blob: a6a7fa0d76790bbd4dc22a66d72b92c1a1e4e374 [file] [log] [blame]
/*
* Copyright (c) 2015, NVIDIA CORPORATION. All rights reserved.
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
* FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
* DEALINGS IN THE SOFTWARE.
*/
/*
* GK20A does not have dedicated video memory, and to accurately represent this
* fact Nouveau will not create a RAM device for it. Therefore its instmem
* implementation must be done directly on top of system memory, while
* preserving coherency for read and write operations.
*
* Instmem can be allocated through two means:
* 1) If an IOMMU unit has been probed, the IOMMU API is used to make memory
* pages contiguous to the GPU. This is the preferred way.
* 2) If no IOMMU unit is probed, the DMA API is used to allocate physically
* contiguous memory.
*
* In both cases CPU read and writes are performed by creating a write-combined
* mapping. The GPU L2 cache must thus be flushed/invalidated when required. To
* be conservative we do this every time we acquire or release an instobj, but
* ideally L2 management should be handled at a higher level.
*
* To improve performance, CPU mappings are not removed upon instobj release.
* Instead they are placed into a LRU list to be recycled when the mapped space
* goes beyond a certain threshold. At the moment this limit is 1MB.
*/
#include "priv.h"
#include <core/memory.h>
#include <core/mm.h>
#include <core/tegra.h>
#include <subdev/fb.h>
#include <subdev/ltc.h>
struct gk20a_instobj {
struct nvkm_memory memory;
struct nvkm_mem mem;
struct gk20a_instmem *imem;
/* CPU mapping */
u32 *vaddr;
};
#define gk20a_instobj(p) container_of((p), struct gk20a_instobj, memory)
/*
* Used for objects allocated using the DMA API
*/
struct gk20a_instobj_dma {
struct gk20a_instobj base;
dma_addr_t handle;
struct nvkm_mm_node r;
};
#define gk20a_instobj_dma(p) \
container_of(gk20a_instobj(p), struct gk20a_instobj_dma, base)
/*
* Used for objects flattened using the IOMMU API
*/
struct gk20a_instobj_iommu {
struct gk20a_instobj base;
/* to link into gk20a_instmem::vaddr_lru */
struct list_head vaddr_node;
/* how many clients are using vaddr? */
u32 use_cpt;
/* will point to the higher half of pages */
dma_addr_t *dma_addrs;
/* array of base.mem->size pages (+ dma_addr_ts) */
struct page *pages[];
};
#define gk20a_instobj_iommu(p) \
container_of(gk20a_instobj(p), struct gk20a_instobj_iommu, base)
struct gk20a_instmem {
struct nvkm_instmem base;
/* protects vaddr_* and gk20a_instobj::vaddr* */
spinlock_t lock;
/* CPU mappings LRU */
unsigned int vaddr_use;
unsigned int vaddr_max;
struct list_head vaddr_lru;
/* Only used if IOMMU if present */
struct mutex *mm_mutex;
struct nvkm_mm *mm;
struct iommu_domain *domain;
unsigned long iommu_pgshift;
u16 iommu_bit;
/* Only used by DMA API */
unsigned long attrs;
};
#define gk20a_instmem(p) container_of((p), struct gk20a_instmem, base)
static enum nvkm_memory_target
gk20a_instobj_target(struct nvkm_memory *memory)
{
return NVKM_MEM_TARGET_HOST;
}
static u64
gk20a_instobj_addr(struct nvkm_memory *memory)
{
return gk20a_instobj(memory)->mem.offset;
}
static u64
gk20a_instobj_size(struct nvkm_memory *memory)
{
return (u64)gk20a_instobj(memory)->mem.size << 12;
}
/*
* Recycle the vaddr of obj. Must be called with gk20a_instmem::lock held.
