blob: 3ee9f44d06a6d3cb5aca006d39916f8df253af40 [file] [log] [blame]
/*
* Freescale FlexSPI driver.
*
* Copyright 2017 NXP
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*/
#include <linux/kernel.h>
#include <linux/module.h>
#include <linux/interrupt.h>
#include <linux/errno.h>
#include <linux/platform_device.h>
#include <linux/sched.h>
#include <linux/delay.h>
#include <linux/io.h>
#include <linux/clk.h>
#include <linux/err.h>
#include <linux/of.h>
#include <linux/of_device.h>
#include <linux/timer.h>
#include <linux/jiffies.h>
#include <linux/completion.h>
#include <linux/mtd/mtd.h>
#include <linux/mtd/partitions.h>
#include <linux/mtd/spi-nor.h>
#include <linux/mutex.h>
#include <linux/pm_qos.h>
#include <linux/pci.h>
#include <soc/imx8/sc/sci.h>
#include <linux/pm_runtime.h>
/* runtime pm timeout */
#define FSL_FLEXSPI_RPM_TIMEOUT 50 /* 50ms */
/* The registers */
#define FLEXSPI_MCR0 0x00
#define FLEXSPI_MCR0_AHB_TIMEOUT_SHIFT 24
#define FLEXSPI_MCR0_AHB_TIMEOUT_MASK (0xFF << FLEXSPI_MCR0_AHB_TIMEOUT_SHIFT)
#define FLEXSPI_MCR0_IP_TIMEOUT_SHIFT 16
#define FLEXSPI_MCR0_IP_TIMEOUT_MASK (0xFF << FLEXSPI_MCR0_IP_TIMEOUT_SHIFT)
#define FLEXSPI_MCR0_LEARN_EN_SHIFT 15
#define FLEXSPI_MCR0_LEARN_EN_MASK (1 << FLEXSPI_MCR0_LEARN_EN_SHIFT)
#define FLEXSPI_MCR0_SCRFRUN_EN_SHIFT 14
#define FLEXSPI_MCR0_SCRFRUN_EN_MASK (1 << FLEXSPI_MCR0_SCRFRUN_EN_SHIFT)
#define FLEXSPI_MCR0_OCTCOMB_EN_SHIFT 13
#define FLEXSPI_MCR0_OCTCOMB_EN_MASK (1 << FLEXSPI_MCR0_OCTCOMB_EN_SHIFT)
#define FLEXSPI_MCR0_DOZE_EN_SHIFT 12
#define FLEXSPI_MCR0_DOZE_EN_MASK (1 << FLEXSPI_MCR0_DOZE_EN_SHIFT)
#define FLEXSPI_MCR0_HSEN_SHIFT 11
#define FLEXSPI_MCR0_HSEN_MASK (1 << FLEXSPI_MCR0_HSEN_SHIFT)
#define FLEXSPI_MCR0_SERCLKDIV_SHIFT 8
#define FLEXSPI_MCR0_SERCLKDIV_MASK (7 << FLEXSPI_MCR0_SERCLKDIV_SHIFT)
#define FLEXSPI_MCR0_ATDF_EN_SHIFT 7
#define FLEXSPI_MCR0_ATDF_EN_MASK (1 << FLEXSPI_MCR0_ATDF_EN_SHIFT)
#define FLEXSPI_MCR0_ARDF_EN_SHIFT 6
#define FLEXSPI_MCR0_ARDF_EN_MASK (1 << FLEXSPI_MCR0_ARDF_EN_SHIFT)
#define FLEXSPI_MCR0_RXCLKSRC_SHIFT 4
#define FLEXSPI_MCR0_RXCLKSRC_MASK (3 << FLEXSPI_MCR0_RXCLKSRC_SHIFT)
#define FLEXSPI_MCR0_END_CFG_SHIFT 2
#define FLEXSPI_MCR0_END_CFG_MASK (3 << FLEXSPI_MCR0_END_CFG_SHIFT)
#define FLEXSPI_MCR0_MDIS_SHIFT 1
#define FLEXSPI_MCR0_MDIS_MASK (1 << FLEXSPI_MCR0_MDIS_SHIFT)
#define FLEXSPI_MCR0_SWRST_SHIFT 0
#define FLEXSPI_MCR0_SWRST_MASK (1 << FLEXSPI_MCR0_SWRST_SHIFT)
#define FLEXSPI_MCR1 0x04
#define FLEXSPI_MCR1_SEQ_TIMEOUT_SHIFT 16
#define FLEXSPI_MCR1_SEQ_TIMEOUT_MASK \
(0xFFFF << FLEXSPI_MCR1_SEQ_TIMEOUT_SHIFT)
#define FLEXSPI_MCR1_AHB_TIMEOUT_SHIFT 0
#define FLEXSPI_MCR1_AHB_TIMEOUT_MASK \
(0xFFFF << FLEXSPI_MCR1_AHB_TIMEOUT_SHIFT)
#define FLEXSPI_MCR2 0x08
#define FLEXSPI_MCR2_IDLE_WAIT_SHIFT 24
#define FLEXSPI_MCR2_IDLE_WAIT_MASK (0xFF << FLEXSPI_MCR2_IDLE_WAIT_SHIFT)
#define FLEXSPI_MCR2_SAMEFLASH_SHIFT 15
#define FLEXSPI_MCR2_SAMEFLASH_MASK (1 << FLEXSPI_MCR2_SAMEFLASH_SHIFT)
#define FLEXSPI_MCR2_CLRLRPHS_SHIFT 14
#define FLEXSPI_MCR2_CLRLRPHS_MASK (1 << FLEXSPI_MCR2_CLRLRPHS_SHIFT)
#define FLEXSPI_MCR2_ABRDATSZ_SHIFT 8
#define FLEXSPI_MCR2_ABRDATSZ_MASK (1 << FLEXSPI_MCR2_ABRDATSZ_SHIFT)
#define FLEXSPI_MCR2_ABRLEARN_SHIFT 7
#define FLEXSPI_MCR2_ABRLEARN_MASK (1 << FLEXSPI_MCR2_ABRLEARN_SHIFT)
#define FLEXSPI_MCR2_ABR_READ_SHIFT 6
#define FLEXSPI_MCR2_ABR_READ_MASK (1 << FLEXSPI_MCR2_ABR_READ_SHIFT)
#define FLEXSPI_MCR2_ABRWRITE_SHIFT 5
#define FLEXSPI_MCR2_ABRWRITE_MASK (1 << FLEXSPI_MCR2_ABRWRITE_SHIFT)
#define FLEXSPI_MCR2_ABRDUMMY_SHIFT 4
#define FLEXSPI_MCR2_ABRDUMMY_MASK (1 << FLEXSPI_MCR2_ABRDUMMY_SHIFT)
#define FLEXSPI_MCR2_ABR_MODE_SHIFT 3
