blob: b05e561cb678cac4826a07e05a40eb5c18d8431a [file] [log] [blame]
/*
* Synaptics DSX touchscreen driver
*
* Copyright (C) 2012-2015 Synaptics Incorporated. All rights reserved.
*
* Copyright (C) 2012 Alexandra Chin <alexandra.chin@tw.synaptics.com>
* Copyright (C) 2012 Scott Lin <scott.lin@tw.synaptics.com>
* Copyright 2018 NXP
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* INFORMATION CONTAINED IN THIS DOCUMENT IS PROVIDED "AS-IS," AND SYNAPTICS
* EXPRESSLY DISCLAIMS ALL EXPRESS AND IMPLIED WARRANTIES, INCLUDING ANY
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE,
* AND ANY WARRANTIES OF NON-INFRINGEMENT OF ANY INTELLECTUAL PROPERTY RIGHTS.
* IN NO EVENT SHALL SYNAPTICS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
* SPECIAL, PUNITIVE, OR CONSEQUENTIAL DAMAGES ARISING OUT OF OR IN CONNECTION
* WITH THE USE OF THE INFORMATION CONTAINED IN THIS DOCUMENT, HOWEVER CAUSED
* AND BASED ON ANY THEORY OF LIABILITY, WHETHER IN AN ACTION OF CONTRACT,
* NEGLIGENCE OR OTHER TORTIOUS ACTION, AND EVEN IF SYNAPTICS WAS ADVISED OF
* THE POSSIBILITY OF SUCH DAMAGE. IF A TRIBUNAL OF COMPETENT JURISDICTION DOES
* NOT PERMIT THE DISCLAIMER OF DIRECT DAMAGES OR ANY OTHER DAMAGES, SYNAPTICS'
* TOTAL CUMULATIVE LIABILITY TO ANY PARTY SHALL NOT EXCEED ONE HUNDRED U.S.
* DOLLARS.
*/
#include <linux/kernel.h>
#include <linux/module.h>
#include <linux/slab.h>
#include <linux/i2c.h>
#include <linux/interrupt.h>
#include <linux/delay.h>
#include <linux/input.h>
#include <linux/stringify.h>
#include <linux/gpio.h>
#include <linux/regulator/consumer.h>
#include <linux/dma-mapping.h>
#include <linux/kthread.h>
#include <linux/device.h>
#include <linux/fs.h>
#include <linux/gpio.h>
#include "synaptics_dsx_i2c.h"
#include "synaptics_dsx.h"
#include <linux/of.h>
#include <linux/of_irq.h>
#include <linux/of_address.h>
#include <linux/of_device.h>
#include <linux/of_gpio.h>
#include <linux/input/mt.h>
#define DRIVER_NAME "synaptics_dsx_i2c"
#define INPUT_PHYS_NAME "synaptics_dsx_i2c/input0"
#define TYPE_B_PROTOCOL
#define UBL_I2C_ADDR 0x2c
#define SENSOR_MAX_X 1080
#define SENSOR_MAX_Y 1920
#define WAKEUP_GESTURE false
#define NO_0D_WHILE_2D
#define REPORT_2D_W
#define F12_DATA_15_WORKAROUND
#define RPT_TYPE (1 << 0)
#define RPT_X_LSB (1 << 1)
#define RPT_X_MSB (1 << 2)
#define RPT_Y_LSB (1 << 3)
#define RPT_Y_MSB (1 << 4)
#define RPT_Z (1 << 5)
#define RPT_WX (1 << 6)
#define RPT_WY (1 << 7)
#define RPT_DEFAULT (RPT_TYPE | RPT_X_LSB | RPT_X_MSB | RPT_Y_LSB | RPT_Y_MSB)
#define attrify(propname) (&dev_attr_##propname.attr)
#define EXP_FN_WORK_DELAY_MS 1000 /* ms */
#define SYN_I2C_RETRY_TIMES 5
#define MAX_F11_TOUCH_WIDTH 15
#define CHECK_STATUS_TIMEOUT_MS 100
#define DELAY_BOOT_READY 200
#define DELAY_RESET_LOW 20
#define DELAY_UI_READY 200
#define F01_STD_QUERY_LEN 21
#define F01_BUID_ID_OFFSET 18
#define F11_STD_QUERY_LEN 9
#define F11_STD_CTRL_LEN 10
#define F11_STD_DATA_LEN 12
#define STATUS_NO_ERROR 0x00
#define STATUS_RESET_OCCURRED 0x01
#define STATUS_INVALID_CONFIG 0x02
#define STATUS_DEVICE_FAILURE 0x03
#define STATUS_CONFIG_CRC_FAILURE 0x04
#define STATUS_FIRMWARE_CRC_FAILURE 0x05
#define STATUS_CRC_IN_PROGRESS 0x06
#define NORMAL_OPERATION (0 << 0)
#define SENSOR_SLEEP (1 << 0)
#define NO_SLEEP_OFF (0 << 2)
#define NO_SLEEP_ON (1 << 2)
#define CONFIGURED (1 << 7)
#define F11_CONTINUOUS_MODE 0x00
#define F11_WAKEUP_GESTURE_MODE 0x04
#define F12_CONTINUOUS_MODE 0x00
#define F12_WAKEUP_GESTURE_MODE 0x02
#define F12_UDG_DETECT 0x0f
#ifdef USE_I2C_DMA
#include <linux/dma-mapping.h>
static unsigned char *wDMABuf_va;
static dma_addr_t wDMABuf_pa;
#endif
static struct task_struct *thread;
static DECLARE_WAIT_QUEUE_HEAD(waiter);
int tpd_halt;
static int tpd_flag;
DEFINE_MUTEX(rmi4_report_mutex);
static struct device *g_dev;
/* for 0D button */
static unsigned int cap_button_codes[] = {KEY_APPSELECT, KEY_HOMEPAGE, KEY_BACK};
static struct synaptics_dsx_cap_button_map cap_button_map = {
.nbuttons = ARRAY_SIZE(cap_button_codes),
.map = cap_button_codes,
};
#ifdef CONFIG_OF_TOUCH
unsigned int touch_irq;
#endif
#ifdef CONFIG_OF_TOUCH
static irqreturn_t tpd_eint_handler(unsigned int irq, struct irq_desc *desc);
#else
static void tpd_eint_handler(void);
#endif
static int touch_event_handler(void *data);
static int synaptics_rmi4_i2c_read(struct synaptics_rmi4_data *rmi4_data,
unsigned short addr, unsigned char *data,
unsigned short length);
static int synaptics_rmi4_i2c_write(struct synaptics_rmi4_data *rmi4_data,
unsigned short addr, unsigned char *data,
unsigned short length);
static int synaptics_rmi4_f12_set_enables(struct synaptics_rmi4_data *rmi4_data,
unsigned short ctrl28);
static int synaptics_rmi4_free_fingers(struct synaptics_rmi4_data *rmi4_data);
static int synaptics_rmi4_reinit_device(struct synaptics_rmi4_data *rmi4_data);
static int synaptics_rmi4_reset_device(struct synaptics_rmi4_data *rmi4_data);
static int __maybe_unused synaptics_rmi4_suspend(struct device *dev);
static int __maybe_unused synaptics_rmi4_resume(struct device *dev);
static ssize_t synaptics_rmi4_f01_reset_store(struct device *dev,
struct device_attribute *attr, const char *buf, size_t count);
static ssize_t synaptics_rmi4_f01_productinfo_show(struct device *dev,
struct device_attribute *attr, char *buf);
static ssize_t synaptics_rmi4_f01_buildid_show(struct device *dev,
struct device_attribute *attr, char *buf);
static ssize_t synaptics_rmi4_f01_flashprog_show(struct device *dev,
struct device_attribute *attr, char *buf);
static ssize_t synaptics_rmi4_0dbutton_show(struct device *dev,
struct device_attribute *attr, char *buf);
static ssize_t synaptics_rmi4_0dbutton_store(struct device *dev,
struct device_attribute *attr, const char *buf, size_t count);
static ssize_t synaptics_rmi4_suspend_store(struct device *dev,
struct device_attribute *attr, const char *buf, size_t count);
static ssize_t synaptics_rmi4_wake_gesture_show(struct device *dev,
struct device_attribute *attr, char *buf);
static ssize_t synaptics_rmi4_wake_gesture_store(struct device *dev,
struct device_attribute *attr, const char *buf, size_t count);
struct synaptics_rmi4_f01_device_status {
union {
struct {
unsigned char status_code:4;
unsigned char reserved:2;
unsigned char flash_prog:1;
unsigned char unconfigured:1;
} __packed;
unsigned char data[1];
};
};
struct synaptics_rmi4_f11_query_0_5 {
union {
struct {
/* query 0 */
unsigned char f11_query0_b0__2:3;
unsigned char has_query_9:1;
unsigned char has_query_11:1;
unsigned char has_query_12:1;
unsigned char has_query_27:1;
unsigned char has_query_28:1;
/* query 1 */
unsigned char num_of_fingers:3;
unsigned char has_rel:1;
unsigned char has_abs:1;
unsigned char has_gestures:1;
unsigned char has_sensitibity_adjust:1;
unsigned char f11_query1_b7:1;
/* query 2 */
unsigned char num_of_x_electrodes;
/* query 3 */
unsigned char num_of_y_electrodes;
/* query 4 */
unsigned char max_electrodes:7;
unsigned char f11_query4_b7:1;
/* query 5 */
unsigned char abs_data_size:2;
unsigned char has_anchored_finger:1;
unsigned char has_adj_hyst:1;
unsigned char has_dribble:1;
unsigned char has_bending_correction:1;
unsigned char has_large_object_suppression:1;
unsigned char has_jitter_filter:1;
} __packed;
unsigned char data[6];
};
};
struct synaptics_rmi4_f11_query_7_8 {
union {
struct {
/* query 7 */
unsigned char has_single_tap:1;
unsigned char has_tap_and_hold:1;
unsigned char has_double_tap:1;
unsigned char has_early_tap:1;
unsigned char has_flick:1;
unsigned char has_press:1;
unsigned char has_pinch:1;
unsigned char has_chiral_scroll:1;
/* query 8 */
unsigned char has_palm_detect:1;
unsigned char has_rotate:1;
unsigned char has_touch_shapes:1;
unsigned char has_scroll_zones:1;
unsigned char individual_scroll_zones:1;
unsigned char has_multi_finger_scroll:1;
unsigned char has_multi_finger_scroll_edge_motion:1;
unsigned char has_multi_finger_scroll_inertia:1;
} __packed;
unsigned char data[2];
};
};
struct synaptics_rmi4_f11_query_9 {
union {
struct {
unsigned char has_pen:1;
unsigned char has_proximity:1;
unsigned char has_large_object_sensitivity:1;
unsigned char has_suppress_on_large_object_detect:1;
unsigned char has_two_pen_thresholds:1;
unsigned char has_contact_geometry:1;
unsigned char has_pen_hover_discrimination:1;
unsigned char has_pen_hover_and_edge_filters:1;
} __packed;
unsigned char data[1];
};
};
struct synaptics_rmi4_f11_query_12 {
union {
struct {
unsigned char has_small_object_detection:1;
unsigned char has_small_object_detection_tuning:1;
unsigned char has_8bit_w:1;
unsigned char has_2d_adjustable_mapping:1;
unsigned char has_general_information_2:1;
unsigned char has_physical_properties:1;
unsigned char has_finger_limit:1;
unsigned char has_linear_cofficient_2:1;
} __packed;
unsigned char data[1];
};
};
struct synaptics_rmi4_f11_query_27 {
union {
struct {
unsigned char f11_query27_b0:1;
unsigned char has_pen_position_correction:1;
unsigned char has_pen_jitter_filter_coefficient:1;
unsigned char has_group_decomposition:1;
unsigned char has_wakeup_gesture:1;
unsigned char has_small_finger_correction:1;
unsigned char has_data_37:1;
unsigned char f11_query27_b7:1;
} __packed;
unsigned char data[1];
};
};
struct synaptics_rmi4_f11_ctrl_6_9 {
union {
struct {
unsigned char sensor_max_x_pos_7_0;
unsigned char sensor_max_x_pos_11_8:4;
unsigned char f11_ctrl7_b4__7:4;
unsigned char sensor_max_y_pos_7_0;
unsigned char sensor_max_y_pos_11_8:4;
unsigned char f11_ctrl9_b4__7:4;
} __packed;
unsigned char data[4];
};
};
struct synaptics_rmi4_f11_data_1_5 {
union {
struct {
unsigned char x_position_11_4;
unsigned char y_position_11_4;
unsigned char x_position_3_0:4;
unsigned char y_position_3_0:4;
unsigned char wx:4;
unsigned char wy:4;
unsigned char z;
} __packed;
unsigned char data[5];
};
};
struct synaptics_rmi4_f12_query_5 {
union {
struct {
unsigned char size_of_query6;
struct {
unsigned char ctrl0_is_present:1;
unsigned char ctrl1_is_present:1;
unsigned char ctrl2_is_present:1;
unsigned char ctrl3_is_present:1;
unsigned char ctrl4_is_present:1;
unsigned char ctrl5_is_present:1;
unsigned char ctrl6_is_present:1;
unsigned char ctrl7_is_present:1;
} __packed;
struct {
unsigned char ctrl8_is_present:1;
unsigned char ctrl9_is_present:1;
unsigned char ctrl10_is_present:1;
unsigned char ctrl11_is_present:1;
unsigned char ctrl12_is_present:1;
unsigned char ctrl13_is_present:1;
unsigned char ctrl14_is_present:1;
unsigned char ctrl15_is_present:1;
} __packed;
struct {
unsigned char ctrl16_is_present:1;
unsigned char ctrl17_is_present:1;
unsigned char ctrl18_is_present:1;
unsigned char ctrl19_is_present:1;
unsigned char ctrl20_is_present:1;
unsigned char ctrl21_is_present:1;
unsigned char ctrl22_is_present:1;
unsigned char ctrl23_is_present:1;
} __packed;
struct {
unsigned char ctrl24_is_present:1;
unsigned char ctrl25_is_present:1;
unsigned char ctrl26_is_present:1;
unsigned char ctrl27_is_present:1;
unsigned char ctrl28_is_present:1;
unsigned char ctrl29_is_present:1;
unsigned char ctrl30_is_present:1;
unsigned char ctrl31_is_present:1;
} __packed;
};
unsigned char data[5];
};
};
struct synaptics_rmi4_f12_query_8 {
union {
struct {
unsigned char size_of_query9;
struct {
unsigned char data0_is_present:1;
unsigned char data1_is_present:1;
unsigned char data2_is_present:1;
unsigned char data3_is_present:1;
unsigned char data4_is_present:1;
unsigned char data5_is_present:1;
unsigned char data6_is_present:1;
unsigned char data7_is_present:1;
} __packed;
struct {
unsigned char data8_is_present:1;
unsigned char data9_is_present:1;
unsigned char data10_is_present:1;
unsigned char data11_is_present:1;
unsigned char data12_is_present:1;
unsigned char data13_is_present:1;
unsigned char data14_is_present:1;
unsigned char data15_is_present:1;
} __packed;
};
unsigned char data[3];
};
};
struct synaptics_rmi4_f12_ctrl_8 {