*/
static void
gk20a_instobj_iommu_recycle_vaddr(struct gk20a_instobj_iommu *obj)
{
struct gk20a_instmem *imem = obj->base.imem;
/* there should not be any user left... */
WARN_ON(obj->use_cpt);
list_del(&obj->vaddr_node);
vunmap(obj->base.vaddr);
obj->base.vaddr = NULL;
imem->vaddr_use -= nvkm_memory_size(&obj->base.memory);
nvkm_debug(&imem->base.subdev, "vaddr used: %x/%x\n", imem->vaddr_use,
imem->vaddr_max);
}
/*
* Must be called while holding gk20a_instmem::lock
*/
static void
gk20a_instmem_vaddr_gc(struct gk20a_instmem *imem, const u64 size)
{
while (imem->vaddr_use + size > imem->vaddr_max) {
/* no candidate that can be unmapped, abort... */
if (list_empty(&imem->vaddr_lru))
break;
gk20a_instobj_iommu_recycle_vaddr(
list_first_entry(&imem->vaddr_lru,
struct gk20a_instobj_iommu, vaddr_node));
}
}
static void __iomem *
gk20a_instobj_acquire_dma(struct nvkm_memory *memory)
{
struct gk20a_instobj *node = gk20a_instobj(memory);
struct gk20a_instmem *imem = node->imem;
struct nvkm_ltc *ltc = imem->base.subdev.device->ltc;
nvkm_ltc_flush(ltc);
return node->vaddr;
}
static void __iomem *
gk20a_instobj_acquire_iommu(struct nvkm_memory *memory)
{
struct gk20a_instobj_iommu *node = gk20a_instobj_iommu(memory);
struct gk20a_instmem *imem = node->base.imem;
struct nvkm_ltc *ltc = imem->base.subdev.device->ltc;
const u64 size = nvkm_memory_size(memory);
unsigned long flags;
nvkm_ltc_flush(ltc);
spin_lock_irqsave(&imem->lock, flags);
if (node->base.vaddr) {
if (!node->use_cpt) {
/* remove from LRU list since mapping in use again */
list_del(&node->vaddr_node);
}
goto out;
}
/* try to free some address space if we reached the limit */
gk20a_instmem_vaddr_gc(imem, size);
/* map the pages */
node->base.vaddr = vmap(node->pages, size >> PAGE_SHIFT, VM_MAP,
pgprot_writecombine(PAGE_KERNEL));
if (!node->base.vaddr) {
nvkm_error(&imem->base.subdev, "cannot map instobj - "
"this is not going to end well...\n");
goto out;
}
imem->vaddr_use += size;
nvkm_debug(&imem->base.subdev, "vaddr used: %x/%x\n",
imem->vaddr_use, imem->vaddr_max);
out:
node->use_cpt++;
spin_unlock_irqrestore(&imem->lock, flags);
return node->base.vaddr;
}
static void
gk20a_instobj_release_dma(struct nvkm_memory *memory)
{
struct gk20a_instobj *node = gk20a_instobj(memory);
struct gk20a_instmem *imem = node->imem;
struct nvkm_ltc *ltc = imem->base.subdev.device->ltc;
/* in case we got a write-combined mapping */
wmb();
nvkm_ltc_invalidate(ltc);
}
static void
gk20a_instobj_release_iommu(struct nvkm_memory *memory)
{
struct gk20a_instobj_iommu *node = gk20a_instobj_iommu(memory);
struct gk20a_instmem *imem = node->base.imem;
struct nvkm_ltc *ltc = imem->base.subdev.device->ltc;
unsigned long flags;
spin_lock_irqsave(&imem->lock, flags);
/* we should at least have one user to release... */
if (WARN_ON(node->use_cpt == 0))
goto out;
/* add unused objs to the LRU list to recycle their mapping */
if (--node->use_cpt == 0)