#define FLEXSPI_MCR2_ABR_MODE_MASK (1 << FLEXSPI_MCR2_ABR_MODE_SHIFT)
#define FLEXSPI_MCR2_ABRCADDR_SHIFT 2
#define FLEXSPI_MCR2_ABRCADDR_MASK (1 << FLEXSPI_MCR2_ABRCADDR_SHIFT)
#define FLEXSPI_MCR2_ABRRADDR_SHIFT 1
#define FLEXSPI_MCR2_ABRRADDR_MASK (1 << FLEXSPI_MCR2_ABRRADDR_SHIFT)
#define FLEXSPI_MCR2_ABR_CMD_SHIFT 0
#define FLEXSPI_MCR2_ABR_CMD_MASK (1 << FLEXSPI_MCR2_ABR_CMD_SHIFT)
#define FLEXSPI_AHBCR 0x0c
#define FLEXSPI_AHBCR_RDADDROPT_SHIFT 6
#define FLEXSPI_AHBCR_RDADDROPT_MASK (1 << FLEXSPI_AHBCR_RDADDROPT_SHIFT)
#define FLEXSPI_AHBCR_PREF_EN_SHIFT 5
#define FLEXSPI_AHBCR_PREF_EN_MASK (1 << FLEXSPI_AHBCR_PREF_EN_SHIFT)
#define FLEXSPI_AHBCR_BUFF_EN_SHIFT 4
#define FLEXSPI_AHBCR_BUFF_EN_MASK (1 << FLEXSPI_AHBCR_BUFF_EN_SHIFT)
#define FLEXSPI_AHBCR_CACH_EN_SHIFT 3
#define FLEXSPI_AHBCR_CACH_EN_MASK (1 << FLEXSPI_AHBCR_CACH_EN_SHIFT)
#define FLEXSPI_AHBCR_CLRTXBUF_SHIFT 2
#define FLEXSPI_AHBCR_CLRTXBUF_MASK (1 << FLEXSPI_AHBCR_CLRTXBUF_SHIFT)
#define FLEXSPI_AHBCR_CLRRXBUF_SHIFT 1
#define FLEXSPI_AHBCR_CLRRXBUF_MASK (1 << FLEXSPI_AHBCR_CLRRXBUF_SHIFT)
#define FLEXSPI_AHBCR_PAR_EN_SHIFT 0
#define FLEXSPI_AHBCR_PAR_EN_MASK (1 << FLEXSPI_AHBCR_PAR_EN_SHIFT)
#define FLEXSPI_INTEN 0x10
#define FLEXSPI_INTEN_SCLKSBWR_SHIFT 9
#define FLEXSPI_INTEN_SCLKSBWR_MASK (1 << FLEXSPI_INTEN_SCLKSBWR_SHIFT)
#define FLEXSPI_INTEN_SCLKSBRD_SHIFT 8
#define FLEXSPI_INTEN_SCLKSBRD_MASK (1 << FLEXSPI_INTEN_SCLKSBRD_SHIFT)
#define FLEXSPI_INTEN_DATALRNFL_SHIFT 7
#define FLEXSPI_INTEN_DATALRNFL_MASK (1 << FLEXSPI_INTEN_DATALRNFL_SHIFT)
#define FLEXSPI_INTEN_IPTXWE_SHIFT 6
#define FLEXSPI_INTEN_IPTXWE_MASK (1 << FLEXSPI_INTEN_IPTXWE_SHIFT)
#define FLEXSPI_INTEN_IPRXWA_SHIFT 5
#define FLEXSPI_INTEN_IPRXWA_MASK (1 << FLEXSPI_INTEN_IPRXWA_SHIFT)
#define FLEXSPI_INTEN_AHBCMDERR_SHIFT 4
#define FLEXSPI_INTEN_AHBCMDERR_MASK (1 << FLEXSPI_INTEN_AHBCMDERR_SHIFT)
#define FLEXSPI_INTEN_IPCMDERR_SHIFT 3
#define FLEXSPI_INTEN_IPCMDERR_MASK (1 << FLEXSPI_INTEN_IPCMDERR_SHIFT)
#define FLEXSPI_INTEN_AHBCMDGE_SHIFT 2
#define FLEXSPI_INTEN_AHBCMDGE_MASK (1 << FLEXSPI_INTEN_AHBCMDGE_SHIFT)
#define FLEXSPI_INTEN_IPCMDGE_SHIFT 1
#define FLEXSPI_INTEN_IPCMDGE_MASK (1 << FLEXSPI_INTEN_IPCMDGE_SHIFT)
#define FLEXSPI_INTEN_IPCMDDONE_SHIFT 0
#define FLEXSPI_INTEN_IPCMDDONE_MASK (1 << FLEXSPI_INTEN_IPCMDDONE_SHIFT)
#define FLEXSPI_INTR 0x14
#define FLEXSPI_INTR_SCLKSBWR_SHIFT 9
#define FLEXSPI_INTR_SCLKSBWR_MASK (1 << FLEXSPI_INTR_SCLKSBWR_SHIFT)
#define FLEXSPI_INTR_SCLKSBRD_SHIFT 8
#define FLEXSPI_INTR_SCLKSBRD_MASK (1 << FLEXSPI_INTR_SCLKSBRD_SHIFT)
#define FLEXSPI_INTR_DATALRNFL_SHIFT 7
#define FLEXSPI_INTR_DATALRNFL_MASK (1 << FLEXSPI_INTR_DATALRNFL_SHIFT)
#define FLEXSPI_INTR_IPTXWE_SHIFT 6
#define FLEXSPI_INTR_IPTXWE_MASK (1 << FLEXSPI_INTR_IPTXWE_SHIFT)
#define FLEXSPI_INTR_IPRXWA_SHIFT 5
#define FLEXSPI_INTR_IPRXWA_MASK (1 << FLEXSPI_INTR_IPRXWA_SHIFT)
#define FLEXSPI_INTR_AHBCMDERR_SHIFT 4
#define FLEXSPI_INTR_AHBCMDERR_MASK (1 << FLEXSPI_INTR_AHBCMDERR_SHIFT)
#define FLEXSPI_INTR_IPCMDERR_SHIFT 3
#define FLEXSPI_INTR_IPCMDERR_MASK (1 << FLEXSPI_INTR_IPCMDERR_SHIFT)
#define FLEXSPI_INTR_AHBCMDGE_SHIFT 2
#define FLEXSPI_INTR_AHBCMDGE_MASK (1 << FLEXSPI_INTR_AHBCMDGE_SHIFT)
#define FLEXSPI_INTR_IPCMDGE_SHIFT 1
#define FLEXSPI_INTR_IPCMDGE_MASK (1 << FLEXSPI_INTR_IPCMDGE_SHIFT)
#define FLEXSPI_INTR_IPCMDDONE_SHIFT 0
#define FLEXSPI_INTR_IPCMDDONE_MASK (1 << FLEXSPI_INTR_IPCMDDONE_SHIFT)
#define FLEXSPI_LUTKEY 0x18
#define FLEXSPI_LUTKEY_VALUE 0x5AF05AF0
#define FLEXSPI_LCKCR 0x1C
#define FLEXSPI_LCKER_LOCK 0x1
#define FLEXSPI_LCKER_UNLOCK 0x2
#define FLEXSPI_BUFXCR_INVALID_MSTRID 0xe
#define FLEXSPI_AHBRX_BUF0CR0 0x20