union {
struct {
unsigned char max_x_coord_lsb;
unsigned char max_x_coord_msb;
unsigned char max_y_coord_lsb;
unsigned char max_y_coord_msb;
unsigned char rx_pitch_lsb;
unsigned char rx_pitch_msb;
unsigned char tx_pitch_lsb;
unsigned char tx_pitch_msb;
unsigned char low_rx_clip;
unsigned char high_rx_clip;
unsigned char low_tx_clip;
unsigned char high_tx_clip;
unsigned char num_of_rx;
unsigned char num_of_tx;
};
unsigned char data[14];
};
};
struct synaptics_rmi4_f12_ctrl_23 {
union {
struct {
unsigned char obj_type_enable;
unsigned char max_reported_objects;
};
unsigned char data[2];
};
};
struct synaptics_rmi4_f12_finger_data {
unsigned char object_type_and_status;
unsigned char x_lsb;
unsigned char x_msb;
unsigned char y_lsb;
unsigned char y_msb;
#ifdef REPORT_2D_Z
unsigned char z;
#endif
#ifdef REPORT_2D_W
unsigned char wx;
unsigned char wy;
#endif
};
struct synaptics_rmi4_f1a_query {
union {
struct {
unsigned char max_button_count:3;
unsigned char reserved:5;
unsigned char has_general_control:1;
unsigned char has_interrupt_enable:1;
unsigned char has_multibutton_select:1;
unsigned char has_tx_rx_map:1;
unsigned char has_perbutton_threshold:1;
unsigned char has_release_threshold:1;
unsigned char has_strongestbtn_hysteresis:1;
unsigned char has_filter_strength:1;
} __packed;
unsigned char data[2];
};
};
struct synaptics_rmi4_f1a_control_0 {
union {
struct {
unsigned char multibutton_report:2;
unsigned char filter_mode:2;
unsigned char reserved:4;
} __packed;
unsigned char data[1];
};
};
struct synaptics_rmi4_f1a_control {
struct synaptics_rmi4_f1a_control_0 general_control;
unsigned char button_int_enable;
unsigned char multi_button;
unsigned char *txrx_map;
unsigned char *button_threshold;
unsigned char button_release_threshold;
unsigned char strongest_button_hysteresis;
unsigned char filter_strength;
};
struct synaptics_rmi4_f1a_handle {
int button_bitmask_size;
unsigned int max_count;
unsigned char valid_button_count;
unsigned char *button_data_buffer;
unsigned int *button_map;
struct synaptics_rmi4_f1a_query button_query;
struct synaptics_rmi4_f1a_control button_control;
};
struct synaptics_rmi4_exp_fhandler {
struct synaptics_rmi4_exp_fn *exp_fn;
bool insert;
bool remove;
struct list_head link;
};
struct synaptics_rmi4_exp_fn_data {
bool initialized;
bool queue_work;
struct mutex mutex;
struct list_head list;
struct delayed_work work;
struct workqueue_struct *workqueue;
struct synaptics_rmi4_data *rmi4_data;
};
static struct synaptics_rmi4_exp_fn_data exp_data;
static struct device_attribute attrs[] = {
__ATTR(reset, 0660,
synaptics_rmi4_show_error,
synaptics_rmi4_f01_reset_store),
__ATTR(productinfo, 0444,
synaptics_rmi4_f01_productinfo_show,
synaptics_rmi4_store_error),
__ATTR(buildid, 0444,
synaptics_rmi4_f01_buildid_show,
synaptics_rmi4_store_error),
__ATTR(flashprog, 0444,
synaptics_rmi4_f01_flashprog_show,
synaptics_rmi4_store_error),
__ATTR(0dbutton, 0660,
synaptics_rmi4_0dbutton_show,
synaptics_rmi4_0dbutton_store),
__ATTR(suspend, 0660,
synaptics_rmi4_show_error,
synaptics_rmi4_suspend_store),
__ATTR(wake_gesture, 0660,
synaptics_rmi4_wake_gesture_show,
synaptics_rmi4_wake_gesture_store),
};
static ssize_t synaptics_rmi4_f01_reset_store(struct device *dev,
struct device_attribute *attr, const char *buf, size_t count)
{
int retval;
unsigned int reset;
struct synaptics_rmi4_data *rmi4_data = dev_get_drvdata(dev);
if (sscanf(buf, "%u", &reset) != 1)
return -EINVAL;
if (reset != 1)
return -EINVAL;
retval = synaptics_rmi4_reset_device(rmi4_data);
if (retval < 0) {
dev_err(dev,
"%s: Failed to issue reset command, error = %d\n",
__func__, retval);
return retval;
}
return count;
}
static ssize_t synaptics_rmi4_f01_productinfo_show(struct device *dev,
struct device_attribute *attr, char *buf)
{
struct synaptics_rmi4_data *rmi4_data = dev_get_drvdata(dev);
return snprintf(buf, PAGE_SIZE, "0x%02x 0x%02x\n",
(rmi4_data->rmi4_mod_info.product_info[0]),
(rmi4_data->rmi4_mod_info.product_info[1]));
}
static ssize_t synaptics_rmi4_f01_buildid_show(struct device *dev,
struct device_attribute *attr, char *buf)
{
struct synaptics_rmi4_data *rmi4_data = dev_get_drvdata(dev);
return snprintf(buf, PAGE_SIZE, "%u\n",
rmi4_data->firmware_id);
}
static ssize_t synaptics_rmi4_f01_flashprog_show(struct device *dev,
struct device_attribute *attr, char *buf)
{
int retval;
struct synaptics_rmi4_f01_device_status device_status;
struct synaptics_rmi4_data *rmi4_data = dev_get_drvdata(dev);
retval = synaptics_rmi4_i2c_read(rmi4_data,
rmi4_data->f01_data_base_addr,
device_status.data,
sizeof(device_status.data));
if (retval < 0) {
dev_err(dev,
"%s: Failed to read device status, error = %d\n",
__func__, retval);
return retval;
}
return snprintf(buf, PAGE_SIZE, "%u\n",
device_status.flash_prog);
}
static ssize_t synaptics_rmi4_0dbutton_show(struct device *dev,
struct device_attribute *attr, char *buf)
{
struct synaptics_rmi4_data *rmi4_data = dev_get_drvdata(dev);
return snprintf(buf, PAGE_SIZE, "%u\n",
rmi4_data->button_0d_enabled);
}
static ssize_t synaptics_rmi4_0dbutton_store(struct device *dev,
struct device_attribute *attr, const char *buf, size_t count)
{
int retval;
unsigned int input;
unsigned char ii;
unsigned char intr_enable;
struct synaptics_rmi4_fn *fhandler;
struct synaptics_rmi4_data *rmi4_data = dev_get_drvdata(dev);
struct synaptics_rmi4_device_info *rmi;
rmi = &(rmi4_data->rmi4_mod_info);
if (sscanf(buf, "%u", &input) != 1)
return -EINVAL;
input = input > 0 ? 1 : 0;
if (rmi4_data->button_0d_enabled == input)
return count;
if (list_empty(&rmi->support_fn_list))
return -ENODEV;
list_for_each_entry(fhandler, &rmi->support_fn_list, link) {
if (fhandler->fn_number == SYNAPTICS_RMI4_F1A) {
ii = fhandler->intr_reg_num;
retval = synaptics_rmi4_i2c_read(rmi4_data,
rmi4_data->f01_ctrl_base_addr + 1 + ii,
&intr_enable,
sizeof(intr_enable));
if (retval < 0)
return retval;
if (input == 1)
intr_enable |= fhandler->intr_mask;
else
intr_enable &= ~fhandler->intr_mask;
retval = synaptics_rmi4_i2c_write(rmi4_data,
rmi4_data->f01_ctrl_base_addr + 1 + ii,
&intr_enable,
sizeof(intr_enable));
if (retval < 0)
return retval;
}
}
rmi4_data->button_0d_enabled = input;
return count;
}
static ssize_t synaptics_rmi4_suspend_store(struct device *dev,
struct device_attribute *attr, const char *buf, size_t count)
{
unsigned int input;
if (sscanf(buf, "%u", &input) != 1)
return -EINVAL;
if (input == 1)
synaptics_rmi4_suspend(dev);
else if (input == 0)
synaptics_rmi4_resume(dev);
else
return -EINVAL;
return count;
}
static ssize_t synaptics_rmi4_wake_gesture_show(struct device *dev,
struct device_attribute *attr, char *buf)
{
struct synaptics_rmi4_data *rmi4_data = dev_get_drvdata(dev);
return snprintf(buf, PAGE_SIZE, "%u\n",
rmi4_data->enable_wakeup_gesture);
}
static ssize_t synaptics_rmi4_wake_gesture_store(struct device *dev,
struct device_attribute *attr, const char *buf, size_t count)
{
unsigned int input;
struct synaptics_rmi4_data *rmi4_data = dev_get_drvdata(dev);
if (sscanf(buf, "%u", &input) != 1)
return -EINVAL;
input = input > 0 ? 1 : 0;
if (rmi4_data->f11_wakeup_gesture || rmi4_data->f12_wakeup_gesture)
rmi4_data->enable_wakeup_gesture = input;
return count;
}
static int tpd_set_page(struct synaptics_rmi4_data *rmi4_data,
unsigned short addr)
{
int retval = 0;
unsigned char retry;
unsigned char buf[PAGE_SELECT_LEN];
unsigned char page;
struct i2c_client *i2c = rmi4_data->i2c_client;
page = ((addr >> 8) & MASK_8BIT);
if (page != rmi4_data->current_page) {
buf[0] = MASK_8BIT;
buf[1] = page;
for (retry = 0; retry < SYN_I2C_RETRY_TIMES; retry++) {
retval = i2c_master_send(i2c, buf, PAGE_SELECT_LEN);
if (retval != PAGE_SELECT_LEN) {
dev_err(&rmi4_data->i2c_client->dev,
"%s: I2C retry %d\n", __func__, retry + 1);
msleep(20);
if (retry == (SYN_I2C_RETRY_TIMES / 2)) {
if (i2c->addr == rmi4_data->i2c_addr)
i2c->addr = UBL_I2C_ADDR;
else
i2c->addr = rmi4_data->i2c_addr;
}
} else {
rmi4_data->current_page = page;
break;
}
}
} else {
retval = PAGE_SELECT_LEN;
}
return retval;
}
int tpd_i2c_read_data(struct synaptics_rmi4_data *rmi4_data, struct i2c_client *client,
unsigned short addr, unsigned char *data, unsigned short length)
{
unsigned char retry = 0;
unsigned char *pData = data;
unsigned char tmp_addr = (unsigned char)addr;
int retval = 0;
int left_len = length;
/* u16 old_flag; */
mutex_lock(&(rmi4_data->rmi4_io_ctrl_mutex));
retval = tpd_set_page(rmi4_data, addr);
if (retval != PAGE_SELECT_LEN) {
retval = -EIO;
goto exit;
}
retval = i2c_master_send(client, &tmp_addr, 1);
while (left_len > 0) {
for (retry = 0; retry < SYN_I2C_RETRY_TIMES; retry++) {
if (left_len > 8)
retval = i2c_master_recv(client, pData, 8);
else
retval = i2c_master_recv(client, pData, left_len);
if (retval <= 0) {
dev_err(&client->dev, "%s: I2C retry %d\n", __func__, retry + 1);
msleep(20);
if (retry == (SYN_I2C_RETRY_TIMES / 2)) {
if (client->addr == rmi4_data->i2c_addr)
client->addr = UBL_I2C_ADDR;
else
client->addr = rmi4_data->i2c_addr;
}
left_len = length;
pData = data;
retval = i2c_master_send(client, &tmp_addr, 1);
continue;
} else {
break;
}
}
if (retry == SYN_I2C_RETRY_TIMES) {
retval = -EIO;
goto exit;
}
left_len -= 8;
pData += 8;
}
exit:
mutex_unlock(&(rmi4_data->rmi4_io_ctrl_mutex));
return retval;
}
EXPORT_SYMBOL(tpd_i2c_read_data);
#ifdef USE_I2C_DMA
int tpd_i2c_write_data_dma(struct synaptics_rmi4_data *rmi4_data, struct i2c_client *client,
unsigned short addr, unsigned char *data, unsigned short length)
{
int retval = 0;
unsigned char retry;
unsigned char *buf_va = NULL;
struct i2c_msg msg[1];
mutex_lock(&(rmi4_data->rmi4_io_ctrl_mutex));
msg[0].addr = rmi4_data->i2c_client->addr;
msg[0].flags = 0;
msg[0].len = length + 1;
msg[0].ext_flag = (rmi4_data->i2c_client->ext_flag | I2C_ENEXT_FLAG | I2C_DMA_FLAG),
msg[0].buf = (unsigned char *)(uintptr_t)wDMABuf_pa;
msg[0].timing = 400;
retval = tpd_set_page(rmi4_data, addr);
if (retval != PAGE_SELECT_LEN) {
retval = -EIO;
goto exit;
}
buf_va = wDMABuf_va;
buf_va[0] = addr & MASK_8BIT;
memcpy(&buf_va[1], &data[0], length);
for (retry = 0; retry < SYN_I2C_RETRY_TIMES; retry++) {
if (i2c_transfer(rmi4_data->i2c_client->adapter, msg, 1) == 1) {
retval = length;
break;
}
dev_err(&rmi4_data->i2c_client->dev,
"%s: I2C retry %d\n",
__func__, retry + 1);
msleep(20);
if (retry == (SYN_I2C_RETRY_TIMES / 2)) {
if (rmi4_data->i2c_client->addr == rmi4_data->i2c_addr)
rmi4_data->i2c_client->addr = UBL_I2C_ADDR;
else
rmi4_data->i2c_client->addr = rmi4_data->i2c_addr;
msg[0].addr = rmi4_data->i2c_client->addr;
}
}
if (retry == SYN_I2C_RETRY_TIMES) {
dev_err(&rmi4_data->i2c_client->dev,
"%s: I2C write over retry limit\n",
__func__);
retval = -EIO;
}
exit:
mutex_unlock(&(rmi4_data->rmi4_io_ctrl_mutex));
return retval;
}
EXPORT_SYMBOL(tpd_i2c_write_data_dma);
#else
int tpd_i2c_write_data(struct synaptics_rmi4_data *rmi4_data, struct i2c_client *client,
unsigned short addr, unsigned char *data, unsigned short length)
{
int retval = 0;
u8 retry = 0;
u8 *buf;
int tmp_addr = addr;
mutex_lock(&(rmi4_data->rmi4_io_ctrl_mutex));
retval = tpd_set_page(rmi4_data, addr);
if (retval != PAGE_SELECT_LEN) {
pr_err("tpd_set_page fail, retval = %d\n", retval);
retval = -EIO;
goto exit;
}
buf = kzalloc(sizeof(unsigned char) * (length + 1), GFP_KERNEL);
*buf = tmp_addr;
memcpy(buf + 1, data, length);
for (retry = 0; retry < SYN_I2C_RETRY_TIMES; retry++) {
retval = i2c_master_send(client, buf, (length + 1));
if (retval <= 0) {
dev_err(&client->dev, "%s: I2C retry %d\n", __func__, retry + 1);
msleep(20);
continue;
} else {
break;
}
}
kfree(buf);
exit:
mutex_unlock(&(rmi4_data->rmi4_io_ctrl_mutex));
return retval;
}
EXPORT_SYMBOL(tpd_i2c_write_data);
#endif
/**
* synaptics_rmi4_i2c_read()
*
* Called by various functions in this driver, and also exported to
* other expansion Function modules such as rmi_dev.