list_add_tail(&node->vaddr_node, &imem->vaddr_lru);
out:
spin_unlock_irqrestore(&imem->lock, flags);
wmb();
nvkm_ltc_invalidate(ltc);
}
static u32
gk20a_instobj_rd32(struct nvkm_memory *memory, u64 offset)
{
struct gk20a_instobj *node = gk20a_instobj(memory);
return node->vaddr[offset / 4];
}
static void
gk20a_instobj_wr32(struct nvkm_memory *memory, u64 offset, u32 data)
{
struct gk20a_instobj *node = gk20a_instobj(memory);
node->vaddr[offset / 4] = data;
}
static void
gk20a_instobj_map(struct nvkm_memory *memory, struct nvkm_vma *vma, u64 offset)
{
struct gk20a_instobj *node = gk20a_instobj(memory);
nvkm_vm_map_at(vma, offset, &node->mem);
}
static void *
gk20a_instobj_dtor_dma(struct nvkm_memory *memory)
{
struct gk20a_instobj_dma *node = gk20a_instobj_dma(memory);
struct gk20a_instmem *imem = node->base.imem;
struct device *dev = imem->base.subdev.device->dev;
if (unlikely(!node->base.vaddr))
goto out;
dma_free_attrs(dev, node->base.mem.size << PAGE_SHIFT, node->base.vaddr,
node->handle, imem->attrs);
out:
return node;
}
static void *
gk20a_instobj_dtor_iommu(struct nvkm_memory *memory)
{
struct gk20a_instobj_iommu *node = gk20a_instobj_iommu(memory);
struct gk20a_instmem *imem = node->base.imem;
struct device *dev = imem->base.subdev.device->dev;
struct nvkm_mm_node *r;
unsigned long flags;
int i;
if (unlikely(list_empty(&node->base.mem.regions)))
goto out;
spin_lock_irqsave(&imem->lock, flags);
/* vaddr has already been recycled */
if (node->base.vaddr)
gk20a_instobj_iommu_recycle_vaddr(node);
spin_unlock_irqrestore(&imem->lock, flags);
r = list_first_entry(&node->base.mem.regions, struct nvkm_mm_node,
rl_entry);
/* clear IOMMU bit to unmap pages */
r->offset &= ~BIT(imem->iommu_bit - imem->iommu_pgshift);
/* Unmap pages from GPU address space and free them */
for (i = 0; i < node->base.mem.size; i++) {
iommu_unmap(imem->domain,
(r->offset + i) << imem->iommu_pgshift, PAGE_SIZE);
dma_unmap_page(dev, node->dma_addrs[i], PAGE_SIZE,
DMA_BIDIRECTIONAL);
__free_page(node->pages[i]);
}
/* Release area from GPU address space */
mutex_lock(imem->mm_mutex);
nvkm_mm_free(imem->mm, &r);
mutex_unlock(imem->mm_mutex);
out:
return node;
}
static const struct nvkm_memory_func
gk20a_instobj_func_dma = {
.dtor = gk20a_instobj_dtor_dma,
.target = gk20a_instobj_target,
.addr = gk20a_instobj_addr,
.size = gk20a_instobj_size,
.acquire = gk20a_instobj_acquire_dma,
.release = gk20a_instobj_release_dma,
.rd32 = gk20a_instobj_rd32,
.wr32 = gk20a_instobj_wr32,
.map = gk20a_instobj_map,
};
static const struct nvkm_memory_func
gk20a_instobj_func_iommu = {
.dtor = gk20a_instobj_dtor_iommu,
.target = gk20a_instobj_target,
.addr = gk20a_instobj_addr,
.size = gk20a_instobj_size,
.acquire = gk20a_instobj_acquire_iommu,
.release = gk20a_instobj_release_iommu,
.rd32 = gk20a_instobj_rd32,
.wr32 = gk20a_instobj_wr32,
.map = gk20a_instobj_map,
};
static int