#define FLEXSPI_AHBRX_BUF1CR0 0x24
#define FLEXSPI_AHBRX_BUF2CR0 0x28
#define FLEXSPI_AHBRX_BUF3CR0 0x2C
#define FLEXSPI_AHBRX_BUF4CR0 0x30
#define FLEXSPI_AHBRX_BUF5CR0 0x34
#define FLEXSPI_AHBRX_BUF6CR0 0x38
#define FLEXSPI_AHBRX_BUF7CR0 0x3C
#define FLEXSPI_AHBRXBUF0CR7_PREF_SHIFT 31
#define FLEXSPI_AHBRXBUF0CR7_PREF_MASK (1 << FLEXSPI_AHBRXBUF0CR7_PREF_SHIFT)
#define FLEXSPI_AHBRX_BUF0CR1 0x40
#define FLEXSPI_AHBRX_BUF1CR1 0x44
#define FLEXSPI_AHBRX_BUF2CR1 0x48
#define FLEXSPI_AHBRX_BUF3CR1 0x4C
#define FLEXSPI_AHBRX_BUF4CR1 0x50
#define FLEXSPI_AHBRX_BUF5CR1 0x54
#define FLEXSPI_AHBRX_BUF6CR1 0x58
#define FLEXSPI_AHBRX_BUF7CR1 0x5C
#define FLEXSPI_BUFXCR1_MSID_SHIFT 0
#define FLEXSPI_BUFXCR1_MSID_MASK (0xF << FLEXSPI_BUFXCR1_MSID_SHIFT)
#define FLEXSPI_BUFXCR1_PRIO_SHIFT 8
#define FLEXSPI_BUFXCR1_PRIO_MASK (0x7 << FLEXSPI_BUFXCR1_PRIO_SHIFT)
#define FLEXSPI_FLSHA1CR0 0x60
#define FLEXSPI_FLSHA2CR0 0x64
#define FLEXSPI_FLSHB1CR0 0x68
#define FLEXSPI_FLSHB2CR0 0x6C
#define FLEXSPI_FLSHXCR0_SZ_SHIFT 10
#define FLEXSPI_FLSHXCR0_SZ_MASK (0x3FFFFF << FLEXSPI_FLSHXCR0_SZ_SHIFT)
#define FLEXSPI_FLSHA1CR1 0x70
#define FLEXSPI_FLSHA2CR1 0x74
#define FLEXSPI_FLSHB1CR1 0x78
#define FLEXSPI_FLSHB2CR1 0x7C
#define FLEXSPI_FLSHXCR1_CSINTR_SHIFT 16
#define FLEXSPI_FLSHXCR1_CSINTR_MASK \
(0xFFFF << FLEXSPI_FLSHXCR1_CSINTR_SHIFT)
#define FLEXSPI_FLSHXCR1_CAS_SHIFT 11
#define FLEXSPI_FLSHXCR1_CAS_MASK (0xF << FLEXSPI_FLSHXCR1_CAS_SHIFT)
#define FLEXSPI_FLSHXCR1_WA_SHIFT 10
#define FLEXSPI_FLSHXCR1_WA_MASK (1 << FLEXSPI_FLSHXCR1_WA_SHIFT)
#define FLEXSPI_FLSHXCR1_TCSH_SHIFT 5
#define FLEXSPI_FLSHXCR1_TCSH_MASK (0x1F << FLEXSPI_FLSHXCR1_TCSH_SHIFT)
#define FLEXSPI_FLSHXCR1_TCSS_SHIFT 0
#define FLEXSPI_FLSHXCR1_TCSS_MASK (0x1F << FLEXSPI_FLSHXCR1_TCSS_SHIFT)
#define FLEXSPI_FLSHA1CR2 0x80
#define FLEXSPI_FLSHA2CR2 0x84
#define FLEXSPI_FLSHB1CR2 0x88
#define FLEXSPI_FLSHB2CR2 0x8C
#define FLEXSPI_FLSHXCR2_CLRINSP_SHIFT 24
#define FLEXSPI_FLSHXCR2_CLRINSP_MASK (1 << FLEXSPI_FLSHXCR2_CLRINSP_SHIFT)
#define FLEXSPI_FLSHXCR2_AWRWAIT_SHIFT 16
#define FLEXSPI_FLSHXCR2_AWRWAIT_MASK (0xFF << FLEXSPI_FLSHXCR2_AWRWAIT_SHIFT)
#define FLEXSPI_FLSHXCR2_AWRSEQN_SHIFT 13
#define FLEXSPI_FLSHXCR2_AWRSEQN_MASK (0x7 << FLEXSPI_FLSHXCR2_AWRSEQN_SHIFT)
#define FLEXSPI_FLSHXCR2_AWRSEQI_SHIFT 8
#define FLEXSPI_FLSHXCR2_AWRSEQI_MASK (0xF << FLEXSPI_FLSHXCR2_AWRSEQI_SHIFT)
#define FLEXSPI_FLSHXCR2_ARDSEQN_SHIFT 5
#define FLEXSPI_FLSHXCR2_ARDSEQN_MASK (0x7 << FLEXSPI_FLSHXCR2_ARDSEQN_SHIFT)
#define FLEXSPI_FLSHXCR2_ARDSEQI_SHIFT 0
#define FLEXSPI_FLSHXCR2_ARDSEQI_MASK (0xF << FLEXSPI_FLSHXCR2_ARDSEQI_SHIFT)
#define FLEXSPI_IPCR0 0xA0
#define FLEXSPI_IPCR1 0xA4
#define FLEXSPI_IPCR1_IPAREN_SHIFT 31
#define FLEXSPI_IPCR1_IPAREN_MASK (1 << FLEXSPI_IPCR1_IPAREN_SHIFT)
#define FLEXSPI_IPCR1_SEQNUM_SHIFT 24
#define FLEXSPI_IPCR1_SEQNUM_MASK (0xF << FLEXSPI_IPCR1_SEQNUM_SHIFT)
#define FLEXSPI_IPCR1_SEQID_SHIFT 16
#define FLEXSPI_IPCR1_SEQID_MASK (0xF << FLEXSPI_IPCR1_SEQID_SHIFT)
#define FLEXSPI_IPCR1_IDATSZ_SHIFT 0
#define FLEXSPI_IPCR1_IDATSZ_MASK (0xFFFF << FLEXSPI_IPCR1_IDATSZ_SHIFT)
#define FLEXSPI_IPCMD 0xB0
#define FLEXSPI_IPCMD_TRG_SHIFT 0
#define FLEXSPI_IPCMD_TRG_MASK (1 << FLEXSPI_IPCMD_TRG_SHIFT)
#define FLEXSPI_DLPR 0xB4
#define FLEXSPI_IPRXFCR 0xB8
#define FLEXSPI_IPRXFCR_CLR_SHIFT 0
#define FLEXSPI_IPRXFCR_CLR_MASK (1 << FLEXSPI_IPRXFCR_CLR_SHIFT)
#define FLEXSPI_IPRXFCR_DMA_EN_SHIFT 1
#define FLEXSPI_IPRXFCR_DMA_EN_MASK (1 << FLEXSPI_IPRXFCR_DMA_EN_SHIFT)
#define FLEXSPI_IPRXFCR_WMRK_SHIFT 2
#define FLEXSPI_IPRXFCR_WMRK_MASK (0x1F << FLEXSPI_IPRXFCR_WMRK_SHIFT)
#define FLEXSPI_IPTXFCR 0xBC
