi *dsi = container_of(host,
struct nwl_mipi_dsi,
host);
if (dsi->panel)
dsi->panel = NULL;
if (dsi->connector.dev)
drm_helper_hpd_irq_event(dsi->connector.dev);
return 0;
}
static void nwl_dsi_print_error(struct device *dev, u16 error)
{
DRM_DEV_DEBUG_DRIVER(dev, "DSI Error Register (detailed report):\n");
if (error & BIT(0))
DRM_DEV_DEBUG_DRIVER(dev,
"SoT Error\n");
if (error & BIT(1))
DRM_DEV_DEBUG_DRIVER(dev,
"SoT Sync Error\n");
if (error & BIT(2))
DRM_DEV_DEBUG_DRIVER(dev,
"EoT Sync Error\n");
if (error & BIT(3))
DRM_DEV_DEBUG_DRIVER(dev,
"Escape Mode Entry Command Error\n");
if (error & BIT(4))
DRM_DEV_DEBUG_DRIVER(dev,
"Low-Power Transmit Sync Error\n");
if (error & BIT(5))
DRM_DEV_DEBUG_DRIVER(dev,
"Peripheral Timeout Error\n");
if (error & BIT(6))
DRM_DEV_DEBUG_DRIVER(dev,
"False Control Error\n");
if (error & BIT(7))
DRM_DEV_DEBUG_DRIVER(dev,
"Contention Detected\n");
if (error & BIT(8))
DRM_DEV_DEBUG_DRIVER(dev,
"ECC Error, single-bit (detected and corrected)\n");
if (error & BIT(9))
DRM_DEV_DEBUG_DRIVER(dev,
"ECC Error, multi-bit (detected, not corrected)\n");
if (error & BIT(10))
DRM_DEV_DEBUG_DRIVER(dev,
"Checksum Error (long packet only)\n");
if (error & BIT(11))
DRM_DEV_DEBUG_DRIVER(dev,
"DSI Data Type Not Recognized\n");
if (error & BIT(12))
DRM_DEV_DEBUG_DRIVER(dev,
"DSI VC ID Invalid\n");
if (error & BIT(13))
DRM_DEV_DEBUG_DRIVER(dev,
"Invalid Transmission Length\n");
/* BIT(14) is reserved */
if (error & BIT(15))
DRM_DEV_DEBUG_DRIVER(dev,
"DSI Protocol Violation\n");
}
static bool nwl_dsi_read_packet(struct nwl_mipi_dsi *dsi, u32 status)
{
struct device *dev = dsi->dev;
struct mipi_dsi_transfer *xfer = dsi->xfer;
u8 *payload = xfer->msg->rx_buf;
u32 val;
u16 word_count;
u8 channel;
u8 data_type;
xfer->status = 0;
if (xfer->rx_word_count == 0) {
if (!(status & RX_PKT_HDR_RCVD))
return false;
/* Get the RX header and parse it */
val = nwl_dsi_read(dsi, RX_PKT_HEADER);
word_count = WC(val);
channel = RX_VC(val);
data_type = RX_DT(val);
if (channel != xfer->msg->channel) {
DRM_DEV_ERROR(dev,
"[%02X] Channel missmatch (%u != %u)\n",
xfer->cmd, channel, xfer->msg->channel);
return true;
}
switch (data_type) {
case MIPI_DSI_RX_GENERIC_SHORT_READ_RESPONSE_2BYTE:
/* Fall through */
case MIPI_DSI_RX_DCS_SHORT_READ_RESPONSE_2BYTE:
if (xfer->msg->rx_len > 1) {
/* read second byte */
payload[1] = word_count >> 8;
++xfer->rx_len;
}
/* Fall through */
case MIPI_DSI_RX_GENERIC_SHORT_READ_RESPONSE_1BYTE:
/* Fall through */
case MIPI_DSI_RX_DCS_SHORT_READ_RESPONSE_1BYTE:
if (xfer->msg->rx_len > 0) {
/* read first byte */
payload[0] = word_count & 0xff;
++xfer->rx_len;
}
xfer->status = xfer->rx_len;
return true;
case MIPI_DSI_RX_ACKNOWLEDGE_AND_ERROR_REPORT:
word_count &= 0xff;
DRM_DEV_ERROR(dev,
"[%02X] DSI error report: 0x%02x\n",
xfer->cmd, word_count);
nwl_dsi_print_error(dev, word_count);
xfer->status = -EPROTO;
return true;
}
if (word_count > xfer->msg->rx_len) {
DRM_DEV_ERROR(dev,
"[%02X] Receive buffer too small: %lu (< %u)\n",
xfer->cmd,
xfer->msg->rx_len,
word_count);
return true;
}
xfer->rx_word_count = word_count;
} else {
/* Set word_count from previous header read */