*
* This function reads data of an arbitrary length from the sensor,
* starting from an assigned register address of the sensor, via I2C
* with a retry mechanism.
*/
static int synaptics_rmi4_i2c_read(struct synaptics_rmi4_data *rmi4_data,
unsigned short addr, unsigned char *data, unsigned short length)
{
return tpd_i2c_read_data(rmi4_data, rmi4_data->i2c_client, addr, data, length);
}
/**
* synaptics_rmi4_i2c_write()
*
* Called by various functions in this driver, and also exported to
* other expansion Function modules such as rmi_dev.
*
* This function writes data of an arbitrary length to the sensor,
* starting from an assigned register address of the sensor, via I2C with
* a retry mechanism.
*/
static int synaptics_rmi4_i2c_write(struct synaptics_rmi4_data *rmi4_data,
unsigned short addr, unsigned char *data, unsigned short length)
{
#ifdef USE_I2C_DMA
return tpd_i2c_write_data_dma(rmi4_data, rmi4_data->i2c_client, addr, data, length);
#else
return tpd_i2c_write_data(rmi4_data, rmi4_data->i2c_client, addr, data, length);
#endif
}
/**
* synaptics_rmi4_f11_abs_report()
*
* Called by synaptics_rmi4_report_touch() when valid Function $11
* finger data has been detected.
*
* This function reads the Function $11 data registers, determines the
* status of each finger supported by the Function, processes any
* necessary coordinate manipulation, reports the finger data to
* the input subsystem, and returns the number of fingers detected.
*/
static int synaptics_rmi4_f11_abs_report(struct synaptics_rmi4_data *rmi4_data,
struct synaptics_rmi4_fn *fhandler)
{
int retval;
unsigned char touch_count = 0; /* number of touch points */
unsigned char reg_index;
unsigned char finger;
unsigned char fingers_supported;
unsigned char num_of_finger_status_regs;
unsigned char finger_shift;
unsigned char finger_status;
unsigned char finger_status_reg[3];
unsigned char detected_gestures;
unsigned short data_addr;
unsigned short data_offset;
int x;
int y;
int wx;
int wy;
//int temp;
struct synaptics_rmi4_f11_data_1_5 data;
struct synaptics_rmi4_f11_extra_data *extra_data;
/*
* The number of finger status registers is determined by the
* maximum number of fingers supported - 2 bits per finger. So
* the number of finger status registers to read is:
* register_count = ceil(max_num_of_fingers / 4)
*/
fingers_supported = fhandler->num_of_data_points;
num_of_finger_status_regs = (fingers_supported + 3) / 4;
data_addr = fhandler->full_addr.data_base;
extra_data = (struct synaptics_rmi4_f11_extra_data *)fhandler->extra;
if (rmi4_data->sensor_sleep && rmi4_data->enable_wakeup_gesture) {
retval = synaptics_rmi4_i2c_read(rmi4_data,
data_addr + extra_data->data38_offset,
&detected_gestures,
sizeof(detected_gestures));
if (retval < 0)
return 0;
if (detected_gestures) {
input_report_key(rmi4_data->input_dev, KEY_POWER, 1);
input_sync(rmi4_data->input_dev);
input_report_key(rmi4_data->input_dev, KEY_POWER, 0);
input_sync(rmi4_data->input_dev);
rmi4_data->sensor_sleep = false;
}
return 0;
}
retval = synaptics_rmi4_i2c_read(rmi4_data,
data_addr,
finger_status_reg,
num_of_finger_status_regs);
if (retval < 0)
return 0;
mutex_lock(&rmi4_report_mutex);
for (finger = 0; finger < fingers_supported; finger++) {
reg_index = finger / 4;
finger_shift = (finger % 4) * 2;
finger_status = (finger_status_reg[reg_index] >> finger_shift)
& MASK_2BIT;
/*
* Each 2-bit finger status field represents the following:
* 00 = finger not present
* 01 = finger present and data accurate
* 10 = finger present but data may be inaccurate
* 11 = reserved
*/
#ifdef TYPE_B_PROTOCOL
input_mt_slot(rmi4_data->input_dev, finger);
input_mt_report_slot_state(rmi4_data->input_dev,
MT_TOOL_FINGER, finger_status);
#endif
if (finger_status) {
data_offset = data_addr +
num_of_finger_status_regs +
(finger * sizeof(data.data));
retval = synaptics_rmi4_i2c_read(rmi4_data,
data_offset,
data.data,
sizeof(data.data));
if (retval < 0) {
touch_count = 0;
goto exit;
}
x = (data.x_position_11_4 << 4) | data.x_position_3_0;
y = (data.y_position_11_4 << 4) | data.y_position_3_0;
wx = data.wx;
wy = data.wy;
input_report_key(rmi4_data->input_dev,
BTN_TOUCH, 1);
input_report_key(rmi4_data->input_dev,
BTN_TOOL_FINGER, 1);
input_report_abs(rmi4_data->input_dev,
ABS_MT_POSITION_X, x);
input_report_abs(rmi4_data->input_dev,
ABS_MT_POSITION_Y, y);
#ifdef REPORT_2D_W
input_report_abs(rmi4_data->input_dev,
ABS_MT_TOUCH_MAJOR, max(wx, wy));
input_report_abs(rmi4_data->input_dev,
ABS_MT_TOUCH_MINOR, min(wx, wy));
#endif
#ifndef TYPE_B_PROTOCOL
input_mt_sync(rmi4_data->input_dev);
#endif
dev_dbg(&rmi4_data->i2c_client->dev,
"%s: Finger %d:\n"
"status = 0x%02x\n"
"x = %d\n"
"y = %d\n"
"wx = %d\n"
"wy = %d\n",
__func__, finger,
finger_status,
x, y, wx, wy);
touch_count++;
}
}
if (touch_count == 0) {
input_report_key(rmi4_data->input_dev,
BTN_TOUCH, 0);
input_report_key(rmi4_data->input_dev,
BTN_TOOL_FINGER, 0);
#ifndef TYPE_B_PROTOCOL
input_mt_sync(rmi4_data->input_dev);
#endif
}
input_sync(rmi4_data->input_dev);
exit:
mutex_unlock(&(rmi4_report_mutex));
return touch_count;
}
/**
* synaptics_rmi4_f12_abs_report()
*
* Called by synaptics_rmi4_report_touch() when valid Function $12
* finger data has been detected.
*
* This function reads the Function $12 data registers, determines the
* status of each finger supported by the Function, processes any
* necessary coordinate manipulation, reports the finger data to
* the input subsystem, and returns the number of fingers detected.
*/
static int synaptics_rmi4_f12_abs_report(struct synaptics_rmi4_data *rmi4_data,
struct synaptics_rmi4_fn *fhandler)
{
int retval;
unsigned char touch_count = 0; /* number of touch points */
unsigned char finger;
unsigned char fingers_to_process;
unsigned char finger_status;
unsigned char size_of_2d_data;
unsigned char detected_gestures[F12_GESTURE_DETECTION_LEN]; // byte0 indicate gesture type, byte1~byte4 are gesture parameter
unsigned short data_addr;
int x;
int y;
int wx;
int wy;
int temp;
struct synaptics_rmi4_f12_extra_data *extra_data;
struct synaptics_rmi4_f12_finger_data *data;
struct synaptics_rmi4_f12_finger_data *finger_data;
#ifdef F12_DATA_15_WORKAROUND
static unsigned char fingers_already_present;
#endif
fingers_to_process = fhandler->num_of_data_points;
data_addr = fhandler->full_addr.data_base;
extra_data = (struct synaptics_rmi4_f12_extra_data *)fhandler->extra;
size_of_2d_data = sizeof(struct synaptics_rmi4_f12_finger_data);
if (rmi4_data->sensor_sleep && rmi4_data->enable_wakeup_gesture) {
retval = synaptics_rmi4_i2c_read(rmi4_data,
data_addr + extra_data->data4_offset,
detected_gestures,
sizeof(detected_gestures));
if (retval < 0)
return 0;
if (detected_gestures[0] && (detected_gestures[0] != F12_UDG_DETECT)) { // here is demo only, customer could decode gesture data and do whatever they want
input_report_key(rmi4_data->input_dev, KEY_POWER, 1);
input_sync(rmi4_data->input_dev);
input_report_key(rmi4_data->input_dev, KEY_POWER, 0);
input_sync(rmi4_data->input_dev);
rmi4_data->sensor_sleep = false;
}
return 0;
}
/* Determine the total number of fingers to process */
if (extra_data->data15_size) {
retval = synaptics_rmi4_i2c_read(rmi4_data,
data_addr + extra_data->data15_offset,
extra_data->data15_data,
extra_data->data15_size);
if (retval < 0)
return 0;
/* Start checking from the highest bit */
temp = extra_data->data15_size - 1; /* Highest byte */
finger = (fingers_to_process - 1) % 8; /* Highest bit */
do {
if (extra_data->data15_data[temp] & (1 << finger))
break;
if (finger) {
finger--;
} else {
temp--; /* Move to the next lower byte */
finger = 7;
}
fingers_to_process--;
} while (fingers_to_process);
dev_dbg(&rmi4_data->i2c_client->dev,
"%s: Number of fingers to process = %d\n",
__func__, fingers_to_process);
}
#ifdef F12_DATA_15_WORKAROUND
fingers_to_process = max(fingers_to_process, fingers_already_present);
#endif
if (!fingers_to_process) {
synaptics_rmi4_free_fingers(rmi4_data);
return 0;
}
retval = synaptics_rmi4_i2c_read(rmi4_data,
data_addr + extra_data->data1_offset,
(unsigned char *)fhandler->data,
fingers_to_process * size_of_2d_data);
if (retval < 0)
return 0;
data = (struct synaptics_rmi4_f12_finger_data *)fhandler->data;
mutex_lock(&rmi4_report_mutex);
for (finger = 0; finger < fingers_to_process; finger++) {
finger_data = data + finger;
finger_status = finger_data->object_type_and_status & MASK_1BIT;
#ifdef TYPE_B_PROTOCOL
input_mt_slot(rmi4_data->input_dev, finger);
input_mt_report_slot_state(rmi4_data->input_dev,
MT_TOOL_FINGER, finger_status);
#endif
if (finger_status) {
#ifdef F12_DATA_15_WORKAROUND
fingers_already_present = finger + 1;
#endif
x = (finger_data->x_msb << 8) | (finger_data->x_lsb);
y = (finger_data->y_msb << 8) | (finger_data->y_lsb);
#ifdef REPORT_2D_W
wx = finger_data->wx;
wy = finger_data->wy;
#endif
input_report_key(rmi4_data->input_dev,
BTN_TOUCH, 1);
input_report_key(rmi4_data->input_dev,
BTN_TOOL_FINGER, 1);
input_report_abs(rmi4_data->input_dev,
ABS_MT_POSITION_X, x);
input_report_abs(rmi4_data->input_dev,
ABS_MT_POSITION_Y, y);
#ifdef REPORT_2D_W
input_report_abs(rmi4_data->input_dev,
ABS_MT_TOUCH_MAJOR, max(wx, wy));
input_report_abs(rmi4_data->input_dev,
ABS_MT_TOUCH_MINOR, min(wx, wy));
#endif
#ifndef TYPE_B_PROTOCOL
input_mt_sync(rmi4_data->input_dev);
#endif
dev_dbg(&rmi4_data->i2c_client->dev,
"%s: Finger %d:\n"
"status = 0x%02x\n"
"x = %d\n"
"y = %d\n"
"wx = %d\n"
"wy = %d\n",
__func__, finger,
finger_status,
x, y, wx, wy);
touch_count++;
}
}
if (touch_count == 0) {
input_report_key(rmi4_data->input_dev,
BTN_TOUCH, 0);
input_report_key(rmi4_data->input_dev,
BTN_TOOL_FINGER, 0);
#ifndef TYPE_B_PROTOCOL
input_mt_sync(rmi4_data->input_dev);
#endif
}
input_sync(rmi4_data->input_dev);
mutex_unlock(&rmi4_report_mutex);
return touch_count;
}
static void synaptics_rmi4_f1a_report(struct synaptics_rmi4_data *rmi4_data,
struct synaptics_rmi4_fn *fhandler)
{
int retval;
unsigned char touch_count = 0;
unsigned char button;
unsigned char index;
unsigned char shift;
unsigned char status;
unsigned char *data;
unsigned short data_addr = fhandler->full_addr.data_base;
struct synaptics_rmi4_f1a_handle *f1a = fhandler->data;
static unsigned char do_once = 1;
static bool current_status[MAX_NUMBER_OF_BUTTONS];
#ifdef NO_0D_WHILE_2D
static bool before_2d_status[MAX_NUMBER_OF_BUTTONS];
static bool while_2d_status[MAX_NUMBER_OF_BUTTONS];
#endif
if (do_once) {
memset(current_status, 0, sizeof(current_status));
#ifdef NO_0D_WHILE_2D
memset(before_2d_status, 0, sizeof(before_2d_status));
memset(while_2d_status, 0, sizeof(while_2d_status));
#endif
do_once = 0;
}
retval = synaptics_rmi4_i2c_read(rmi4_data,
data_addr,
f1a->button_data_buffer,
f1a->button_bitmask_size);
if (retval < 0) {
dev_err(&rmi4_data->i2c_client->dev,
"%s: Failed to read button data registers\n",
__func__);
return;
}
data = f1a->button_data_buffer;
mutex_lock(&rmi4_report_mutex);
for (button = 0; button < f1a->valid_button_count; button++) {
index = button / 8;
shift = button % 8;
status = ((data[index] >> shift) & MASK_1BIT);
if (current_status[button] == status)
continue;
else
current_status[button] = status;
dev_dbg(&rmi4_data->i2c_client->dev,
"%s: Button %d (code %d) ->%d\n",
__func__, button,
f1a->button_map[button],
status);
#ifdef NO_0D_WHILE_2D
if (rmi4_data->fingers_on_2d == false) {
if (status == 1) {
before_2d_status[button] = 1;
} else {
if (while_2d_status[button] == 1) {
while_2d_status[button] = 0;
continue;
} else {
before_2d_status[button] = 0;
}
}
touch_count++;
input_report_key(rmi4_data->input_dev,
f1a->button_map[button],
status);
} else {
if (before_2d_status[button] == 1) {
before_2d_status[button] = 0;
touch_count++;
input_report_key(rmi4_data->input_dev,
f1a->button_map[button],
status);
} else {
if (status == 1)
while_2d_status[button] = 1;
else
while_2d_status[button] = 0;
}
}
#else
touch_count++;
input_report_key(rmi4_data->input_dev,
f1a->button_map[button],
status);
#endif
}
if (touch_count)
input_sync(rmi4_data->input_dev);
mutex_unlock(&rmi4_report_mutex);
return;
}
/**
* synaptics_rmi4_report_touch()
*
* Called by synaptics_rmi4_sensor_report().