#define FLEXSPI_IPTXFCR_CLR_SHIFT 0
#define FLEXSPI_IPTXFCR_CLR_MASK (1 << FLEXSPI_IPTXFCR_CLR_SHIFT)
#define FLEXSPI_IPTXFCR_DMA_EN_SHIFT 1
#define FLEXSPI_IPTXFCR_DMA_EN_MASK (1 << FLEXSPI_IPTXFCR_DMA_EN_SHIFT)
#define FLEXSPI_IPTXFCR_WMRK_SHIFT 2
#define FLEXSPI_IPTXFCR_WMRK_MASK (0x1F << FLEXSPI_IPTXFCR_WMRK_SHIFT)
#define FLEXSPI_STS0 0xE0
#define FLEXSPI_STS0_DLPHA_SHIFT 9
#define FLEXSPI_STS0_DLPHA_MASK (0x1F << FLEXSPI_STS0_DLPHA_SHIFT)
#define FLEXSPI_STS0_DLPHB_SHIFT 4
#define FLEXSPI_STS0_DLPHB_MASK (0x1F << FLEXSPI_STS0_DLPHB_SHIFT)
#define FLEXSPI_STS0_CMD_SRC_SHIFT 2
#define FLEXSPI_STS0_CMD_SRC_MASK (3 << FLEXSPI_STS0_CMD_SRC_SHIFT)
#define FLEXSPI_STS0_ARB_IDLE_SHIFT 1
#define FLEXSPI_STS0_ARB_IDLE_MASK (1 << FLEXSPI_STS0_ARB_IDLE_SHIFT)
#define FLEXSPI_STS0_SEQ_IDLE_SHIFT 0
#define FLEXSPI_STS0_SEQ_IDLE_MASK (1 << FLEXSPI_STS0_SEQ_IDLE_SHIFT)
#define FLEXSPI_STS1 0xE4
#define FLEXSPI_STS1_IP_ERRCD_SHIFT 24
#define FLEXSPI_STS1_IP_ERRCD_MASK (0xF << FLEXSPI_STS1_IP_ERRCD_SHIFT)
#define FLEXSPI_STS1_IP_ERRID_SHIFT 16
#define FLEXSPI_STS1_IP_ERRID_MASK (0xF << FLEXSPI_STS1_IP_ERRID_SHIFT)
#define FLEXSPI_STS1_AHB_ERRCD_SHIFT 8
#define FLEXSPI_STS1_AHB_ERRCD_MASK (0xF << FLEXSPI_STS1_AHB_ERRCD_SHIFT)
#define FLEXSPI_STS1_AHB_ERRID_SHIFT 0
#define FLEXSPI_STS1_AHB_ERRID_MASK (0xF << FLEXSPI_STS1_AHB_ERRID_SHIFT)
#define FLEXSPI_AHBSPNST 0xEC
#define FLEXSPI_AHBSPNST_DATLFT_SHIFT 16
#define FLEXSPI_AHBSPNST_DATLFT_MASK \
(0xFFFF << FLEXSPI_AHBSPNST_DATLFT_SHIFT)
#define FLEXSPI_AHBSPNST_BUFID_SHIFT 1
#define FLEXSPI_AHBSPNST_BUFID_MASK (7 << FLEXSPI_AHBSPNST_BUFID_SHIFT)
#define FLEXSPI_AHBSPNST_ACTIVE_SHIFT 0
#define FLEXSPI_AHBSPNST_ACTIVE_MASK (1 << FLEXSPI_AHBSPNST_ACTIVE_SHIFT)
#define FLEXSPI_IPRXFSTS 0xF0
#define FLEXSPI_IPRXFSTS_RDCNTR_SHIFT 16
#define FLEXSPI_IPRXFSTS_RDCNTR_MASK \
(0xFFFF << FLEXSPI_IPRXFSTS_RDCNTR_SHIFT)
#define FLEXSPI_IPRXFSTS_FILL_SHIFT 0
#define FLEXSPI_IPRXFSTS_FILL_MASK (0xFF << FLEXSPI_IPRXFSTS_FILL_SHIFT)
#define FLEXSPI_IPTXFSTS 0xF4
#define FLEXSPI_IPTXFSTS_WRCNTR_SHIFT 16
#define FLEXSPI_IPTXFSTS_WRCNTR_MASK \
(0xFFFF << FLEXSPI_IPTXFSTS_WRCNTR_SHIFT)
#define FLEXSPI_IPTXFSTS_FILL_SHIFT 0
#define FLEXSPI_IPTXFSTS_FILL_MASK (0xFF << FLEXSPI_IPTXFSTS_FILL_SHIFT)
#define FLEXSPI_RFDR 0x100
#define FLEXSPI_TFDR 0x180
#define FLEXSPI_LUT_BASE 0x200
/* register map end */
/*
* The definition of the LUT register shows below:
*
* ---------------------------------------------------
* | INSTR1 | PAD1 | OPRND1 | INSTR0 | PAD0 | OPRND0 |
* ---------------------------------------------------
*/
#define OPRND0_SHIFT 0
#define PAD0_SHIFT 8
#define INSTR0_SHIFT 10
#define OPRND1_SHIFT 16
/* Instruction set for the LUT register. */
#define LUT_STOP 0x00
#define LUT_CMD 0x01
#define LUT_ADDR 0x02
#define LUT_CADDR_SDR 0x03
#define LUT_MODE 0x04
#define LUT_MODE2 0x05
#define LUT_MODE4 0x06
#define LUT_MODE8 0x07
#define LUT_FSL_WRITE 0x08
#define LUT_FSL_READ 0x09
#define LUT_LEARN_SDR 0x0A
#define LUT_DATSZ_SDR 0x0B
#define LUT_DUMMY 0x0C
#define LUT_DUMMY_RWDS_SDR 0x0D
#define LUT_JMP_ON_CS 0x1F
#define LUT_CMD_DDR 0x21
#define LUT_ADDR_DDR 0x22
#define LUT_CADDR_DDR 0x23
#define LUT_MODE_DDR 0x24
#define LUT_MODE2_DDR 0x25
#define LUT_MODE4_DDR 0x26
#define LUT_MODE8_DDR 0x27
#define LUT_WRITE_DDR 0x28
#define LUT_READ_DDR 0x29
#define LUT_LEARN_DDR 0x2A
#define LUT_DATSZ_DDR 0x2B
#define LUT_DUMMY_DDR 0x2C
#define LUT_DUMMY_RWDS_DDR 0x2D
/*
* The PAD definitions for LUT register.
*
* The pad stands for the lines number of IO[0:3].
* For example, the Quad read need four IO lines, so you should
* set LUT_PAD4 which means we use four IO lines.