word_count = xfer->rx_word_count;
}
/* If RX payload is not yet received, wait for it */
if (!(status & RX_PKT_PAYLOAD_DATA_RCVD))
return false;
/* Read the RX payload */
while (word_count >= 4) {
val = nwl_dsi_read(dsi, RX_PAYLOAD);
payload[0] = (val >> 0) & 0xff;
payload[1] = (val >> 8) & 0xff;
payload[2] = (val >> 16) & 0xff;
payload[3] = (val >> 24) & 0xff;
payload += 4;
xfer->rx_len += 4;
word_count -= 4;
}
if (word_count > 0) {
val = nwl_dsi_read(dsi, RX_PAYLOAD);
switch (word_count) {
case 3:
payload[2] = (val >> 16) & 0xff;
++xfer->rx_len;
/* Fall through */
case 2:
payload[1] = (val >> 8) & 0xff;
++xfer->rx_len;
/* Fall through */
case 0:
payload[0] = (val >> 0) & 0xff;
++xfer->rx_len;
break;
}
}
xfer->status = xfer->rx_len;
return true;
}
static void nwl_dsi_finish_transmission(struct nwl_mipi_dsi *dsi, u32 status)
{
struct mipi_dsi_transfer *xfer = dsi->xfer;
bool end_packet = false;
if (!xfer)
return;
if (xfer->direction == DSI_PACKET_SEND && status & TX_PKT_DONE) {
xfer->status = xfer->tx_len;
end_packet = true;
} else if (status & DPHY_DIRECTION && status & RX_PKT_HDR_RCVD)
end_packet = nwl_dsi_read_packet(dsi, status);
if (end_packet)
complete(&xfer->completed);
}
static void nwl_dsi_begin_transmission(struct nwl_mipi_dsi *dsi)
{
struct mipi_dsi_transfer *xfer = dsi->xfer;
struct mipi_dsi_packet *pkt = &xfer->packet;
const u8 *payload;
size_t length;
u16 word_count;
u8 lp_mode;
u32 val;
/* Send the payload, if any */
/* TODO: Need to check the TX FIFO overflow */
length = pkt->payload_length;
payload = pkt->payload;
while (length >= 4) {
val = get_unaligned_le32(payload);
nwl_dsi_write(dsi, TX_PAYLOAD, val);
payload += 4;
length -= 4;
}
/* Send the rest of the payload */
val = 0;
switch (length) {
case 3:
val |= payload[2] << 16;
/* Fall through */
case 2:
val |= payload[1] << 8;
/* Fall through */
case 1:
val |= payload[0];
nwl_dsi_write(dsi, TX_PAYLOAD, val);
break;
}
xfer->tx_len = length;
/*
* Now, send the header
* header structure is:
* header[0] = Virtual Channel + Data Type
* header[1] = Word Count LSB
* header[2] = Word Count MSB
*/
word_count = pkt->header[1] | (pkt->header[2] << 8);
lp_mode = (xfer->msg->flags & MIPI_DSI_MSG_USE_LPM)?0:1;
val = WC(word_count) |
TX_VC(xfer->msg->channel) |
TX_DT(xfer->msg->type) |
HS_SEL(lp_mode) |
BTA_TX(xfer->need_bta);
nwl_dsi_write(dsi, PKT_CONTROL, val);
/* Send packet command */
nwl_dsi_write(dsi, SEND_PACKET, 0x1);
}
static ssize_t nwl_dsi_host_transfer(struct mipi_dsi_host *host,
const struct mipi_dsi_msg *msg)
{
struct nwl_mipi_dsi *dsi = container_of(host,
struct nwl_mipi_dsi,
host);
struct mipi_dsi_transfer xfer;
ssize_t ret = 0;
/* Create packet to be sent */
dsi->xfer = &xfer;
ret = mipi_dsi_create_packet(&xfer.packet, msg);
if (ret < 0) {
dsi->xfer = NULL;
return ret;
}
if ((msg->type & MIPI_DSI_GENERIC_READ_REQUEST_0_PARAM ||
msg->type & MIPI_DSI_GENERIC_READ_REQUEST_1_PARAM ||
msg->type & MIPI_DSI_GENERIC_READ_REQUEST_2_PARAM ||
msg->type & MIPI_DSI_DCS_READ) &&
msg->rx_len > 0 &&
msg->rx_buf != NULL)
xfer.direction = DSI_PACKET_RECEIVE;
else
xfer.direction = DSI_PACKET_SEND;