*
* This function calls the appropriate finger data reporting function
* based on the function handler it receives and returns the number of
* fingers detected.
*/
static void synaptics_rmi4_report_touch(struct synaptics_rmi4_data *rmi4_data,
struct synaptics_rmi4_fn *fhandler)
{
unsigned char touch_count_2d;
dev_dbg(&rmi4_data->i2c_client->dev,
"%s: Function %02x reporting\n",
__func__, fhandler->fn_number);
switch (fhandler->fn_number) {
case SYNAPTICS_RMI4_F11:
touch_count_2d = synaptics_rmi4_f11_abs_report(rmi4_data,
fhandler);
if (touch_count_2d)
rmi4_data->fingers_on_2d = true;
else
rmi4_data->fingers_on_2d = false;
break;
case SYNAPTICS_RMI4_F12:
touch_count_2d = synaptics_rmi4_f12_abs_report(rmi4_data,
fhandler);
if (touch_count_2d)
rmi4_data->fingers_on_2d = true;
else
rmi4_data->fingers_on_2d = false;
break;
case SYNAPTICS_RMI4_F1A:
synaptics_rmi4_f1a_report(rmi4_data, fhandler);
break;
default:
break;
}
return;
}
/**
* synaptics_rmi4_sensor_report()
*
* Called by synaptics_rmi4_irq().
*
* This function determines the interrupt source(s) from the sensor
* and calls synaptics_rmi4_report_touch() with the appropriate
* function handler for each function with valid data inputs.
*/
static void synaptics_rmi4_sensor_report(struct synaptics_rmi4_data *rmi4_data)
{
int retval;
unsigned char data[MAX_INTR_REGISTERS + 1];
unsigned char *intr = &data[1];
struct synaptics_rmi4_f01_device_status status;
struct synaptics_rmi4_fn *fhandler;
struct synaptics_rmi4_exp_fhandler *exp_fhandler;
struct synaptics_rmi4_device_info *rmi;
rmi = &(rmi4_data->rmi4_mod_info);
/*
* Get interrupt status information from F01 Data1 register to
* determine the source(s) that are flagging the interrupt.
*/
retval = synaptics_rmi4_i2c_read(rmi4_data,
rmi4_data->f01_data_base_addr,
data,
rmi4_data->num_of_intr_regs + 1);
if (retval < 0) {
dev_err(&rmi4_data->i2c_client->dev,
"%s: Failed to read interrupt status\n",
__func__);
return;
}
status.data[0] = data[0];
if (status.unconfigured && !status.flash_prog) {
pr_notice("%s: spontaneous reset detected\n", __func__);
retval = synaptics_rmi4_reinit_device(rmi4_data);
if (retval < 0) {
dev_err(&rmi4_data->i2c_client->dev,
"%s: Failed to reinit device\n",
__func__);
}
return;
}
/*
* Traverse the function handler list and service the source(s)
* of the interrupt accordingly.
*/
if (!list_empty(&rmi->support_fn_list)) {
list_for_each_entry(fhandler, &rmi->support_fn_list, link) {
if (fhandler->num_of_data_sources) {
if (fhandler->intr_mask &
intr[fhandler->intr_reg_num]) {
synaptics_rmi4_report_touch(rmi4_data,
fhandler);
}
}
}
}
mutex_lock(&exp_data.mutex);
if (!list_empty(&exp_data.list)) {
list_for_each_entry(exp_fhandler, &exp_data.list, link) {
if (!exp_fhandler->insert &&
!exp_fhandler->remove &&
(exp_fhandler->exp_fn->attn != NULL))
exp_fhandler->exp_fn->attn(rmi4_data, intr[0]);
}
}
mutex_unlock(&exp_data.mutex);
return;
}
/**
* synaptics_rmi4_irq()
*
* Called by the kernel when an interrupt occurs (when the sensor
* asserts the attention irq).
*
* This function is the ISR thread and handles the acquisition
* and the reporting of finger data when the presence of fingers
* is detected.
*/
#ifdef CONFIG_OF_TOUCH
static irqreturn_t tpd_eint_handler(unsigned int irq, struct irq_desc *desc)
{
disable_irq_nosync(touch_irq);
tpd_flag = 1;
wake_up_interruptible(&waiter);
return IRQ_HANDLED;
}
#else
static void tpd_eint_handler(void)
{
tpd_flag = 1;
wake_up_interruptible(&waiter);
}
#endif
static int touch_event_handler(void *data)
{
struct synaptics_rmi4_data *rmi4_data = data;
do {
set_current_state(TASK_INTERRUPTIBLE);
while (tpd_halt) {
tpd_flag = 0;
msleep(20);
}
wait_event_interruptible(waiter, tpd_flag != 0);
tpd_flag = 0;
set_current_state(TASK_RUNNING);
if (!rmi4_data->touch_stopped)
synaptics_rmi4_sensor_report(rmi4_data);
#ifdef CONFIG_OF_TOUCH
enable_irq(touch_irq);
#else
mt_eint_unmask(CUST_EINT_TOUCH_PANEL_NUM);
#endif
} while (1);
return 0;
}
/**
* synaptics_rmi4_irq_enable()
*
* Called by synaptics_rmi4_probe() and the power management functions
* in this driver and also exported to other expansion Function modules
* such as rmi_dev.
*
* This function handles the enabling and disabling of the attention
* irq including the setting up of the ISR thread.
*/
static int synaptics_rmi4_irq_enable(struct synaptics_rmi4_data *rmi4_data,
bool enable)
{
int retval = 0;
unsigned char intr_status[MAX_INTR_REGISTERS];
if (enable) {
/* Clear interrupts first */
retval = synaptics_rmi4_i2c_read(rmi4_data,
rmi4_data->f01_data_base_addr + 1,
intr_status,
rmi4_data->num_of_intr_regs);
if (retval < 0)
return retval;
/* set up irq */
if (!rmi4_data->irq_enabled) {
#ifdef CONFIG_OF_TOUCH
enable_irq(touch_irq);
#else
mt_eint_unmask(CUST_EINT_TOUCH_PANEL_NUM);
#endif
rmi4_data->irq_enabled = true;
}
} else {
if (rmi4_data->irq_enabled) {
#ifdef CONFIG_OF_TOUCH
disable_irq_nosync(touch_irq);
#else
mt_eint_mask(CUST_EINT_TOUCH_PANEL_NUM);
#endif
rmi4_data->irq_enabled = false;
}
}
return retval;
}
static void synaptics_rmi4_set_intr_mask(struct synaptics_rmi4_fn *fhandler,
struct synaptics_rmi4_fn_desc *fd,
unsigned int intr_count)
{
unsigned char ii;
unsigned char intr_offset;
fhandler->intr_reg_num = (intr_count + 7) / 8;
if (fhandler->intr_reg_num != 0)
fhandler->intr_reg_num -= 1;
/* Set an enable bit for each data source */
intr_offset = intr_count % 8;
fhandler->intr_mask = 0;
for (ii = intr_offset;
ii < ((fd->intr_src_count & MASK_3BIT) +
intr_offset);
ii++)
fhandler->intr_mask |= 1 << ii;
return;
}
static int synaptics_rmi4_f01_init(struct synaptics_rmi4_data *rmi4_data,
struct synaptics_rmi4_fn *fhandler,
struct synaptics_rmi4_fn_desc *fd,
unsigned int intr_count)
{
fhandler->fn_number = fd->fn_number;
fhandler->num_of_data_sources = fd->intr_src_count;
fhandler->data = NULL;
fhandler->extra = NULL;
synaptics_rmi4_set_intr_mask(fhandler, fd, intr_count);
rmi4_data->f01_query_base_addr = fd->query_base_addr;
rmi4_data->f01_ctrl_base_addr = fd->ctrl_base_addr;
rmi4_data->f01_data_base_addr = fd->data_base_addr;
rmi4_data->f01_cmd_base_addr = fd->cmd_base_addr;
return 0;
}
/**
* synaptics_rmi4_f11_init()
*
* Called by synaptics_rmi4_query_device().
*
* This function parses information from the Function 11 registers
* and determines the number of fingers supported, x and y data ranges,
* offset to the associated interrupt status register, interrupt bit
* mask, and gathers finger data acquisition capabilities from the query
* registers.
*/
static int synaptics_rmi4_f11_init(struct synaptics_rmi4_data *rmi4_data,
struct synaptics_rmi4_fn *fhandler,
struct synaptics_rmi4_fn_desc *fd,
unsigned int intr_count)
{
int retval;
unsigned char offset;
unsigned char fingers_supported;
struct synaptics_rmi4_f11_extra_data *extra_data;
struct synaptics_rmi4_f11_query_0_5 query_0_5;
struct synaptics_rmi4_f11_query_7_8 query_7_8;
struct synaptics_rmi4_f11_query_9 query_9;
struct synaptics_rmi4_f11_query_12 query_12;
struct synaptics_rmi4_f11_query_27 query_27;
struct synaptics_rmi4_f11_ctrl_6_9 control_6_9;
fhandler->fn_number = fd->fn_number;
fhandler->num_of_data_sources = fd->intr_src_count;
fhandler->extra = kmalloc(sizeof(*extra_data), GFP_KERNEL);
if (!fhandler->extra) {
dev_err(&rmi4_data->i2c_client->dev,
"%s: Failed to alloc mem for fhandle->extra\n",
__func__);
return -ENOMEM;
}
extra_data = (struct synaptics_rmi4_f11_extra_data *)fhandler->extra;
retval = synaptics_rmi4_i2c_read(rmi4_data,
fhandler->full_addr.query_base,
query_0_5.data,
sizeof(query_0_5.data));
if (retval < 0)
return retval;
/* Maximum number of fingers supported */
if (query_0_5.num_of_fingers <= 4)
fhandler->num_of_data_points = query_0_5.num_of_fingers + 1;
else if (query_0_5.num_of_fingers == 5)
fhandler->num_of_data_points = 10;
rmi4_data->num_of_fingers = fhandler->num_of_data_points;
retval = synaptics_rmi4_i2c_read(rmi4_data,
fhandler->full_addr.ctrl_base + 6,
control_6_9.data,
sizeof(control_6_9.data));
if (retval < 0)
return retval;
/* Maximum x and y */
rmi4_data->sensor_max_x = SENSOR_MAX_X;
rmi4_data->sensor_max_y = SENSOR_MAX_Y; //control_6_9.sensor_max_y_pos_7_0 |
//(control_6_9.sensor_max_y_pos_11_8 << 8);
/* It's recommended to parse max_x and max_y from contrel register, but this does not match MTK's mtk-tpd.c */
dev_dbg(&rmi4_data->i2c_client->dev,
"%s: Function %02x max x = %d max y = %d\n",
__func__, fhandler->fn_number,
rmi4_data->sensor_max_x,
rmi4_data->sensor_max_y);
rmi4_data->max_touch_width = MAX_F11_TOUCH_WIDTH;
synaptics_rmi4_set_intr_mask(fhandler, fd, intr_count);
fhandler->data = NULL;
offset = sizeof(query_0_5.data);
/* query 6 */
if (query_0_5.has_rel)
offset += 1;
/* queries 7 8 */
if (query_0_5.has_gestures) {
retval = synaptics_rmi4_i2c_read(rmi4_data,
fhandler->full_addr.query_base + offset,
query_7_8.data,
sizeof(query_7_8.data));
if (retval < 0)
return retval;
offset += sizeof(query_7_8.data);
}
/* query 9 */
if (query_0_5.has_query_9) {
retval = synaptics_rmi4_i2c_read(rmi4_data,
fhandler->full_addr.query_base + offset,
query_9.data,
sizeof(query_9.data));
if (retval < 0)
return retval;
offset += sizeof(query_9.data);
}
/* query 10 */
if (query_0_5.has_gestures && query_7_8.has_touch_shapes)
offset += 1;
/* query 11 */
if (query_0_5.has_query_11)
offset += 1;
/* query 12 */
if (query_0_5.has_query_12) {
retval = synaptics_rmi4_i2c_read(rmi4_data,
fhandler->full_addr.query_base + offset,
query_12.data,
sizeof(query_12.data));
if (retval < 0)
return retval;
offset += sizeof(query_12.data);
}
/* query 13 */
if (query_0_5.has_jitter_filter)
offset += 1;
/* query 14 */
if (query_0_5.has_query_12 && query_12.has_general_information_2)
offset += 1;
/* queries 15 16 17 18 19 20 21 22 23 24 25 26*/
if (query_0_5.has_query_12 && query_12.has_physical_properties)
offset += 12;
/* query 27 */
if (query_0_5.has_query_27) {
retval = synaptics_rmi4_i2c_read(rmi4_data,
fhandler->full_addr.query_base + offset,
query_27.data,
sizeof(query_27.data));
if (retval < 0)
return retval;
rmi4_data->f11_wakeup_gesture = query_27.has_wakeup_gesture;
}
if (!rmi4_data->f11_wakeup_gesture)
return retval;
/* data 0 */
fingers_supported = fhandler->num_of_data_points;
offset = (fingers_supported + 3) / 4;
/* data 1 2 3 4 5 */
offset += 5 * fingers_supported;
/* data 6 7 */
if (query_0_5.has_rel)
offset += 2 * fingers_supported;
/* data 8 */
if (query_0_5.has_gestures && query_7_8.data[0])
offset += 1;
/* data 9 */
if (query_0_5.has_gestures && (query_7_8.data[0] || query_7_8.data[1]))
offset += 1;
/* data 10 */
if (query_0_5.has_gestures &&
(query_7_8.has_pinch || query_7_8.has_flick))
offset += 1;
/* data 11 12 */
if (query_0_5.has_gestures &&
(query_7_8.has_flick || query_7_8.has_rotate))
offset += 2;
/* data 13 */
if (query_0_5.has_gestures && query_7_8.has_touch_shapes)
offset += (fingers_supported + 3) / 4;
/* data 14 15 */
if (query_0_5.has_gestures &&
(query_7_8.has_scroll_zones ||
query_7_8.has_multi_finger_scroll ||
query_7_8.has_chiral_scroll))
offset += 2;
/* data 16 17 */
if (query_0_5.has_gestures &&
(query_7_8.has_scroll_zones &&
query_7_8.individual_scroll_zones))
offset += 2;
/* data 18 19 20 21 22 23 24 25 26 27 */
if (query_0_5.has_query_9 && query_9.has_contact_geometry)
offset += 10 * fingers_supported;
/* data 28 */
if (query_0_5.has_bending_correction ||
query_0_5.has_large_object_suppression)
offset += 1;
/* data 29 30 31 */
if (query_0_5.has_query_9 && query_9.has_pen_hover_discrimination)
offset += 3;
/* data 32 */
if (query_0_5.has_query_12 &&
query_12.has_small_object_detection_tuning)
offset += 1;
/* data 33 34 */
if (query_0_5.has_query_27 && query_27.f11_query27_b0)
offset += 2;
/* data 35 */
if (query_0_5.has_query_12 && query_12.has_8bit_w)
offset += fingers_supported;
/* data 36 */
if (query_0_5.has_bending_correction)
offset += 1;
/* data 37 */
if (query_0_5.has_query_27 && query_27.has_data_37)
offset += 1;
/* data 38 */
if (query_0_5.has_query_27 && query_27.has_wakeup_gesture)
extra_data->data38_offset = offset;
return retval;
}
static int synaptics_rmi4_f12_set_enables(struct synaptics_rmi4_data *rmi4_data,
unsigned short ctrl28)
{
int retval;
static unsigned short ctrl_28_address;
if (ctrl28)
ctrl_28_address = ctrl28;
retval = synaptics_rmi4_i2c_write(rmi4_data,
ctrl_28_address,
&rmi4_data->report_enable,
sizeof(rmi4_data->report_enable));
if (retval < 0)
return retval;
return retval;
}
/**
* synaptics_rmi4_f12_init()
*
* Called by synaptics_rmi4_query_device().