*/
#define LUT_PAD1 0
#define LUT_PAD2 1
#define LUT_PAD4 2
#define LUT_PAD8 3
/* Oprands for the LUT register. */
#define ADDR24BIT 0x18
#define ADDR32BIT 0x20
/* Macros for constructing the LUT register. */
#define LUT0(ins, pad, opr) \
(((opr) << OPRND0_SHIFT) | ((LUT_##pad) << PAD0_SHIFT) | \
((LUT_##ins) << INSTR0_SHIFT))
#define LUT1(ins, pad, opr) (LUT0(ins, pad, opr) << OPRND1_SHIFT)
/* other macros for LUT register. */
#define FLEXSPI_LUT(x) (FLEXSPI_LUT_BASE + (x) * 4)
#define FLEXSPI_LUT_NUM 64
/* SEQID -- we can have 16 seqids at most. */
#define SEQID_QUAD_READ 0
#define SEQID_WREN 1
#define SEQID_WRDI 2
#define SEQID_RDSR 3
#define SEQID_SE 4
#define SEQID_CHIP_ERASE 5
#define SEQID_PP 6
#define SEQID_RDID 7
#define SEQID_WRSR 8
#define SEQID_RDCR 9
#define SEQID_EN4B 10
#define SEQID_BRWR 11
#define SEQID_RD_EVCR 12
#define SEQID_WD_EVCR 13
#define FLEXSPI_MIN_IOMAP SZ_4M
enum fsl_flexspi_devtype {
FSL_FLEXSPI_IMX8QM,
FSL_FLEXSPI_IMX8QXP,
};
struct fsl_flexspi_devtype_data {
enum fsl_flexspi_devtype devtype;
int rxfifo;
int txfifo;
int ahb_buf_size;
int driver_data;
};
static struct fsl_flexspi_devtype_data imx8qm_data = {
.devtype = FSL_FLEXSPI_IMX8QM,
/* .rxfifo = 1024, */
.rxfifo = 128,
.txfifo = 1024,
.ahb_buf_size = 2048,
.driver_data = 0,
};
static struct fsl_flexspi_devtype_data imx8qxp_data = {
.devtype = FSL_FLEXSPI_IMX8QXP,
/* .rxfifo = 1024, */
.rxfifo = 128,
.txfifo = 1024,
.ahb_buf_size = 2048,
.driver_data = 0,
};
#define FSL_FLEXSPI_MAX_CHIP 4
struct fsl_flexspi {
struct mtd_info mtd[FSL_FLEXSPI_MAX_CHIP];
struct spi_nor nor[FSL_FLEXSPI_MAX_CHIP];
void __iomem *iobase;
void __iomem *ahb_addr;
u32 memmap_phy;
u32 memmap_offs;
u32 memmap_len;
struct clk *clk;
struct device *dev;
struct completion c;
struct fsl_flexspi_devtype_data *devtype_data;
u32 nor_size;
u32 nor_num;
u32 clk_rate;
unsigned int chip_base_addr; /* We may support two chips. */
bool has_second_chip;
u32 ddr_smp;
struct mutex lock;
struct pm_qos_request pm_qos_req;
#define FLEXSPI_INITILIZED (1 << 0)
int flags;
};
static inline void fsl_flexspi_unlock_lut(struct fsl_flexspi *flex)
{
writel(FLEXSPI_LUTKEY_VALUE, flex->iobase + FLEXSPI_LUTKEY);
writel(FLEXSPI_LCKER_UNLOCK, flex->iobase + FLEXSPI_LCKCR);
}
static inline void fsl_flexspi_lock_lut(struct fsl_flexspi *flex)
{
writel(FLEXSPI_LUTKEY_VALUE, flex->iobase + FLEXSPI_LUTKEY);
writel(FLEXSPI_LCKER_LOCK, flex->iobase + FLEXSPI_LCKCR);
}
static irqreturn_t fsl_flexspi_irq_handler(int irq, void *dev_id)
{
struct fsl_flexspi *flex = dev_id;
u32 reg;
reg = readl(flex->iobase + FLEXSPI_INTR);
writel(FLEXSPI_INTR_IPCMDDONE_MASK, flex->iobase + FLEXSPI_INTR);
if (reg & FLEXSPI_INTR_IPCMDDONE_MASK)
complete(&flex->c);
return IRQ_HANDLED;
}
static void fsl_flexspi_init_lut(struct fsl_flexspi *flex)
{
void __iomem *base = flex->iobase;
int rxfifo = flex->devtype_data->rxfifo;
struct spi_nor *nor = &flex->nor[0];
u8 addrlen = (nor->addr_width == 3) ? ADDR24BIT : ADDR32BIT;
u32 lut_base;
u8 op, dm;
int i;
fsl_flexspi_unlock_lut(flex);
/* Clear all the LUT table */
for (i = 0; i < FLEXSPI_LUT_NUM; i++)
writel(0, base + FLEXSPI_LUT_BASE + i * 4);
/* Quad Read and DDR Quad Read*/
lut_base = SEQID_QUAD_READ * 4;
op = nor->read_opcode;
dm = nor->read_dummy;
/* Octal DDR read */
if (op == SPINOR_OP_READ_1_1_8_D) {
writel(LUT0(CMD, PAD1, op) |
LUT1(ADDR_DDR, PAD1, addrlen),
base + FLEXSPI_LUT(lut_base));
writel(LUT0(DUMMY_DDR, PAD8, dm * 2)
| LUT1(READ_DDR, PAD8, rxfifo),
base + FLEXSPI_LUT(lut_base + 1));
}
if (nor->flash_read == SPI_NOR_QUAD) {
if (op == SPINOR_OP_READ_1_1_4 || op == SPINOR_OP_READ4_1_1_4) {
/* read mode : 1-1-4 */
writel(LUT0(CMD, PAD1, op) | LUT1(ADDR, PAD1, addrlen),
base + FLEXSPI_LUT(lut_base));
writel(LUT0(DUMMY, PAD1, dm) |
LUT1(FSL_READ, PAD4, rxfifo),
base + FLEXSPI_LUT(lut_base + 1));
} else {
dev_err(nor->dev, "Unsupported opcode : 0x%.2x\n", op);
}
} else if (nor->flash_read == SPI_NOR_DDR_QUAD) {
if (op == SPINOR_OP_READ_1_4_4_D ||
op == SPINOR_OP_READ4_1_4_4_D) {
/* read mode : 1-4-4, such as Spansion s25fl128s. */
writel(LUT0(CMD_DDR, PAD1, op)
| LUT1(ADDR_DDR, PAD4, addrlen),
base + FLEXSPI_LUT(lut_base));
writel(LUT0(MODE_DDR, PAD4, 0xff)
| LUT1(DUMMY, PAD1, dm),
base + FLEXSPI_LUT(lut_base + 1));
writel(LUT0(READ_DDR, PAD4, rxfifo)
| LUT1(JMP_ON_CS, PAD1, 0),
base + FLEXSPI_LUT(lut_base + 2));
} else if (op == SPINOR_OP_READ_1_1_4_D) {
/* read mode : 1-1-4, such as Micron N25Q256A. */
writel(LUT0(CMD_DDR, PAD1, op)
| LUT1(ADDR_DDR, PAD1, addrlen),
base + FLEXSPI_LUT(lut_base));
writel(LUT0(DUMMY, PAD1, dm)
| LUT1(READ_DDR, PAD4, rxfifo),
base + FLEXSPI_LUT(lut_base + 1));
writel(LUT0(JMP_ON_CS, PAD1, 0),
base + FLEXSPI_LUT(lut_base + 2));
} else {
dev_err(nor->dev, "Unsupported opcode : 0x%.2x\n", op);
}
}
/* Write enable */
lut_base = SEQID_WREN * 4;
writel(LUT0(CMD, PAD1, SPINOR_OP_WREN), base + FLEXSPI_LUT(lut_base));
/* Page Program */
lut_base = SEQID_PP * 4;
writel(LUT0(CMD, PAD1, nor->program_opcode) | LUT1(ADDR, PAD1, addrlen),