xfer.need_bta = (xfer.direction == DSI_PACKET_RECEIVE);
xfer.need_bta |= (msg->flags & MIPI_DSI_MSG_REQ_ACK)?1:0;
xfer.msg = msg;
xfer.status = -ETIMEDOUT;
xfer.rx_word_count = 0;
xfer.rx_len = 0;
xfer.cmd = 0x00;
if (msg->tx_len > 0)
xfer.cmd = ((u8 *)(msg->tx_buf))[0];
init_completion(&xfer.completed);
nwl_dsi_enable_clocks(dsi, CLK_RX_ESC);
/* Initiate the DSI packet transmision */
nwl_dsi_begin_transmission(dsi);
wait_for_completion_timeout(&xfer.completed, MIPI_FIFO_TIMEOUT);
ret = xfer.status;
if (xfer.status == -ETIMEDOUT)
DRM_DEV_ERROR(host->dev, "[%02X] DSI transfer timed out\n",
xfer.cmd);
nwl_dsi_disable_clocks(dsi, CLK_RX_ESC);
return ret;
}
static const struct mipi_dsi_host_ops nwl_dsi_host_ops = {
.attach = nwl_dsi_host_attach,
.detach = nwl_dsi_host_detach,
.transfer = nwl_dsi_host_transfer,
};
static irqreturn_t nwl_dsi_irq_handler(int irq, void *data)
{
u32 irq_status;
struct nwl_mipi_dsi *dsi = data;
irq_status = nwl_dsi_read(dsi, IRQ_STATUS);
if (irq_status & TX_PKT_DONE ||
irq_status & RX_PKT_HDR_RCVD ||
irq_status & RX_PKT_PAYLOAD_DATA_RCVD)
nwl_dsi_finish_transmission(dsi, irq_status);
return IRQ_HANDLED;
}
static enum drm_connector_status nwl_dsi_connector_detect(
struct drm_connector *connector, bool force)
{
struct nwl_mipi_dsi *dsi = container_of(connector,
struct nwl_mipi_dsi,
connector);
if (dsi->panel)
return connector_status_connected;
return connector_status_unknown;
}
static int nwl_dsi_connector_get_modes(struct drm_connector *connector)
{
struct nwl_mipi_dsi *dsi = container_of(connector,
struct nwl_mipi_dsi,
connector);
if (dsi->panel)
return drm_panel_get_modes(dsi->panel);
return 0;
}
static const struct drm_connector_funcs nwl_dsi_connector_funcs = {
.dpms = drm_atomic_helper_connector_dpms,
.detect = nwl_dsi_connector_detect,
.fill_modes = drm_helper_probe_single_connector_modes,
.destroy = drm_connector_cleanup,
.reset = drm_atomic_helper_connector_reset,
.atomic_duplicate_state = drm_atomic_helper_connector_duplicate_state,
.atomic_destroy_state = drm_atomic_helper_connector_destroy_state,
};
static const struct drm_connector_helper_funcs
nwl_dsi_connector_helper_funcs = {
.get_modes = nwl_dsi_connector_get_modes,
};
static int nwl_dsi_create_connector(struct drm_device *drm,
struct nwl_mipi_dsi *dsi)
{
struct device *dev = dsi->dev;
int ret;
ret = drm_connector_init(drm, &dsi->connector,
&nwl_dsi_connector_funcs,
DRM_MODE_CONNECTOR_DSI);
if (ret) {
DRM_DEV_ERROR(dev, "Failed to init drm connector: %d\n", ret);
return ret;
}
drm_connector_helper_add(&dsi->connector,
&nwl_dsi_connector_helper_funcs);
dsi->connector.dpms = DRM_MODE_DPMS_OFF;
drm_mode_connector_attach_encoder(&dsi->connector, dsi->bridge.encoder);
ret = drm_panel_attach(dsi->panel, &dsi->connector);
if (ret) {
DRM_DEV_ERROR(dev, "Failed to attach panel: %d\n", ret);
drm_connector_cleanup(&dsi->connector);
return ret;
}
return 0;
}
static int nwl_dsi_attach_next_bridge(struct drm_encoder *encoder,
struct drm_bridge *bridge)
{
int ret = 0;
/* Attach the next bridge in chain */
if (!nwl_dsi_add_bridge(encoder, bridge))
return -EEXIST;
ret = drm_bridge_attach(encoder->dev, bridge);