gk20a_instobj_ctor_dma(struct gk20a_instmem *imem, u32 npages, u32 align,
struct gk20a_instobj **_node)
{
struct gk20a_instobj_dma *node;
struct nvkm_subdev *subdev = &imem->base.subdev;
struct device *dev = subdev->device->dev;
if (!(node = kzalloc(sizeof(*node), GFP_KERNEL)))
return -ENOMEM;
*_node = &node->base;
nvkm_memory_ctor(&gk20a_instobj_func_dma, &node->base.memory);
node->base.vaddr = dma_alloc_attrs(dev, npages << PAGE_SHIFT,
&node->handle, GFP_KERNEL,
imem->attrs);
if (!node->base.vaddr) {
nvkm_error(subdev, "cannot allocate DMA memory\n");
return -ENOMEM;
}
/* alignment check */
if (unlikely(node->handle & (align - 1)))
nvkm_warn(subdev,
"memory not aligned as requested: %pad (0x%x)\n",
&node->handle, align);
/* present memory for being mapped using small pages */
node->r.type = 12;
node->r.offset = node->handle >> 12;
node->r.length = (npages << PAGE_SHIFT) >> 12;
node->base.mem.offset = node->handle;
INIT_LIST_HEAD(&node->base.mem.regions);
list_add_tail(&node->r.rl_entry, &node->base.mem.regions);
return 0;
}
static int
gk20a_instobj_ctor_iommu(struct gk20a_instmem *imem, u32 npages, u32 align,
struct gk20a_instobj **_node)
{
struct gk20a_instobj_iommu *node;
struct nvkm_subdev *subdev = &imem->base.subdev;
struct device *dev = subdev->device->dev;
struct nvkm_mm_node *r;
int ret;
int i;
/*
* despite their variable size, instmem allocations are small enough
* (< 1 page) to be handled by kzalloc
*/
if (!(node = kzalloc(sizeof(*node) + ((sizeof(node->pages[0]) +
sizeof(*node->dma_addrs)) * npages), GFP_KERNEL)))
return -ENOMEM;
*_node = &node->base;
node->dma_addrs = (void *)(node->pages + npages);
nvkm_memory_ctor(&gk20a_instobj_func_iommu, &node->base.memory);
/* Allocate backing memory */
for (i = 0; i < npages; i++) {
struct page *p = alloc_page(GFP_KERNEL);
dma_addr_t dma_adr;
if (p == NULL) {
ret = -ENOMEM;
goto free_pages;
}
node->pages[i] = p;
dma_adr = dma_map_page(dev, p, 0, PAGE_SIZE, DMA_BIDIRECTIONAL);
if (dma_mapping_error(dev, dma_adr)) {
nvkm_error(subdev, "DMA mapping error!\n");
ret = -ENOMEM;
goto free_pages;
}
node->dma_addrs[i] = dma_adr;
}
mutex_lock(imem->mm_mutex);
/* Reserve area from GPU address space */
ret = nvkm_mm_head(imem->mm, 0, 1, npages, npages,
align >> imem->iommu_pgshift, &r);
mutex_unlock(imem->mm_mutex);
if (ret) {
nvkm_error(subdev, "IOMMU space is full!\n");
goto free_pages;
}
/* Map into GPU address space */
for (i = 0; i < npages; i++) {
u32 offset = (r->offset + i) << imem->iommu_pgshift;
ret = iommu_map(imem->domain, offset, node->dma_addrs[i],
PAGE_SIZE, IOMMU_READ | IOMMU_WRITE);
if (ret < 0) {
nvkm_error(subdev, "IOMMU mapping failure: %d\n", ret);
while (i-- > 0) {
offset -= PAGE_SIZE;
iommu_unmap(imem->domain, offset, PAGE_SIZE);
}
goto release_area;
}
}
/* IOMMU bit tells that an address is to be resolved through the IOMMU */
r->offset |= BIT(imem->iommu_bit - imem->iommu_pgshift);
node->base.mem.offset = ((u64)r->offset) << imem->iommu_pgshift;