base + FLEXSPI_LUT(lut_base));
writel(LUT0(FSL_WRITE, PAD1, 0), base + FLEXSPI_LUT(lut_base + 1));
/* Read Status */
lut_base = SEQID_RDSR * 4;
writel(LUT0(CMD, PAD1, SPINOR_OP_RDSR) | LUT1(FSL_READ, PAD1, 0x1),
base + FLEXSPI_LUT(lut_base));
/* Erase a sector */
lut_base = SEQID_SE * 4;
writel(LUT0(CMD, PAD1, nor->erase_opcode) | LUT1(ADDR, PAD1, addrlen),
base + FLEXSPI_LUT(lut_base));
/* Erase the whole chip */
lut_base = SEQID_CHIP_ERASE * 4;
writel(LUT0(CMD, PAD1, SPINOR_OP_CHIP_ERASE),
base + FLEXSPI_LUT(lut_base));
/* READ ID */
lut_base = SEQID_RDID * 4;
writel(LUT0(CMD, PAD1, SPINOR_OP_RDID) | LUT1(FSL_READ, PAD1, 0x8),
base + FLEXSPI_LUT(lut_base));
/* Write Register */
lut_base = SEQID_WRSR * 4;
writel(LUT0(CMD, PAD1, SPINOR_OP_WRSR) | LUT1(FSL_WRITE, PAD1, 0x2),
base + FLEXSPI_LUT(lut_base));
/* Read Configuration Register */
lut_base = SEQID_RDCR * 4;
writel(LUT0(CMD, PAD1, SPINOR_OP_RDCR) | LUT1(FSL_READ, PAD1, 0x1),
base + FLEXSPI_LUT(lut_base));
/* Write disable */
lut_base = SEQID_WRDI * 4;
writel(LUT0(CMD, PAD1, SPINOR_OP_WRDI), base + FLEXSPI_LUT(lut_base));
/* Enter 4 Byte Mode (Micron) */
lut_base = SEQID_EN4B * 4;
writel(LUT0(CMD, PAD1, SPINOR_OP_EN4B), base + FLEXSPI_LUT(lut_base));
/* Enter 4 Byte Mode (Spansion) */
lut_base = SEQID_BRWR * 4;
writel(LUT0(CMD, PAD1, SPINOR_OP_BRWR), base + FLEXSPI_LUT(lut_base));
/* Read EVCR register */
lut_base = SEQID_RD_EVCR * 4;
writel(LUT0(CMD, PAD1, SPINOR_OP_RD_EVCR),
base + FLEXSPI_LUT(lut_base));
/* Write EVCR register */
lut_base = SEQID_WD_EVCR * 4;
writel(LUT0(CMD, PAD1, SPINOR_OP_WD_EVCR),
base + FLEXSPI_LUT(lut_base));
fsl_flexspi_lock_lut(flex);
}
/* Get the SEQID for the command */
static int fsl_flexspi_get_seqid(struct fsl_flexspi *flex, u8 cmd)
{
switch (cmd) {
case SPINOR_OP_READ_1_1_4_D:
case SPINOR_OP_READ_1_1_8_D:
case SPINOR_OP_READ_1_4_4_D:
case SPINOR_OP_READ4_1_4_4_D:
case SPINOR_OP_READ4_1_1_4:
case SPINOR_OP_READ_1_1_4:
case SPINOR_OP_READ4:
return SEQID_QUAD_READ;
case SPINOR_OP_WREN:
return SEQID_WREN;
case SPINOR_OP_WRDI:
return SEQID_WRDI;
case SPINOR_OP_RDSR:
return SEQID_RDSR;
case SPINOR_OP_BE_4K:
case SPINOR_OP_SE:
return SEQID_SE;
case SPINOR_OP_CHIP_ERASE:
return SEQID_CHIP_ERASE;
case SPINOR_OP_PP:
return SEQID_PP;
case SPINOR_OP_RDID:
return SEQID_RDID;
case SPINOR_OP_WRSR:
return SEQID_WRSR;
case SPINOR_OP_RDCR:
return SEQID_RDCR;
case SPINOR_OP_EN4B:
return SEQID_EN4B;
case SPINOR_OP_BRWR:
return SEQID_BRWR;
case SPINOR_OP_RD_EVCR:
return SEQID_RD_EVCR;
case SPINOR_OP_WD_EVCR:
return SEQID_WD_EVCR;
default:
dev_err(flex->dev, "Unsupported cmd 0x%.2x\n", cmd);
break;
}
return -EINVAL;
}
static int
fsl_flexspi_runcmd(struct fsl_flexspi *flex, u8 cmd, unsigned int addr, int len)
{
void __iomem *base = flex->iobase;
int seqid;
int seqnum = 0;
u32 reg;
int err;
init_completion(&flex->c);
dev_dbg(flex->dev, "to 0x%.8x:0x%.8x, len:%d, cmd:%.2x\n",
flex->chip_base_addr, addr, len, cmd);
/* write address */
writel(flex->chip_base_addr + addr, base + FLEXSPI_IPCR0);
seqid = fsl_flexspi_get_seqid(flex, cmd);
writel((seqnum << FLEXSPI_IPCR1_SEQNUM_SHIFT) |
(seqid << FLEXSPI_IPCR1_SEQID_SHIFT) | len,
base + FLEXSPI_IPCR1);
/* wait till controller is idle */
do {
reg = readl(base + FLEXSPI_STS0);
if ((reg & FLEXSPI_STS0_ARB_IDLE_MASK) &&
(reg & FLEXSPI_STS0_SEQ_IDLE_MASK))
break;
udelay(1);
} while (1);
/* trigger the LUT now */
writel(1, base + FLEXSPI_IPCMD);
/* Wait for the interrupt. */
if (!wait_for_completion_timeout(&flex->c, msecs_to_jiffies(1000))) {
dev_dbg(flex->dev,
"cmd 0x%.2x timeout, addr@%.8x, Status0:0x%.8x, Status1:0x%.8x\n",
cmd, addr, readl(base + FLEXSPI_STS0),
readl(base + FLEXSPI_STS1));
err = -ETIMEDOUT;
} else {
err = 0;
}
return err;
}
/* Read out the data from the FLEXSPI_RBDR buffer registers. */
static void fsl_flexspi_read_data(struct fsl_flexspi *flex, int len, u8 *rxbuf)
{
/* u64 tmp; */
int i = 0;
int size;
/* invalid RXFIFO first */
writel(FLEXSPI_IPRXFCR_CLR_MASK, flex->iobase + FLEXSPI_IPRXFCR);
while (len > 0) {
size = len / 8;
for (i = 0; i < size; ++i) {
/* Wait for RXFIFO available*/
while (!(readl(flex->iobase + FLEXSPI_INTR)
& FLEXSPI_INTR_IPRXWA_MASK))
;
/* read 64 bit data once */
memcpy(rxbuf, flex->iobase + FLEXSPI_RFDR, 8);
rxbuf += 8;
/* move the FIFO pointer */
writel(FLEXSPI_INTR_IPRXWA_MASK,
flex->iobase + FLEXSPI_INTR);
len -= 8;
}
size = len % 8;
if (size) {
/* Wait for RXFIFO available*/
while (!(readl(flex->iobase + FLEXSPI_INTR)
& FLEXSPI_INTR_IPRXWA_MASK))
;
memcpy(rxbuf, flex->iobase + FLEXSPI_RFDR, size);
len -= size;
}
writel(FLEXSPI_INTR_IPRXWA_MASK,
flex->iobase + FLEXSPI_INTR);
/* invalid the RXFIFO */
writel(FLEXSPI_IPRXFCR_CLR_MASK,
flex->iobase + FLEXSPI_IPRXFCR);
}
}
/*
* If we have changed the content of the flash by writing or erasing,
* we need to invalidate the AHB buffer. If we do not do so, we may read out
* the wrong data. The spec tells us reset the AHB domain and Serial Flash
* domain at the same time.