*
* This function parses information from the Function 12 registers and
* determines the number of fingers supported, offset to the data1
* register, x and y data ranges, offset to the associated interrupt
* status register, interrupt bit mask, and allocates memory resources
* for finger data acquisition.
*/
static int synaptics_rmi4_f12_init(struct synaptics_rmi4_data *rmi4_data,
struct synaptics_rmi4_fn *fhandler,
struct synaptics_rmi4_fn_desc *fd,
unsigned int intr_count)
{
int retval;
unsigned char size_of_2d_data;
unsigned char size_of_query8;
unsigned char ctrl_8_offset;
unsigned char ctrl_20_offset;
unsigned char ctrl_23_offset;
unsigned char ctrl_27_offset;
unsigned char ctrl_28_offset;
unsigned char num_of_fingers;
struct synaptics_rmi4_f12_extra_data *extra_data;
struct synaptics_rmi4_f12_query_5 query_5;
struct synaptics_rmi4_f12_query_8 query_8;
struct synaptics_rmi4_f12_ctrl_8 ctrl_8;
struct synaptics_rmi4_f12_ctrl_23 ctrl_23;
fhandler->fn_number = fd->fn_number;
fhandler->num_of_data_sources = fd->intr_src_count;
fhandler->extra = kmalloc(sizeof(*extra_data), GFP_KERNEL);
if (!fhandler->extra) {
dev_err(&rmi4_data->i2c_client->dev,
"%s: Failed to alloc mem for fhandler->extra\n",
__func__);
return -ENOMEM;
}
extra_data = (struct synaptics_rmi4_f12_extra_data *)fhandler->extra;
size_of_2d_data = sizeof(struct synaptics_rmi4_f12_finger_data);
retval = synaptics_rmi4_i2c_read(rmi4_data,
fhandler->full_addr.query_base + 5,
query_5.data,
sizeof(query_5.data));
if (retval < 0)
return retval;
ctrl_8_offset = query_5.ctrl0_is_present +
query_5.ctrl1_is_present +
query_5.ctrl2_is_present +
query_5.ctrl3_is_present +
query_5.ctrl4_is_present +
query_5.ctrl5_is_present +
query_5.ctrl6_is_present +
query_5.ctrl7_is_present;
ctrl_20_offset = ctrl_8_offset +
query_5.ctrl8_is_present +
query_5.ctrl9_is_present +
query_5.ctrl10_is_present +
query_5.ctrl11_is_present +
query_5.ctrl12_is_present +
query_5.ctrl13_is_present +
query_5.ctrl14_is_present +
query_5.ctrl15_is_present +
query_5.ctrl16_is_present +
query_5.ctrl17_is_present +
query_5.ctrl18_is_present +
query_5.ctrl19_is_present;
ctrl_23_offset = ctrl_20_offset +
query_5.ctrl20_is_present +
query_5.ctrl21_is_present +
query_5.ctrl22_is_present;
ctrl_27_offset = ctrl_23_offset +
query_5.ctrl23_is_present +
query_5.ctrl24_is_present +
query_5.ctrl25_is_present +
query_5.ctrl26_is_present;
ctrl_28_offset = ctrl_27_offset +
query_5.ctrl27_is_present;
retval = synaptics_rmi4_i2c_read(rmi4_data,
fhandler->full_addr.ctrl_base + ctrl_23_offset,
ctrl_23.data,
sizeof(ctrl_23.data));
if (retval < 0)
return retval;
/* Maximum number of fingers supported */
fhandler->num_of_data_points = min(ctrl_23.max_reported_objects,
(unsigned char)F12_FINGERS_TO_SUPPORT);
num_of_fingers = fhandler->num_of_data_points;
rmi4_data->num_of_fingers = num_of_fingers;
retval = synaptics_rmi4_i2c_read(rmi4_data,
fhandler->full_addr.query_base + 7,
&size_of_query8,
sizeof(size_of_query8));
if (retval < 0)
return retval;
retval = synaptics_rmi4_i2c_read(rmi4_data,
fhandler->full_addr.query_base + 8,
query_8.data,
size_of_query8);
if (retval < 0)
return retval;
/* Determine the presence of the Data0 register */
extra_data->data1_offset = query_8.data0_is_present;
if ((size_of_query8 >= 3) && (query_8.data15_is_present)) {
extra_data->data15_offset = query_8.data0_is_present +
query_8.data1_is_present +
query_8.data2_is_present +
query_8.data3_is_present +
query_8.data4_is_present +
query_8.data5_is_present +
query_8.data6_is_present +
query_8.data7_is_present +
query_8.data8_is_present +
query_8.data9_is_present +
query_8.data10_is_present +
query_8.data11_is_present +
query_8.data12_is_present +
query_8.data13_is_present +
query_8.data14_is_present;
extra_data->data15_size = (num_of_fingers + 7) / 8;
} else {
extra_data->data15_size = 0;
}
rmi4_data->report_enable = RPT_DEFAULT;
#ifdef REPORT_2D_Z
rmi4_data->report_enable |= RPT_Z;
#endif
#ifdef REPORT_2D_W
rmi4_data->report_enable |= (RPT_WX | RPT_WY);
#endif
retval = synaptics_rmi4_f12_set_enables(rmi4_data,
fhandler->full_addr.ctrl_base + ctrl_28_offset);
if (retval < 0)
return retval;
retval = synaptics_rmi4_i2c_read(rmi4_data,
fhandler->full_addr.ctrl_base + ctrl_8_offset,
ctrl_8.data,
sizeof(ctrl_8.data));
if (retval < 0)
return retval;
/* Maximum x and y */
rmi4_data->sensor_max_x = SENSOR_MAX_X;
rmi4_data->sensor_max_y = SENSOR_MAX_Y;
/* It's recommended to parse max_x and max_y from contrel register, but this does not match MTK's mtk-tpd.c */
dev_dbg(&rmi4_data->i2c_client->dev,
"%s: Function %02x max x = %d max y = %d\n",
__func__, fhandler->fn_number,
rmi4_data->sensor_max_x,
rmi4_data->sensor_max_y);
rmi4_data->num_of_rx = ctrl_8.num_of_rx;
rmi4_data->num_of_tx = ctrl_8.num_of_tx;
rmi4_data->max_touch_width = max(rmi4_data->num_of_rx,
rmi4_data->num_of_tx);
rmi4_data->f12_wakeup_gesture = query_5.ctrl27_is_present;
if (rmi4_data->f12_wakeup_gesture) {
extra_data->ctrl20_offset = ctrl_20_offset;
extra_data->data4_offset = query_8.data0_is_present +
query_8.data1_is_present +
query_8.data2_is_present +
query_8.data3_is_present;
extra_data->ctrl27_offset = ctrl_27_offset;
}
synaptics_rmi4_set_intr_mask(fhandler, fd, intr_count);
/* Allocate memory for finger data storage space */
fhandler->data_size = num_of_fingers * size_of_2d_data;
fhandler->data = kmalloc(fhandler->data_size, GFP_KERNEL);
if (!fhandler->data) {
dev_err(&rmi4_data->i2c_client->dev,
"%s: Failed to alloc mem for fhandler->data\n",
__func__);
return -ENOMEM;
}
return retval;
}
static int synaptics_rmi4_f1a_alloc_mem(struct synaptics_rmi4_data *rmi4_data,
struct synaptics_rmi4_fn *fhandler)
{
int retval;
struct synaptics_rmi4_f1a_handle *f1a;
f1a = kzalloc(sizeof(*f1a), GFP_KERNEL);
if (!f1a) {
dev_err(&rmi4_data->i2c_client->dev,
"%s: Failed to alloc mem for function handle\n",
__func__);
return -ENOMEM;
}
fhandler->data = (void *)f1a;
fhandler->extra = NULL;
retval = synaptics_rmi4_i2c_read(rmi4_data,
fhandler->full_addr.query_base,
f1a->button_query.data,
sizeof(f1a->button_query.data));
if (retval < 0) {
dev_err(&rmi4_data->i2c_client->dev,
"%s: Failed to read query registers\n",
__func__);
return retval;
}
f1a->max_count = f1a->button_query.max_button_count + 1;
f1a->button_control.txrx_map = kzalloc(f1a->max_count * 2, GFP_KERNEL);
if (!f1a->button_control.txrx_map) {
dev_err(&rmi4_data->i2c_client->dev,
"%s: Failed to alloc mem for tx rx mapping\n",
__func__);
return -ENOMEM;
}
f1a->button_bitmask_size = (f1a->max_count + 7) / 8;
f1a->button_data_buffer = kcalloc(f1a->button_bitmask_size,
sizeof(*(f1a->button_data_buffer)), GFP_KERNEL);
if (!f1a->button_data_buffer) {
dev_err(&rmi4_data->i2c_client->dev,
"%s: Failed to alloc mem for data buffer\n",
__func__);
return -ENOMEM;
}
f1a->button_map = kcalloc(f1a->max_count,
sizeof(*(f1a->button_map)), GFP_KERNEL);
if (!f1a->button_map) {
dev_err(&rmi4_data->i2c_client->dev,
"%s: Failed to alloc mem for button map\n",
__func__);
return -ENOMEM;
}
return 0;
}
static int synaptics_rmi4_f1a_button_map(struct synaptics_rmi4_data *rmi4_data,
struct synaptics_rmi4_fn *fhandler)
{
int retval;
unsigned char ii;
unsigned char mapping_offset = 0;
struct synaptics_rmi4_f1a_handle *f1a = fhandler->data;
mapping_offset = f1a->button_query.has_general_control +
f1a->button_query.has_interrupt_enable +
f1a->button_query.has_multibutton_select;
if (f1a->button_query.has_tx_rx_map) {
retval = synaptics_rmi4_i2c_read(rmi4_data,
fhandler->full_addr.ctrl_base + mapping_offset,
f1a->button_control.txrx_map,
sizeof(f1a->button_control.txrx_map));
if (retval < 0) {
dev_err(&rmi4_data->i2c_client->dev,
"%s: Failed to read tx rx mapping\n",
__func__);
return retval;
}
rmi4_data->button_txrx_mapping = f1a->button_control.txrx_map;
}
if (cap_button_map.map) {
if (cap_button_map.nbuttons != f1a->max_count) {
f1a->valid_button_count = min(f1a->max_count,
cap_button_map.nbuttons);
} else {
f1a->valid_button_count = f1a->max_count;
}
for (ii = 0; ii < f1a->valid_button_count; ii++)
f1a->button_map[ii] = cap_button_map.map[ii];
}
return 0;
}
static void synaptics_rmi4_f1a_kfree(struct synaptics_rmi4_fn *fhandler)
{
struct synaptics_rmi4_f1a_handle *f1a = fhandler->data;
if (f1a) {
kfree(f1a->button_control.txrx_map);
kfree(f1a->button_data_buffer);
kfree(f1a->button_map);
kfree(f1a);
fhandler->data = NULL;
}
return;
}
static int synaptics_rmi4_f1a_init(struct synaptics_rmi4_data *rmi4_data,
struct synaptics_rmi4_fn *fhandler,
struct synaptics_rmi4_fn_desc *fd,
unsigned int intr_count)
{
int retval;
fhandler->fn_number = fd->fn_number;
fhandler->num_of_data_sources = fd->intr_src_count;
synaptics_rmi4_set_intr_mask(fhandler, fd, intr_count);
retval = synaptics_rmi4_f1a_alloc_mem(rmi4_data, fhandler);
if (retval < 0)
goto error_exit;