if (ret)
nwl_dsi_del_bridge(encoder, bridge);
return ret;
}
static int nwl_dsi_bridge_attach(struct drm_bridge *bridge)
{
struct nwl_mipi_dsi *dsi = bridge->driver_private;
struct device *dev = dsi->dev;
struct drm_encoder *encoder = bridge->encoder;
struct device_node *np = dev->of_node;
struct device_node *remote_node, *endpoint;
int ret = 0;
DRM_DEV_DEBUG_DRIVER(dsi->dev, "\n");
if (!encoder) {
DRM_DEV_ERROR(dev, "Parent encoder object not found\n");
return -ENODEV;
}
dsi->host.ops = &nwl_dsi_host_ops;
dsi->host.dev = dev;
ret = mipi_dsi_host_register(&dsi->host);
if (ret < 0) {
dev_err(dev, "failed to register DSI host (%d)\n", ret);
return ret;
}
endpoint = of_graph_get_next_endpoint(np, NULL);
while (endpoint && !dsi->next_bridge) {
remote_node = of_graph_get_remote_port_parent(endpoint);
if (!remote_node) {
DRM_DEV_ERROR(dev, "No endpoint found!\n");
return -ENODEV;
}
dsi->next_bridge = of_drm_find_bridge(remote_node);
ret = nwl_dsi_attach_next_bridge(encoder, dsi->next_bridge);
if (ret)
dsi->next_bridge = NULL;
of_node_put(remote_node);
endpoint = of_graph_get_next_endpoint(np, endpoint);
};
/*
* Create the connector. If we have a bridge, attach it and let the
* bridge create the connector.
*/
if (dsi->panel)
ret = nwl_dsi_create_connector(encoder->dev, dsi);
else if (!dsi->next_bridge)
ret = -ENODEV;
return ret;
}
static void nwl_dsi_bridge_detach(struct drm_bridge *bridge)
{
struct nwl_mipi_dsi *dsi = bridge->driver_private;
DRM_DEV_DEBUG_DRIVER(dsi->dev, "\n");
if (dsi->panel) {
drm_panel_detach(dsi->panel);
drm_connector_cleanup(&dsi->connector);
dsi->panel = NULL;
} else if (dsi->next_bridge) {
drm_bridge_detach(dsi->next_bridge);
nwl_dsi_del_bridge(dsi->next_bridge->encoder, dsi->next_bridge);
dsi->next_bridge = NULL;
}
if (dsi->host.dev)
mipi_dsi_host_unregister(&dsi->host);
}
static void nwl_dsi_bridge_enable(struct drm_bridge *bridge)
{
struct nwl_mipi_dsi *dsi = bridge->driver_private;
struct device *dev = dsi->dev;
int ret;
if (dsi->enabled || (!dsi->panel && !dsi->next_bridge))
return;
if (!dsi->lanes) {
DRM_DEV_ERROR(dev, "Bridge not set up properly!\n");
return;
}
ret = devm_request_irq(dev, dsi->irq,
nwl_dsi_irq_handler, 0, IRQ_NAME, dsi);
if (ret < 0) {
DRM_DEV_ERROR(dev, "Failed to request IRQ: %d (%d)\n",
dsi->irq, ret);
return;
}
nwl_dsi_enable_clocks(dsi, CLK_PHY_REF | CLK_TX_ESC);
nwl_dsi_config_host(dsi);
nwl_dsi_config_dpi(dsi);
phy_init(dsi->phy);
ret = phy_power_on(dsi->phy);
if (ret < 0) {
DRM_DEV_ERROR(dev, "Failed to power on DPHY (%d)\n", ret);
return;
}
nwl_dsi_init_interrupts(dsi);
if (dsi->panel && drm_panel_prepare(dsi->panel)) {
DRM_DEV_ERROR(dev, "Failed to setup panel\n");
return;
}
if (dsi->dsi_mode_flags & MIPI_DSI_CLOCK_NON_CONTINUOUS)
nwl_dsi_write(dsi, CFG_NONCONTINUOUS_CLK, 0x00);
if (dsi->panel && drm_panel_enable(dsi->panel)) {
DRM_DEV_ERROR(dev, "Failed to enable panel\n");
drm_panel_unprepare(dsi->panel);
return;
}
dsi->enabled = true;
}
static void nwl_dsi_bridge_disable(struct drm_bridge *bridge)
{
struct nwl_mipi_dsi *dsi = bridge->driver_private;
struct device *dev = dsi->dev;
if (!dsi->enabled)