*/
static inline void fsl_flexspi_invalid(struct fsl_flexspi *flex)
{
u32 reg;
reg = readl(flex->iobase + FLEXSPI_MCR0);
writel(reg | FLEXSPI_MCR0_SWRST_MASK, flex->iobase + FLEXSPI_MCR0);
/*
* The minimum delay : 1 AHB + 2 SFCK clocks.
* Delay 1 us is enough.
*/
while (readl(flex->iobase + FLEXSPI_MCR0) & FLEXSPI_MCR0_SWRST_MASK)
;
}
static ssize_t fsl_flexspi_nor_write(struct fsl_flexspi *flex,
struct spi_nor *nor, u8 opcode,
unsigned int to, u32 *txbuf,
unsigned int count)
{
int ret, i;
int size;
dev_dbg(flex->dev, "nor write to 0x%.8x:0x%.8x, len : %d\n",
flex->chip_base_addr, to, count);
/* clear the TX FIFO. */
writel(FLEXSPI_IPTXFCR_CLR_MASK, flex->iobase + FLEXSPI_IPTXFCR);
size = count / 8;
for (i = 0; i < size; i++) {
/* Wait for TXFIFO empty*/
while (!(readl(flex->iobase + FLEXSPI_INTR)
& FLEXSPI_INTR_IPTXWE_MASK))
;
memcpy(flex->iobase + FLEXSPI_TFDR, txbuf, 8);
txbuf += 2;
writel(FLEXSPI_INTR_IPTXWE_MASK, flex->iobase + FLEXSPI_INTR);
}
size = count % 8;
if (size) {
/* Wait for TXFIFO empty*/
while (!(readl(flex->iobase + FLEXSPI_INTR)
& FLEXSPI_INTR_IPTXWE_MASK))
;
memcpy(flex->iobase + FLEXSPI_TFDR, txbuf, size);
writel(FLEXSPI_INTR_IPTXWE_MASK, flex->iobase + FLEXSPI_INTR);
}
/* Trigger it */
ret = fsl_flexspi_runcmd(flex, opcode, to, count);
if (ret == 0)
return count;
return ret;
}
static void fsl_flexspi_set_map_addr(struct fsl_flexspi *flex)
{
int nor_size = flex->nor_size >> 10;
void __iomem *base = flex->iobase;
writel(nor_size, base + FLEXSPI_FLSHA1CR0);
writel(nor_size * 2, base + FLEXSPI_FLSHA2CR0);
writel(nor_size * 3, base + FLEXSPI_FLSHB1CR0);
writel(nor_size * 4, base + FLEXSPI_FLSHB2CR0);
}
/*
* There are two different ways to read out the data from the flash:
* the "IP Command Read" and the "AHB Command Read".
*
* The IC guy suggests we use the "AHB Command Read" which is faster
* then the "IP Command Read". (What's more is that there is a bug in
* the "IP Command Read" in the Vybrid.)
*
* After we set up the registers for the "AHB Command Read", we can use
* the memcpy to read the data directly. A "missed" access to the buffer
* causes the controller to clear the buffer, and use the sequence pointed
* by the FLEXSPI_BFGENCR[SEQID] to initiate a read from the flash.
*/
static void fsl_flexspi_init_ahb_read(struct fsl_flexspi *flex)
{
void __iomem *base = flex->iobase;
struct spi_nor *nor = &flex->nor[0];
/* u32 reg, reg2; */
int seqid;
int i;
/* AHB configuration for access buffer 0/1/2 .*/
for (i = 0; i < 7; i++)
writel(0, base + FLEXSPI_AHBRX_BUF0CR0 + 4 * i);
/*
* Set ADATSZ with the maximum AHB buffer size to improve the
* read performance.
*/
writel((flex->devtype_data->ahb_buf_size / 8 |
FLEXSPI_AHBRXBUF0CR7_PREF_MASK),
base + FLEXSPI_AHBRX_BUF7CR0);
/* prefetch and no start address alignment limitation */
writel(FLEXSPI_AHBCR_PREF_EN_MASK | FLEXSPI_AHBCR_RDADDROPT_MASK,
base + FLEXSPI_AHBCR);
/* Set the default lut sequence for AHB Read. */
seqid = fsl_flexspi_get_seqid(flex, nor->read_opcode);
writel(seqid, flex->iobase + FLEXSPI_FLSHA1CR2);
}
/* This function was used to prepare and enable QSPI clock */
static int fsl_flexspi_clk_prep_enable(struct fsl_flexspi *flex)
{
int ret;
ret = clk_prepare_enable(flex->clk);
if (ret) {
dev_err(flex->dev, "failed to enable the clock\n");
return ret;
}
return 0;
}
/* This function was used to disable and unprepare QSPI clock */
static void fsl_flexspi_clk_disable_unprep(struct fsl_flexspi *flex)
{
clk_disable_unprepare(flex->clk);
}
static int fsl_flexspi_init_rpm(struct fsl_flexspi *flex)
{
struct device *dev = flex->dev;
pm_runtime_enable(dev);
pm_runtime_set_autosuspend_delay(dev, FSL_FLEXSPI_RPM_TIMEOUT);
pm_runtime_use_autosuspend(dev);
return 0;
}
/* We use this function to do some basic init for spi_nor_scan(). */
static int fsl_flexspi_nor_setup(struct fsl_flexspi *flex)
{
void __iomem *base = flex->iobase;
u32 reg;
int ret;
ret = pm_runtime_get_sync(flex->dev);
if (ret < 0) {
dev_err(flex->dev, "Failed to enable clock %d\n", __LINE__);
return ret;
}
/* Reset the module */
writel(FLEXSPI_MCR0_SWRST_MASK, base + FLEXSPI_MCR0);
do {
udelay(1);
} while (0x1 & readl(base + FLEXSPI_MCR0));
/* Disable the module */
writel(FLEXSPI_MCR0_MDIS_MASK, base + FLEXSPI_MCR0);
/* enable module */
writel(FLEXSPI_MCR0_AHB_TIMEOUT_MASK | FLEXSPI_MCR0_IP_TIMEOUT_MASK |
FLEXSPI_MCR0_OCTCOMB_EN_MASK, base + FLEXSPI_MCR0);
/* Read the register value */
reg = readl(base + FLEXSPI_MCR0);
/* Init the LUT table. */
fsl_flexspi_init_lut(flex);
/* enable the interrupt */
writel(FLEXSPI_INTEN_IPCMDDONE_MASK, flex->iobase + FLEXSPI_INTEN);
pm_runtime_mark_last_busy(flex->dev);
pm_runtime_put_autosuspend(flex->dev);
return 0;
}
static int fsl_flexspi_nor_setup_last(struct fsl_flexspi *flex)
{
unsigned long rate = flex->clk_rate;
int ret;
ret = pm_runtime_get_sync(flex->dev);
if (ret < 0) {
dev_err(flex->dev, "Failed to enable clock %d\n", __LINE__);
return ret;
}
/* disable and unprepare clock to avoid glitch pass to controller */
fsl_flexspi_clk_disable_unprep(flex);
ret = clk_set_rate(flex->clk, rate);
if (ret)
return ret;
ret = fsl_flexspi_clk_prep_enable(flex);
if (ret)
return ret;
/* Init the LUT table again. */
fsl_flexspi_init_lut(flex);
/* Init for AHB read */
fsl_flexspi_init_ahb_read(flex);