retval = synaptics_rmi4_f1a_button_map(rmi4_data, fhandler);
if (retval < 0)
goto error_exit;
rmi4_data->button_0d_enabled = 1;
return 0;
error_exit:
synaptics_rmi4_f1a_kfree(fhandler);
return retval;
}
static void synaptics_rmi4_empty_fn_list(struct synaptics_rmi4_data *rmi4_data)
{
struct synaptics_rmi4_fn *fhandler;
struct synaptics_rmi4_fn *fhandler_temp;
struct synaptics_rmi4_device_info *rmi;
rmi = &(rmi4_data->rmi4_mod_info);
if (!list_empty(&rmi->support_fn_list)) {
list_for_each_entry_safe(fhandler,
fhandler_temp,
&rmi->support_fn_list,
link) {
if (fhandler->fn_number == SYNAPTICS_RMI4_F1A) {
synaptics_rmi4_f1a_kfree(fhandler);
} else {
kfree(fhandler->extra);
kfree(fhandler->data);
}
list_del(&fhandler->link);
kfree(fhandler);
}
}
INIT_LIST_HEAD(&rmi->support_fn_list);
return;
}
static int synaptics_rmi4_check_status(struct synaptics_rmi4_data *rmi4_data,
bool *was_in_bl_mode)
{
int retval;
int timeout = CHECK_STATUS_TIMEOUT_MS;
unsigned char command = 0x01;
unsigned char intr_status;
struct synaptics_rmi4_f01_device_status status;
/* Do a device reset first */
retval = synaptics_rmi4_i2c_write(rmi4_data,
rmi4_data->f01_cmd_base_addr,
&command,
sizeof(command));
if (retval < 0)
return retval;
msleep(DELAY_UI_READY);
retval = synaptics_rmi4_i2c_read(rmi4_data,
rmi4_data->f01_data_base_addr,
status.data,
sizeof(status.data));
if (retval < 0)
return retval;
while (status.status_code == STATUS_CRC_IN_PROGRESS) {
if (timeout > 0)
msleep(20);
else
return -1;
retval = synaptics_rmi4_i2c_read(rmi4_data,
rmi4_data->f01_data_base_addr,
status.data,
sizeof(status.data));
if (retval < 0)
return retval;
timeout -= 20;
}
if (timeout != CHECK_STATUS_TIMEOUT_MS)
*was_in_bl_mode = true;
if (status.flash_prog == 1) {
rmi4_data->flash_prog_mode = true;
pr_notice("%s: In flash prog mode, status = 0x%02x\n",
__func__,
status.status_code);
} else {
rmi4_data->flash_prog_mode = false;
}
retval = synaptics_rmi4_i2c_read(rmi4_data,
rmi4_data->f01_data_base_addr + 1,
&intr_status,
sizeof(intr_status));
if (retval < 0) {
dev_err(&rmi4_data->i2c_client->dev,
"%s: Failed to read interrupt status\n",
__func__);
return retval;
}
return 0;
}
static void synaptics_rmi4_set_configured(struct synaptics_rmi4_data *rmi4_data)
{
int retval;
unsigned char device_ctrl;
retval = synaptics_rmi4_i2c_read(rmi4_data,
rmi4_data->f01_ctrl_base_addr,
&device_ctrl,
sizeof(device_ctrl));
if (retval < 0) {
dev_err(&(rmi4_data->input_dev->dev),
"%s: Failed to set configured\n",
__func__);
return;
}
rmi4_data->no_sleep_setting = device_ctrl & NO_SLEEP_ON;
device_ctrl |= CONFIGURED;
retval = synaptics_rmi4_i2c_write(rmi4_data,
rmi4_data->f01_ctrl_base_addr,
&device_ctrl,
sizeof(device_ctrl));
if (retval < 0) {
dev_err(&(rmi4_data->input_dev->dev),
"%s: Failed to set configured\n",
__func__);
}
return;
}
static int synaptics_rmi4_alloc_fh(struct synaptics_rmi4_fn **fhandler,
struct synaptics_rmi4_fn_desc *rmi_fd, int page_number)
{
*fhandler = kmalloc(sizeof(**fhandler), GFP_KERNEL);
if (!(*fhandler))
return -ENOMEM;
(*fhandler)->full_addr.data_base =
(rmi_fd->data_base_addr |
(page_number << 8));
(*fhandler)->full_addr.ctrl_base =
(rmi_fd->ctrl_base_addr |
(page_number << 8));
(*fhandler)->full_addr.cmd_base =
(rmi_fd->cmd_base_addr |
(page_number << 8));
(*fhandler)->full_addr.query_base =
(rmi_fd->query_base_addr |
(page_number << 8));
return 0;
}
/**
* synaptics_rmi4_query_device()
*
* Called by synaptics_rmi4_probe().
*
* This function scans the page description table, records the offsets
* to the register types of Function $01, sets up the function handlers
* for Function $11 and Function $12, determines the number of interrupt
* sources from the sensor, adds valid Functions with data inputs to the
* Function linked list, parses information from the query registers of
* Function $01, and enables the interrupt sources from the valid Functions
* with data inputs.
*/
static int synaptics_rmi4_query_device(struct synaptics_rmi4_data *rmi4_data)
{
int retval;
unsigned char ii;
unsigned char page_number;
unsigned char intr_count;
unsigned char f01_query[F01_STD_QUERY_LEN];
unsigned short pdt_entry_addr;
unsigned short intr_addr;
bool was_in_bl_mode;
struct synaptics_rmi4_fn_desc rmi_fd;
struct synaptics_rmi4_fn *fhandler;
struct synaptics_rmi4_device_info *rmi;
rmi = &(rmi4_data->rmi4_mod_info);
rescan_pdt:
was_in_bl_mode = false;
intr_count = 0;
INIT_LIST_HEAD(&rmi->support_fn_list);
/* Scan the page description tables of the pages to service */
for (page_number = 0; page_number < PAGES_TO_SERVICE; page_number++) {
for (pdt_entry_addr = PDT_START; pdt_entry_addr > PDT_END;
pdt_entry_addr -= PDT_ENTRY_SIZE) {
pdt_entry_addr |= (page_number << 8);
retval = synaptics_rmi4_i2c_read(rmi4_data,
pdt_entry_addr,
(unsigned char *)&rmi_fd,
sizeof(rmi_fd));
if (retval < 0)
return retval;
fhandler = NULL;
if (rmi_fd.fn_number == 0) {
dev_dbg(&rmi4_data->i2c_client->dev,
"%s: Reached end of PDT\n",
__func__);
break;
}
dev_dbg(&rmi4_data->i2c_client->dev,
"%s: F%02x found (page %d)\n",
__func__, rmi_fd.fn_number,
page_number);
switch (rmi_fd.fn_number) {
case SYNAPTICS_RMI4_F01:
if (rmi_fd.intr_src_count == 0)
break;
retval = synaptics_rmi4_alloc_fh(&fhandler,
&rmi_fd, page_number);
if (retval < 0) {
dev_err(&rmi4_data->i2c_client->dev,
"%s: Failed to alloc for F%d\n",
__func__,
rmi_fd.fn_number);
return retval;
}
retval = synaptics_rmi4_f01_init(rmi4_data,
fhandler, &rmi_fd, intr_count);
if (retval < 0)
return retval;
retval = synaptics_rmi4_check_status(rmi4_data,
&was_in_bl_mode);
if (retval < 0) {
dev_err(&rmi4_data->i2c_client->dev,
"%s: Failed to check status\n",
__func__);
return retval;
}
if (was_in_bl_mode) {
kfree(fhandler);
fhandler = NULL;
goto rescan_pdt;
}
if (rmi4_data->flash_prog_mode)
goto flash_prog_mode;
break;
case SYNAPTICS_RMI4_F11:
if (rmi_fd.intr_src_count == 0)
break;
retval = synaptics_rmi4_alloc_fh(&fhandler,
&rmi_fd, page_number);
if (retval < 0) {
dev_err(&rmi4_data->i2c_client->dev,
"%s: Failed to alloc for F%d\n",
__func__,
rmi_fd.fn_number);
return retval;
}
retval = synaptics_rmi4_f11_init(rmi4_data,
fhandler, &rmi_fd, intr_count);
if (retval < 0)
return retval;
break;
case SYNAPTICS_RMI4_F12:
if (rmi_fd.intr_src_count == 0)
break;
retval = synaptics_rmi4_alloc_fh(&fhandler,
&rmi_fd, page_number);
if (retval < 0) {
dev_err(&rmi4_data->i2c_client->dev,
"%s: Failed to alloc for F%d\n",
__func__,
rmi_fd.fn_number);
return retval;
}
retval = synaptics_rmi4_f12_init(rmi4_data,
fhandler, &rmi_fd, intr_count);
if (retval < 0)
return retval;
break;
case SYNAPTICS_RMI4_F1A:
if (rmi_fd.intr_src_count == 0)
break;
retval = synaptics_rmi4_alloc_fh(&fhandler,
&rmi_fd, page_number);
if (retval < 0) {
dev_err(&rmi4_data->i2c_client->dev,
"%s: Failed to alloc for F%d\n",
__func__,
rmi_fd.fn_number);
return retval;
}
retval = synaptics_rmi4_f1a_init(rmi4_data,
fhandler, &rmi_fd, intr_count);
if (retval < 0) {
#ifdef IGNORE_FN_INIT_FAILURE
kfree(fhandler);
fhandler = NULL;
#else
return retval;
#endif
}
break;
}
/* Accumulate the interrupt count */
intr_count += (rmi_fd.intr_src_count & MASK_3BIT);
if (fhandler && rmi_fd.intr_src_count) {
list_add_tail(&fhandler->link,
&rmi->support_fn_list);
}
}
}
flash_prog_mode:
rmi4_data->num_of_intr_regs = (intr_count + 7) / 8;
dev_dbg(&rmi4_data->i2c_client->dev,
"%s: Number of interrupt registers = %d\n",
__func__, rmi4_data->num_of_intr_regs);
retval = synaptics_rmi4_i2c_read(rmi4_data,
rmi4_data->f01_query_base_addr,
f01_query,
sizeof(f01_query));
if (retval < 0)
return retval;
/* RMI Version 4.0 currently supported */
rmi->version_major = 4;
rmi->version_minor = 0;
rmi->manufacturer_id = f01_query[0];
rmi->product_props = f01_query[1];
rmi->product_info[0] = f01_query[2] & MASK_7BIT;
rmi->product_info[1] = f01_query[3] & MASK_7BIT;
rmi->date_code[0] = f01_query[4] & MASK_5BIT;
rmi->date_code[1] = f01_query[5] & MASK_4BIT;
rmi->date_code[2] = f01_query[6] & MASK_5BIT;
rmi->tester_id = ((f01_query[7] & MASK_7BIT) << 8) |
(f01_query[8] & MASK_7BIT);
rmi->serial_number = ((f01_query[9] & MASK_7BIT) << 8) |
(f01_query[10] & MASK_7BIT);
memcpy(rmi->product_id_string, &f01_query[11], 10);
if (rmi->manufacturer_id != 1) {
dev_err(&rmi4_data->i2c_client->dev,
"%s: Non-Synaptics device found, manufacturer ID = %d\n",
__func__, rmi->manufacturer_id);
}
retval = synaptics_rmi4_i2c_read(rmi4_data,
rmi4_data->f01_query_base_addr + F01_BUID_ID_OFFSET,
rmi->build_id,
sizeof(rmi->build_id));
if (retval < 0)
return retval;
rmi4_data->firmware_id = (unsigned int)rmi->build_id[0] +
(unsigned int)rmi->build_id[1] * 0x100 +
(unsigned int)rmi->build_id[2] * 0x10000;
memset(rmi4_data->intr_mask, 0x00, sizeof(rmi4_data->intr_mask));
/*
* Map out the interrupt bit masks for the interrupt sources
* from the registered function handlers.