return;
if (dsi->panel) {
if (drm_panel_disable(dsi->panel)) {
DRM_DEV_ERROR(dev, "failed to disable panel\n");
return;
}
drm_panel_unprepare(dsi->panel);
}
nwl_dsi_disable_clocks(dsi, CLK_PHY_REF | CLK_TX_ESC);
devm_free_irq(dev, dsi->irq, dsi);
phy_power_off(dsi->phy);
phy_exit(dsi->phy);
dsi->enabled = false;
}
static const struct drm_bridge_funcs nwl_dsi_bridge_funcs = {
.enable = nwl_dsi_bridge_enable,
.disable = nwl_dsi_bridge_disable,
.mode_fixup = nwl_dsi_bridge_mode_fixup,
.mode_set = nwl_dsi_bridge_mode_set,
.attach = nwl_dsi_bridge_attach,
.detach = nwl_dsi_bridge_detach,
};
static int nwl_dsi_probe(struct platform_device *pdev)
{
struct device *dev = &pdev->dev;
struct nwl_mipi_dsi *dsi;
struct clk *clk;
struct resource *res;
int ret;
dsi = devm_kzalloc(dev, sizeof(*dsi), GFP_KERNEL);
if (!dsi)
return -ENOMEM;
dsi->phy = devm_phy_get(dev, "dphy");
if (IS_ERR(dsi->phy)) {
ret = PTR_ERR(dsi->phy);
dev_err(dev, "Could not get PHY (%d)\n", ret);
return ret;
}
clk = devm_clk_get(dev, "phy_ref");
if (IS_ERR(clk)) {
ret = PTR_ERR(clk);
dev_err(dev, "Failed to get phy_ref clock: %d\n", ret);
return ret;
}
dsi->phy_ref.clk = clk;
dsi->phy_ref.rate = clk_get_rate(clk);
dsi->phy_ref.enabled = false;
clk = devm_clk_get(dev, "rx_esc");
if (IS_ERR(clk)) {
ret = PTR_ERR(clk);
dev_err(dev, "Failed to get rx_esc clock: %d\n", ret);
return ret;
}
dsi->rx_esc.clk = clk;
dsi->rx_esc.rate = clk_get_rate(clk);
dsi->rx_esc.enabled = false;
clk = devm_clk_get(dev, "tx_esc");
if (IS_ERR(clk)) {
ret = PTR_ERR(clk);
dev_err(dev, "Failed to get tx_esc clock: %d\n", ret);
return ret;
}
dsi->tx_esc.clk = clk;
dsi->tx_esc.rate = clk_get_rate(clk);
dsi->tx_esc.enabled = false;
/* TX clk rate must be RX clk rate divided by 4 */
if (dsi->tx_esc.rate != (dsi->rx_esc.rate / 4))
dsi->tx_esc.rate = dsi->rx_esc.rate / 4;
dsi->enabled = false;
res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
if (!res)
return -EBUSY;
dsi->base = devm_ioremap_resource(dev, res);
if (IS_ERR(dsi->base))
return PTR_ERR(dsi->base);
dsi->irq = platform_get_irq(pdev, 0);
if (dsi->irq < 0) {
DRM_DEV_ERROR(dev, "Failed to get device IRQ!\n");
return -EINVAL;
}
dsi->dev = dev;
platform_set_drvdata(pdev, dsi);
dsi->bridge.driver_private = dsi;
dsi->bridge.funcs = &nwl_dsi_bridge_funcs;
dsi->bridge.of_node = dev->of_node;
ret = drm_bridge_add(&dsi->bridge);
if (ret < 0)
dev_err(dev, "Failed to add nwl-dsi bridge (%d)\n", ret);
return ret;
}
static int nwl_dsi_remove(struct platform_device *pdev)
{
struct nwl_mipi_dsi *dsi = platform_get_drvdata(pdev);
drm_bridge_remove(&dsi->bridge);
return 0;
}
static const struct of_device_id nwl_dsi_dt_ids[] = {
{ .compatible = "nwl,mipi-dsi" },
{ /* sentinel */ }
};
MODULE_DEVICE_TABLE(of, nwl_dsi_dt_ids);
static struct platform_driver imx_nwl_dsi_driver = {
.probe = nwl_dsi_probe,
.remove = nwl_dsi_remove,
.driver = {
.of_match_table = nwl_dsi_dt_ids,
.name = "nwl-mipi-dsi",
},
};
module_platform_driver(imx_nwl_dsi_driver);
MODULE_AUTHOR("NXP Semiconductor");
MODULE_DESCRIPTION("NWL MIPI-DSI transmitter driver");
MODULE_LICENSE("GPL");
MODULE_ALIAS("platform:nwl-dsi");