INIT_LIST_HEAD(&node->base.mem.regions);
list_add_tail(&r->rl_entry, &node->base.mem.regions);
return 0;
release_area:
mutex_lock(imem->mm_mutex);
nvkm_mm_free(imem->mm, &r);
mutex_unlock(imem->mm_mutex);
free_pages:
for (i = 0; i < npages && node->pages[i] != NULL; i++) {
dma_addr_t dma_addr = node->dma_addrs[i];
if (dma_addr)
dma_unmap_page(dev, dma_addr, PAGE_SIZE,
DMA_BIDIRECTIONAL);
__free_page(node->pages[i]);
}
return ret;
}
static int
gk20a_instobj_new(struct nvkm_instmem *base, u32 size, u32 align, bool zero,
struct nvkm_memory **pmemory)
{
struct gk20a_instmem *imem = gk20a_instmem(base);
struct nvkm_subdev *subdev = &imem->base.subdev;
struct gk20a_instobj *node = NULL;
int ret;
nvkm_debug(subdev, "%s (%s): size: %x align: %x\n", __func__,
imem->domain ? "IOMMU" : "DMA", size, align);
/* Round size and align to page bounds */
size = max(roundup(size, PAGE_SIZE), PAGE_SIZE);
align = max(roundup(align, PAGE_SIZE), PAGE_SIZE);
if (imem->domain)
ret = gk20a_instobj_ctor_iommu(imem, size >> PAGE_SHIFT,
align, &node);
else
ret = gk20a_instobj_ctor_dma(imem, size >> PAGE_SHIFT,
align, &node);
*pmemory = node ? &node->memory : NULL;
if (ret)
return ret;
node->imem = imem;
/* present memory for being mapped using small pages */
node->mem.size = size >> 12;
node->mem.memtype = 0;
node->mem.page_shift = 12;
nvkm_debug(subdev, "alloc size: 0x%x, align: 0x%x, gaddr: 0x%llx\n",
size, align, node->mem.offset);
return 0;
}
static void *
gk20a_instmem_dtor(struct nvkm_instmem *base)
{
struct gk20a_instmem *imem = gk20a_instmem(base);
/* perform some sanity checks... */
if (!list_empty(&imem->vaddr_lru))
nvkm_warn(&base->subdev, "instobj LRU not empty!\n");
if (imem->vaddr_use != 0)
nvkm_warn(&base->subdev, "instobj vmap area not empty! "
"0x%x bytes still mapped\n", imem->vaddr_use);
return imem;
}
static const struct nvkm_instmem_func
gk20a_instmem = {
.dtor = gk20a_instmem_dtor,
.memory_new = gk20a_instobj_new,
.persistent = true,
.zero = false,
};
int
gk20a_instmem_new(struct nvkm_device *device, int index,
struct nvkm_instmem **pimem)
{
struct nvkm_device_tegra *tdev = device->func->tegra(device);
struct gk20a_instmem *imem;
if (!(imem = kzalloc(sizeof(*imem), GFP_KERNEL)))
return -ENOMEM;
nvkm_instmem_ctor(&gk20a_instmem, device, index, &imem->base);
spin_lock_init(&imem->lock);
*pimem = &imem->base;
/* do not allow more than 1MB of CPU-mapped instmem */
imem->vaddr_use = 0;
imem->vaddr_max = 0x100000;
INIT_LIST_HEAD(&imem->vaddr_lru);
if (tdev->iommu.domain) {
imem->mm_mutex = &tdev->iommu.mutex;
imem->mm = &tdev->iommu.mm;
imem->domain = tdev->iommu.domain;
imem->iommu_pgshift = tdev->iommu.pgshift;
imem->iommu_bit = tdev->func->iommu_bit;
nvkm_info(&imem->base.subdev, "using IOMMU\n");
} else {
imem->attrs = DMA_ATTR_NON_CONSISTENT |
DMA_ATTR_WEAK_ORDERING |
DMA_ATTR_WRITE_COMBINE;
nvkm_info(&imem->base.subdev, "using DMA API\n");
}
return 0;
}