*/
if (!list_empty(&rmi->support_fn_list)) {
list_for_each_entry(fhandler, &rmi->support_fn_list, link) {
if (fhandler->num_of_data_sources) {
rmi4_data->intr_mask[fhandler->intr_reg_num] |=
fhandler->intr_mask;
}
}
}
if (rmi4_data->f11_wakeup_gesture || rmi4_data->f12_wakeup_gesture)
rmi4_data->enable_wakeup_gesture = WAKEUP_GESTURE;
else
rmi4_data->enable_wakeup_gesture = false;
/* Enable the interrupt sources */
for (ii = 0; ii < rmi4_data->num_of_intr_regs; ii++) {
if (rmi4_data->intr_mask[ii] != 0x00) {
dev_dbg(&rmi4_data->i2c_client->dev,
"%s: Interrupt enable mask %d = 0x%02x\n",
__func__, ii, rmi4_data->intr_mask[ii]);
intr_addr = rmi4_data->f01_ctrl_base_addr + 1 + ii;
retval = synaptics_rmi4_i2c_write(rmi4_data,
intr_addr,
&(rmi4_data->intr_mask[ii]),
sizeof(rmi4_data->intr_mask[ii]));
if (retval < 0)
return retval;
}
}
synaptics_rmi4_set_configured(rmi4_data);
return 0;
}
static void synaptics_rmi4_set_params(struct synaptics_rmi4_data *rmi4_data)
{
unsigned char ii;
struct synaptics_rmi4_f1a_handle *f1a;
struct synaptics_rmi4_fn *fhandler;
struct synaptics_rmi4_device_info *rmi;
rmi = &(rmi4_data->rmi4_mod_info);
input_set_abs_params(rmi4_data->input_dev,
ABS_MT_POSITION_X, 0,
rmi4_data->sensor_max_x, 0, 0);
input_set_abs_params(rmi4_data->input_dev,
ABS_MT_POSITION_Y, 0,
rmi4_data->sensor_max_y, 0, 0);
#ifdef REPORT_2D_W
input_set_abs_params(rmi4_data->input_dev,
ABS_MT_TOUCH_MAJOR, 0,
rmi4_data->max_touch_width, 0, 0);
input_set_abs_params(rmi4_data->input_dev,
ABS_MT_TOUCH_MINOR, 0,
rmi4_data->max_touch_width, 0, 0);
#endif
#ifdef TYPE_B_PROTOCOL
input_mt_init_slots(rmi4_data->input_dev,
rmi4_data->num_of_fingers, 0);
#endif
f1a = NULL;
if (!list_empty(&rmi->support_fn_list)) {
list_for_each_entry(fhandler, &rmi->support_fn_list, link) {
if (fhandler->fn_number == SYNAPTICS_RMI4_F1A)
f1a = fhandler->data;
}
}
if (f1a) {
for (ii = 0; ii < f1a->valid_button_count; ii++) {
set_bit(f1a->button_map[ii],
rmi4_data->input_dev->keybit);
input_set_capability(rmi4_data->input_dev,
EV_KEY, f1a->button_map[ii]);
}
}
if (rmi4_data->f11_wakeup_gesture || rmi4_data->f12_wakeup_gesture) {
set_bit(KEY_POWER, rmi4_data->input_dev->keybit);
input_set_capability(rmi4_data->input_dev, EV_KEY, KEY_POWER);
}
return;
}
static int synaptics_rmi4_set_input_dev(struct synaptics_rmi4_data *rmi4_data)
{
int retval;
rmi4_data->input_dev = input_allocate_device();
if (rmi4_data->input_dev == NULL) {
dev_err(&rmi4_data->i2c_client->dev,
"%s: Failed to allocate input device\n",
__func__);
retval = -ENOMEM;
goto err_input_device;
}
retval = synaptics_rmi4_query_device(rmi4_data);
if (retval < 0) {
dev_err(&rmi4_data->i2c_client->dev,
"%s: Failed to query device\n",
__func__);
goto err_query_device;
}
rmi4_data->input_dev->name = DRIVER_NAME;
rmi4_data->input_dev->phys = INPUT_PHYS_NAME;
rmi4_data->input_dev->id.product = SYNAPTICS_DSX_DRIVER_PRODUCT;
rmi4_data->input_dev->id.version = SYNAPTICS_DSX_DRIVER_VERSION;
rmi4_data->input_dev->id.bustype = BUS_I2C;
rmi4_data->input_dev->dev.parent = &rmi4_data->i2c_client->dev;
input_set_drvdata(rmi4_data->input_dev, rmi4_data);
set_bit(EV_SYN, rmi4_data->input_dev->evbit);
set_bit(EV_KEY, rmi4_data->input_dev->evbit);
set_bit(EV_ABS, rmi4_data->input_dev->evbit);
set_bit(BTN_TOUCH, rmi4_data->input_dev->keybit);
set_bit(BTN_TOOL_FINGER, rmi4_data->input_dev->keybit);
#ifdef INPUT_PROP_DIRECT
set_bit(INPUT_PROP_DIRECT, rmi4_data->input_dev->propbit);
#endif
synaptics_rmi4_set_params(rmi4_data);
retval = input_register_device(rmi4_data->input_dev);
if (retval) {
dev_err(&rmi4_data->i2c_client->dev,
"%s: Failed to register input device\n",
__func__);
goto err_register_input;
}
return 0;
err_register_input:
err_query_device:
synaptics_rmi4_empty_fn_list(rmi4_data);
input_free_device(rmi4_data->input_dev);
err_input_device:
return retval;
}
static int synaptics_rmi4_free_fingers(struct synaptics_rmi4_data *rmi4_data)
{
unsigned char ii;
mutex_lock(&rmi4_report_mutex);
#ifdef TYPE_B_PROTOCOL
for (ii = 0; ii < rmi4_data->num_of_fingers; ii++) {
input_mt_slot(rmi4_data->input_dev, ii);
input_mt_report_slot_state(rmi4_data->input_dev,
MT_TOOL_FINGER, 0);
}
#endif
input_report_key(rmi4_data->input_dev,
BTN_TOUCH, 0);
input_report_key(rmi4_data->input_dev,
BTN_TOOL_FINGER, 0);
#ifndef TYPE_B_PROTOCOL
input_mt_sync(rmi4_data->input_dev);
#endif
input_sync(rmi4_data->input_dev);
mutex_unlock(&rmi4_report_mutex);
rmi4_data->fingers_on_2d = false;
return 0;
}
static int synaptics_rmi4_reinit_device(struct synaptics_rmi4_data *rmi4_data)
{
int retval;
unsigned char ii;
unsigned short intr_addr;
struct synaptics_rmi4_fn *fhandler;
struct synaptics_rmi4_exp_fhandler *exp_fhandler;
struct synaptics_rmi4_device_info *rmi;
rmi = &(rmi4_data->rmi4_mod_info);
mutex_lock(&(rmi4_data->rmi4_reset_mutex));
synaptics_rmi4_free_fingers(rmi4_data);
if (!list_empty(&rmi->support_fn_list)) {
list_for_each_entry(fhandler, &rmi->support_fn_list, link) {
if (fhandler->fn_number == SYNAPTICS_RMI4_F12) {
synaptics_rmi4_f12_set_enables(rmi4_data, 0);
break;
}
}
}
for (ii = 0; ii < rmi4_data->num_of_intr_regs; ii++) {
if (rmi4_data->intr_mask[ii] != 0x00) {
dev_dbg(&rmi4_data->i2c_client->dev,
"%s: Interrupt enable mask %d = 0x%02x\n",
__func__, ii, rmi4_data->intr_mask[ii]);
intr_addr = rmi4_data->f01_ctrl_base_addr + 1 + ii;
retval = synaptics_rmi4_i2c_write(rmi4_data,
intr_addr,
&(rmi4_data->intr_mask[ii]),
sizeof(rmi4_data->intr_mask[ii]));
if (retval < 0)
goto exit;
}
}
mutex_lock(&exp_data.mutex);
if (!list_empty(&exp_data.list)) {
list_for_each_entry(exp_fhandler, &exp_data.list, link)
if (exp_fhandler->exp_fn->reinit != NULL)
exp_fhandler->exp_fn->reinit(rmi4_data);
}
mutex_unlock(&exp_data.mutex);
synaptics_rmi4_set_configured(rmi4_data);
retval = 0;
exit:
mutex_unlock(&(rmi4_data->rmi4_reset_mutex));
return retval;
}
static int synaptics_rmi4_reset_device(struct synaptics_rmi4_data *rmi4_data)
{
int retval;
unsigned char command = 0x01;
struct synaptics_rmi4_exp_fhandler *exp_fhandler;
mutex_lock(&(rmi4_data->rmi4_reset_mutex));
rmi4_data->touch_stopped = true;
synaptics_rmi4_irq_enable(rmi4_data, false);
retval = synaptics_rmi4_i2c_write(rmi4_data,
rmi4_data->f01_cmd_base_addr,
&command,
sizeof(command));
if (retval < 0) {
dev_err(&rmi4_data->i2c_client->dev,
"%s: Failed to issue reset command, error = %d\n",
__func__, retval);
mutex_unlock(&(rmi4_data->rmi4_reset_mutex));
return retval;
}
msleep(DELAY_UI_READY);
synaptics_rmi4_free_fingers(rmi4_data);
synaptics_rmi4_empty_fn_list(rmi4_data);
retval = synaptics_rmi4_query_device(rmi4_data);
if (retval < 0) {
dev_err(&rmi4_data->i2c_client->dev,
"%s: Failed to query device\n",
__func__);
mutex_unlock(&(rmi4_data->rmi4_reset_mutex));
return retval;
}
synaptics_rmi4_set_params(rmi4_data);
mutex_lock(&exp_data.mutex);
if (!list_empty(&exp_data.list)) {
list_for_each_entry(exp_fhandler, &exp_data.list, link)
if (exp_fhandler->exp_fn->reset != NULL)
exp_fhandler->exp_fn->reset(rmi4_data);
}
mutex_unlock(&exp_data.mutex);
rmi4_data->touch_stopped = false;
synaptics_rmi4_irq_enable(rmi4_data, true);
mutex_unlock(&(rmi4_data->rmi4_reset_mutex));
return 0;
}
static void synaptics_rmi4_sleep_enable(struct synaptics_rmi4_data *rmi4_data,
bool enable)
{
int retval;
unsigned char device_ctrl;
unsigned char no_sleep_setting = rmi4_data->no_sleep_setting;
retval = synaptics_rmi4_i2c_read(rmi4_data,
rmi4_data->f01_ctrl_base_addr,
&device_ctrl,
sizeof(device_ctrl));
if (retval < 0) {
dev_err(&rmi4_data->i2c_client->dev,
"%s: Failed to read device control\n",
__func__);
return;
}
device_ctrl = device_ctrl & ~MASK_3BIT;
if (enable)
device_ctrl = device_ctrl | NO_SLEEP_OFF | SENSOR_SLEEP;
else
device_ctrl = device_ctrl | no_sleep_setting | NORMAL_OPERATION;
retval = synaptics_rmi4_i2c_write(rmi4_data,
rmi4_data->f01_ctrl_base_addr,
&device_ctrl,
sizeof(device_ctrl));
if (retval < 0) {
dev_err(&rmi4_data->i2c_client->dev,
"%s: Failed to write device control\n",
__func__);
return;
}
rmi4_data->sensor_sleep = enable;
return;
}
/**
* synaptics_rmi4_exp_fn_work()
*
* Called by the kernel at the scheduled time.
*
* This function is a work thread that checks for the insertion and
* removal of other expansion Function modules such as rmi_dev and calls
* their initialization and removal callback functions accordingly.
*/
static void synaptics_rmi4_exp_fn_work(struct work_struct *work)
{
int retval;
struct synaptics_rmi4_exp_fhandler *exp_fhandler;
struct synaptics_rmi4_exp_fhandler *exp_fhandler_temp;
struct synaptics_rmi4_data *rmi4_data = exp_data.rmi4_data;
mutex_lock(&exp_data.mutex);
if (!list_empty(&exp_data.list)) {
list_for_each_entry_safe(exp_fhandler,
exp_fhandler_temp,
&exp_data.list,
link) {
if ((exp_fhandler->exp_fn->init != NULL) &&
exp_fhandler->insert) {
retval = exp_fhandler->exp_fn->init(rmi4_data);
if (retval < 0) {
list_del(&exp_fhandler->link);
kfree(exp_fhandler);
} else {
exp_fhandler->insert = false;
}
} else if ((exp_fhandler->exp_fn->remove != NULL) &&
exp_fhandler->remove) {
exp_fhandler->exp_fn->remove(rmi4_data);
list_del(&exp_fhandler->link);
kfree(exp_fhandler);
}
}
}
mutex_unlock(&exp_data.mutex);
return;
}
/**
* synaptics_rmi4_new_function()
*
* Called by other expansion Function modules in their module init and
* module exit functions.
*
* This function is used by other expansion Function modules such as
* rmi_dev to register themselves with the driver by providing their
* initialization and removal callback function pointers so that they
* can be inserted or removed dynamically at module init and exit times,
* respectively.
*/
void synaptics_rmi4_new_function(struct synaptics_rmi4_exp_fn *exp_fn,
bool insert)
{
struct synaptics_rmi4_exp_fhandler *exp_fhandler;
if (!exp_data.initialized) {
mutex_init(&exp_data.mutex);
INIT_LIST_HEAD(&exp_data.list);
exp_data.initialized = true;
}
mutex_lock(&exp_data.mutex);
if (insert) {
exp_fhandler = kzalloc(sizeof(*exp_fhandler), GFP_KERNEL);
if (!exp_fhandler) {
pr_err("%s: Failed to alloc mem for expansion function\n",
__func__);
goto exit;
}
exp_fhandler->exp_fn = exp_fn;
exp_fhandler->insert = true;
exp_fhandler->remove = false;
list_add_tail(&exp_fhandler->link, &exp_data.list);
} else if (!list_empty(&exp_data.list)) {
list_for_each_entry(exp_fhandler, &exp_data.list, link) {
if (exp_fhandler->exp_fn->fn_type == exp_fn->fn_type) {
exp_fhandler->insert = false;
exp_fhandler->remove = true;
goto exit;
}
}
}
exit:
mutex_unlock(&exp_data.mutex);
if (exp_data.queue_work) {
queue_delayed_work(exp_data.workqueue,
&exp_data.work,
msecs_to_jiffies(EXP_FN_WORK_DELAY_MS));
}
return;
}
EXPORT_SYMBOL(synaptics_rmi4_new_function);
static ssize_t synaptics_rmi4_f34_configid_show(struct device *dev,
struct device_attribute *attr, char *buf)
{
struct synaptics_rmi4_data *rmi4_data = dev_get_drvdata(dev);
return snprintf(buf, PAGE_SIZE, "0x%x\n", rmi4_data->config_id);
}
static ssize_t synaptics_rmi4_f01_product_id_show(struct device *dev,
struct device_attribute *attr, char *buf)
{
struct synaptics_rmi4_data *rmi4_data = dev_get_drvdata(dev);
return snprintf(buf, PAGE_SIZE, "%s\n",
(rmi4_data->rmi4_mod_info.product_id_string));
}
static DEVICE_ATTR(tp_firmware_version, 0664, synaptics_rmi4_f34_configid_show, synaptics_rmi4_store_error);
static DEVICE_ATTR(product_id, 0664, synaptics_rmi4_f01_product_id_show, synaptics_rmi4_store_error);
static struct attribute *synaptics_rmi4_attrs[] = {
attrify(tp_firmware_version),
attrify(product_id),
NULL,
};
static struct attribute_group attr_group = {
.attrs = synaptics_rmi4_attrs,
};
/**
* synaptics_rmi4_probe()
*
* Called by the kernel when an association with an I2C device of the
* same name is made (after doing i2c_add_driver).
*
* This function allocates and initializes the resources for the driver
* as an input driver, turns on the power to the sensor, queries the
* sensor for its supported Functions and characteristics, registers
* the driver to the input subsystem, sets up the interrupt, handles
* the registration of the early_suspend and late_resume functions,
* and creates a work queue for detection of other expansion Function
* modules.
*/
static int synaptics_rmi4_probe(struct i2c_client *client,
const struct i2c_device_id *dev_id)
{
int retval, ret;
unsigned char attr_count;
struct synaptics_rmi4_data *rmi4_data;
struct device_node *np = client->dev.of_node;
#if 0
int rst_gpio;
#endif
if (!i2c_check_functionality(client->adapter,
I2C_FUNC_SMBUS_BYTE_DATA)) {
dev_err(&client->dev,
"%s: SMBus byte data not supported\n",
__func__);
return -EIO;
}
#ifdef USE_I2C_DMA
wDMABuf_va = (unsigned char *)dma_zalloc_coherent(&client->dev, WRITE_SIZE_LIMIT,
&wDMABuf_pa, GFP_KERNEL);
if (!wDMABuf_va) {
dev_err(&client->dev, "Allocate DMA I2C Buffer failed, exit\n");
return -ENOMEM;
}
#endif
if (!np)
return -ENODEV;
#if 0
rst_gpio = of_get_named_gpio(np, "rest-gpios", 0);
if (!gpio_is_valid(rst_gpio))
return -ENODEV;
ret = gpio_request(rst_gpio, "synaptics_rmi4_rest");
if (ret < 0) {
dev_err(&client->dev,
"request rest gpio failed, cannot wake up controller: %d\n",
ret);
return ret;
}
gpio_direction_output(rst_gpio, 0);
gpio_set_value(rst_gpio, 1);
msleep(DELAY_BOOT_READY);
gpio_set_value(rst_gpio, 0);
msleep(DELAY_RESET_LOW);
gpio_set_value(rst_gpio, 1);
msleep(DELAY_UI_READY);
#endif
rmi4_data = kzalloc(sizeof(*rmi4_data), GFP_KERNEL);
if (!rmi4_data) {
dev_err(&client->dev,
"%s: Failed to alloc mem for rmi4_data\n",
__func__);
return -ENOMEM;
}
rmi4_data->i2c_client = client;
rmi4_data->current_page = MASK_8BIT;
rmi4_data->touch_stopped = false;
rmi4_data->sensor_sleep = false;
rmi4_data->irq_enabled = false;
rmi4_data->fingers_on_2d = false;
rmi4_data->i2c_read = synaptics_rmi4_i2c_read;
rmi4_data->i2c_write = synaptics_rmi4_i2c_write;
rmi4_data->irq_enable = synaptics_rmi4_irq_enable;
rmi4_data->reset_device = synaptics_rmi4_reset_device;
rmi4_data->sleep_enable = synaptics_rmi4_sleep_enable;
rmi4_data->i2c_addr = client->addr;
mutex_init(&(rmi4_data->rmi4_io_ctrl_mutex));
mutex_init(&(rmi4_data->rmi4_reset_mutex));
mutex_init(&(rmi4_data->rmi4_exp_init_mutex));
i2c_set_clientdata(client, rmi4_data);
retval = synaptics_rmi4_set_input_dev(rmi4_data);
if (retval < 0) {
dev_err(&client->dev,
"%s: Failed to set up input device\n",
__func__);
goto err_set_input_dev;
}
thread = kthread_run(touch_event_handler, rmi4_data, "synaptics_dsx");
if (IS_ERR(thread)) {
retval = PTR_ERR(thread);
pr_err(" %s: failed to create kernel thread: %d\n", __func__, retval);
}
touch_irq = client->irq;
ret = devm_request_irq(&client->dev, touch_irq, (irq_handler_t) tpd_eint_handler,
IRQF_TRIGGER_LOW, "synaptics_rmi4_touch", NULL);
disable_irq_nosync(touch_irq);
retval = synaptics_rmi4_irq_enable(rmi4_data, true);
if (retval < 0) {
dev_err(&client->dev,
"%s: Failed to register attention interrupt\n",
__func__);
goto err_enable_irq;
}
if (!exp_data.initialized) {
mutex_init(&exp_data.mutex);
INIT_LIST_HEAD(&exp_data.list);
exp_data.initialized = true;
}
exp_data.workqueue = create_singlethread_workqueue("dsx_exp_workqueue");
INIT_DELAYED_WORK(&exp_data.work, synaptics_rmi4_exp_fn_work);
exp_data.rmi4_data = rmi4_data;
exp_data.queue_work = true;
queue_delayed_work(exp_data.workqueue,
&exp_data.work,
msecs_to_jiffies(EXP_FN_WORK_DELAY_MS));
for (attr_count = 0; attr_count < ARRAY_SIZE(attrs); attr_count++) {
retval = sysfs_create_file(&rmi4_data->input_dev->dev.kobj,
&attrs[attr_count].attr);
if (retval < 0) {
dev_err(&client->dev,
"%s: Failed to create sysfs attributes\n",
__func__);
goto err_sysfs;
}
}
retval = sysfs_create_group(&client->dev.kobj, &attr_group);
if (retval < 0) {
dev_err(&rmi4_data->i2c_client->dev,
"%s: Failed to create sysfs attributes\n",
__func__);
goto err_sysfs;
}
g_dev = &rmi4_data->input_dev->dev;
return retval;
err_sysfs:
sysfs_remove_group(&client->dev.kobj, &attr_group);
for (attr_count--; attr_count >= 0; attr_count--) {
sysfs_remove_file(&rmi4_data->input_dev->dev.kobj,
&attrs[attr_count].attr);
}
cancel_delayed_work_sync(&exp_data.work);
flush_workqueue(exp_data.workqueue);
destroy_workqueue(exp_data.workqueue);
synaptics_rmi4_irq_enable(rmi4_data, false);
err_enable_irq:
synaptics_rmi4_empty_fn_list(rmi4_data);
input_unregister_device(rmi4_data->input_dev);
rmi4_data->input_dev = NULL;
err_set_input_dev:
kfree(rmi4_data);
return retval;
}
/**
* synaptics_rmi4_remove()
*
* Called by the kernel when the association with an I2C device of the
* same name is broken (when the driver is unloaded).
*
* This function terminates the work queue, stops sensor data acquisition,
* frees the interrupt, unregisters the driver from the input subsystem,
* turns off the power to the sensor, and frees other allocated resources.
*/
static int synaptics_rmi4_remove(struct i2c_client *client)
{
unsigned char attr_count;
struct synaptics_rmi4_data *rmi4_data = i2c_get_clientdata(client);
for (attr_count = 0; attr_count < ARRAY_SIZE(attrs); attr_count++) {
sysfs_remove_file(&rmi4_data->input_dev->dev.kobj,
&attrs[attr_count].attr);
}
cancel_delayed_work_sync(&exp_data.work);
flush_workqueue(exp_data.workqueue);
destroy_workqueue(exp_data.workqueue);
synaptics_rmi4_irq_enable(rmi4_data, false);
synaptics_rmi4_empty_fn_list(rmi4_data);
input_unregister_device(rmi4_data->input_dev);
rmi4_data->input_dev = NULL;
#ifdef USE_I2C_DMA
if (wDMABuf_va)
dma_free_coherent(&client->dev, WRITE_SIZE_LIMIT, wDMABuf_va, wDMABuf_pa);
#endif
kfree(rmi4_data);
return 0;
}
#ifdef CONFIG_PM
static void synaptics_rmi4_f11_wg(struct synaptics_rmi4_data *rmi4_data,
bool enable)
{
int retval;
unsigned char reporting_control;
struct synaptics_rmi4_fn *fhandler;
struct synaptics_rmi4_device_info *rmi;
rmi = &(rmi4_data->rmi4_mod_info);
list_for_each_entry(fhandler, &rmi->support_fn_list, link) {
if (fhandler->fn_number == SYNAPTICS_RMI4_F11)
break;
}
retval = synaptics_rmi4_i2c_read(rmi4_data,
fhandler->full_addr.ctrl_base,
&reporting_control,
sizeof(reporting_control));
if (retval < 0) {
dev_err(&(rmi4_data->input_dev->dev),
"%s: Failed to change reporting mode\n",
__func__);
return;
}
reporting_control = (reporting_control & ~MASK_3BIT);
if (enable)
reporting_control |= F11_WAKEUP_GESTURE_MODE;
else
reporting_control |= F11_CONTINUOUS_MODE;
retval = synaptics_rmi4_i2c_write(rmi4_data,
fhandler->full_addr.ctrl_base,
&reporting_control,
sizeof(reporting_control));
if (retval < 0) {
dev_err(&(rmi4_data->input_dev->dev),
"%s: Failed to change reporting mode\n",
__func__);
return;
}
return;
}
static void synaptics_rmi4_f12_wg(struct synaptics_rmi4_data *rmi4_data,
bool enable)
{
int retval;
unsigned char offset;
unsigned char reporting_control[3];
struct synaptics_rmi4_f12_extra_data *extra_data;
struct synaptics_rmi4_fn *fhandler;
struct synaptics_rmi4_device_info *rmi;
rmi = &(rmi4_data->rmi4_mod_info);
list_for_each_entry(fhandler, &rmi->support_fn_list, link) {
if (fhandler->fn_number == SYNAPTICS_RMI4_F12)
break;
}
extra_data = (struct synaptics_rmi4_f12_extra_data *)fhandler->extra;
offset = extra_data->ctrl20_offset;
retval = synaptics_rmi4_i2c_read(rmi4_data,
fhandler->full_addr.ctrl_base + offset,
reporting_control,
sizeof(reporting_control));
if (retval < 0) {
dev_err(&(rmi4_data->input_dev->dev),
"%s: Failed to change reporting mode\n",
__func__);
return;
}
if (enable)
reporting_control[2] = F12_WAKEUP_GESTURE_MODE;
else
reporting_control[2] = F12_CONTINUOUS_MODE;
retval = synaptics_rmi4_i2c_write(rmi4_data,
fhandler->full_addr.ctrl_base + offset,
reporting_control,
sizeof(reporting_control));
if (retval < 0) {
dev_err(&(rmi4_data->input_dev->dev),
"%s: Failed to change reporting mode\n",
__func__);
return;
}
return;
}
static void synaptics_rmi4_wakeup_gesture(struct synaptics_rmi4_data *rmi4_data,
bool enable)
{
if (rmi4_data->f11_wakeup_gesture)
synaptics_rmi4_f11_wg(rmi4_data, enable);
else if (rmi4_data->f12_wakeup_gesture)
synaptics_rmi4_f12_wg(rmi4_data, enable);
return;
}
/**
* synaptics_rmi4_suspend()
*
* Called by the kernel during the suspend phase when the system
* enters suspend.
*
* This function stops finger data acquisition and puts the sensor to
* sleep (if not already done so during the early suspend phase),
* disables the interrupt, and turns off the power to the sensor.
*/
static int __maybe_unused synaptics_rmi4_suspend(struct device *dev)
{
struct synaptics_rmi4_exp_fhandler *exp_fhandler;
struct synaptics_rmi4_data *rmi4_data = dev_get_drvdata(g_dev);
if (rmi4_data->staying_awake)
return 0;
if (rmi4_data->enable_wakeup_gesture) {
synaptics_rmi4_wakeup_gesture(rmi4_data, true);
goto exit;
}
if (!rmi4_data->sensor_sleep) {
rmi4_data->touch_stopped = true;
synaptics_rmi4_irq_enable(rmi4_data, false);
synaptics_rmi4_sleep_enable(rmi4_data, true);
synaptics_rmi4_free_fingers(rmi4_data);
}
tpd_halt = 1;
exit:
mutex_lock(&exp_data.mutex);
if (!list_empty(&exp_data.list)) {
list_for_each_entry(exp_fhandler, &exp_data.list, link)
if (exp_fhandler->exp_fn->suspend != NULL)
exp_fhandler->exp_fn->suspend(rmi4_data);
}
mutex_unlock(&exp_data.mutex);
rmi4_data->sensor_sleep = true;
return 0;
}
/**
* synaptics_rmi4_resume()
*
* Called by the kernel during the resume phase when the system
* wakes up from suspend.
*
* This function turns on the power to the sensor, wakes the sensor
* from sleep, enables the interrupt, and starts finger data
* acquisition.
*/
static int __maybe_unused synaptics_rmi4_resume(struct device *dev)
{
int retval;
struct synaptics_rmi4_exp_fhandler *exp_fhandler;
struct synaptics_rmi4_data *rmi4_data = dev_get_drvdata(g_dev);
if (rmi4_data->staying_awake)
return 0;
if (rmi4_data->enable_wakeup_gesture) {
synaptics_rmi4_wakeup_gesture(rmi4_data, false);
goto exit;
}
synaptics_rmi4_sleep_enable(rmi4_data, false);
synaptics_rmi4_irq_enable(rmi4_data, true);
retval = synaptics_rmi4_reinit_device(rmi4_data);
if (retval < 0) {
dev_err(&rmi4_data->i2c_client->dev,
"%s: Failed to reinit device\n",
__func__);
return 0;
}
exit:
mutex_lock(&exp_data.mutex);
if (!list_empty(&exp_data.list)) {
list_for_each_entry(exp_fhandler, &exp_data.list, link)
if (exp_fhandler->exp_fn->resume != NULL)
exp_fhandler->exp_fn->resume(rmi4_data);
}
mutex_unlock(&exp_data.mutex);
rmi4_data->sensor_sleep = false;
rmi4_data->touch_stopped = false;
tpd_halt = 0;
return 0;
}
#endif
static const struct i2c_device_id synaptics_rmi4_id_table[] = {
{"synaptics_dsx", 0},
{},
};
MODULE_DEVICE_TABLE(i2c, synaptics_rmi4_id_table);
static SIMPLE_DEV_PM_OPS(synaptics_rmi4_pm_ops, synaptics_rmi4_suspend, synaptics_rmi4_resume);
static const struct of_device_id synaptics_rmi4_dt_ids[] = {
{ .compatible = "synaptics_dsx" },
{ /* sentinel */},
};
static struct i2c_driver synaptics_rmi4_driver = {
.driver = {
.name = "synaptics_dsx",
.pm = &synaptics_rmi4_pm_ops,
.of_match_table = synaptics_rmi4_dt_ids,
},
.id_table = synaptics_rmi4_id_table,
.probe = synaptics_rmi4_probe,
.remove = synaptics_rmi4_remove,
};
module_i2c_driver(synaptics_rmi4_driver);
MODULE_AUTHOR("Synaptics, Inc.");
MODULE_DESCRIPTION("Synaptics DSX I2C Touch Driver");
MODULE_LICENSE("GPL v2");