pm_runtime_mark_last_busy(flex->dev);
pm_runtime_put_autosuspend(flex->dev);
return 0;
}
static void fsl_flexspi_set_base_addr(struct fsl_flexspi *flex,
struct spi_nor *nor)
{
flex->chip_base_addr = flex->nor_size * (nor - flex->nor);
}
static int fsl_flexspi_read_reg(struct spi_nor *nor, u8 opcode, u8 *buf,
int len)
{
int ret;
struct fsl_flexspi *flex = nor->priv;
ret = fsl_flexspi_runcmd(flex, opcode, 0, len);
if (ret)
return ret;
fsl_flexspi_read_data(flex, len, buf);
return 0;
}
static int fsl_flexspi_write_reg(struct spi_nor *nor, u8 opcode, u8 *buf,
int len)
{
struct fsl_flexspi *flex = nor->priv;
int ret;
if (!buf) {
ret = fsl_flexspi_runcmd(flex, opcode, 0, 1);
if (ret)
return ret;
if (opcode == SPINOR_OP_CHIP_ERASE)
fsl_flexspi_invalid(flex);
} else if (len > 0) {
ret = fsl_flexspi_nor_write(flex, nor, opcode, 0,
(u32 *)buf, len);
} else {
dev_err(flex->dev, "invalid cmd %d\n", opcode);
ret = -EINVAL;
}
return ret;
}
static ssize_t fsl_flexspi_write(struct spi_nor *nor, loff_t to,
size_t len, const u_char *buf)
{
struct fsl_flexspi *flex = nor->priv;
ssize_t ret = fsl_flexspi_nor_write(flex, nor, nor->program_opcode, to,
(u32 *)buf, len);
/* invalid the data in the AHB buffer. */
fsl_flexspi_invalid(flex);
return ret;
}
static ssize_t fsl_flexspi_read(struct spi_nor *nor, loff_t from,
size_t len, u_char *buf)
{
struct fsl_flexspi *flex = nor->priv;
int i, j;
/* if necessary,ioremap buffer before AHB read, */
if (!flex->ahb_addr) {
flex->memmap_offs = flex->chip_base_addr + from;
flex->memmap_len = len > FLEXSPI_MIN_IOMAP ?
len : FLEXSPI_MIN_IOMAP;
flex->ahb_addr = ioremap_nocache(
flex->memmap_phy + flex->memmap_offs,
flex->memmap_len);
if (!flex->ahb_addr) {
dev_err(flex->dev, "ioremap failed\n");
return -ENOMEM;
}
/* ioremap if the data requested is out of range */
} else if (flex->chip_base_addr + from < flex->memmap_offs
|| flex->chip_base_addr + from + len >
flex->memmap_offs + flex->memmap_len) {
iounmap(flex->ahb_addr);
flex->memmap_offs = flex->chip_base_addr + from;
flex->memmap_len = len > FLEXSPI_MIN_IOMAP ?
len : FLEXSPI_MIN_IOMAP;
flex->ahb_addr = ioremap_nocache(
flex->memmap_phy + flex->memmap_offs,
flex->memmap_len);
if (!flex->ahb_addr) {
dev_err(flex->dev, "ioremap failed\n");
return -ENOMEM;
}
}
/* For non-8-byte alignment cases */
if (from % 8) {
j = 8 - (from & 0x7);
for (i = 0; i < j; ++i) {
memcpy(buf + i, flex->ahb_addr + flex->chip_base_addr
+ from - flex->memmap_offs + i, 1);
}
memcpy(buf + j, flex->ahb_addr + flex->chip_base_addr + from
- flex->memmap_offs + j, len - j);
} else {
/* Read out the data directly from the AHB buffer.*/
memcpy(buf, flex->ahb_addr + flex->chip_base_addr + from
- flex->memmap_offs, len);
}
return len;
}
static int fsl_flexspi_erase(struct spi_nor *nor, loff_t offs)
{
struct fsl_flexspi *flex = nor->priv;
int ret;
dev_dbg(nor->dev, "%dKiB at 0x%08x:0x%08x\n",
nor->mtd.erasesize / 1024, flex->chip_base_addr, (u32)offs);
ret = fsl_flexspi_runcmd(flex, nor->erase_opcode, offs, 0);
if (ret)
return ret;
fsl_flexspi_invalid(flex);
return 0;
}
static int fsl_flexspi_prep(struct spi_nor *nor, enum spi_nor_ops ops)
{
struct fsl_flexspi *flex = nor->priv;
int ret;
mutex_lock(&flex->lock);
ret = pm_runtime_get_sync(flex->dev);
if (ret < 0) {
dev_err(flex->dev, "Failed to enable clock %d\n", __LINE__);
goto err_mutex;
}
fsl_flexspi_set_base_addr(flex, nor);
return 0;
err_mutex:
mutex_unlock(&flex->lock);
return ret;
}
static void fsl_flexspi_unprep(struct spi_nor *nor, enum spi_nor_ops ops)
{
struct fsl_flexspi *flex = nor->priv;
pm_runtime_mark_last_busy(flex->dev);
pm_runtime_put_autosuspend(flex->dev);
mutex_unlock(&flex->lock);
}
static const struct of_device_id fsl_flexspi_dt_ids[] = {
{ .compatible = "fsl,imx8qm-flexspi", .data = (void *)&imx8qm_data, },
{ .compatible = "fsl,imx8qxp-flexspi", .data = (void *)&imx8qxp_data, },
{ /* sentinel */ }
};
MODULE_DEVICE_TABLE(of, fsl_flexspi_dt_ids);
static int fsl_flexspi_probe(struct platform_device *pdev)
{
struct device_node *np = pdev->dev.of_node;
struct device *dev = &pdev->dev;
struct fsl_flexspi *flex;
struct resource *res;
struct spi_nor *nor;
struct mtd_info *mtd;
int ret, i = 0;
const struct of_device_id *of_id =
of_match_device(fsl_flexspi_dt_ids, &pdev->dev);
flex = devm_kzalloc(dev, sizeof(*flex), GFP_KERNEL);
if (!flex)
return -ENOMEM;
flex->nor_num = of_get_child_count(dev->of_node);
if (!flex->nor_num || flex->nor_num > 4)
return -ENODEV;
flex->dev = dev;
flex->devtype_data = (struct fsl_flexspi_devtype_data *)of_id->data;
platform_set_drvdata(pdev, flex);
dev_set_drvdata(dev, flex);
/* find the resources */
res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "FlexSPI");
if (!res) {
dev_err(dev, "FlexSPI get resource IORESOURCE_MEM failed\n");
return -ENODEV;
}
flex->iobase = devm_ioremap_resource(dev, res);
if (IS_ERR(flex->iobase))
return PTR_ERR(flex->iobase);
res = platform_get_resource_byname(pdev, IORESOURCE_MEM,
"FlexSPI-memory");
if (!res) {
dev_err(dev,
"FlexSPI-memory get resource IORESOURCE_MEM failed\n");
return -ENODEV;
}
if (!devm_request_mem_region(dev, res->start, resource_size(res),
res->name)) {
dev_err(dev, "can't request region for resource %pR\n", res);
return -EBUSY;
}
flex->memmap_phy = res->start;
/* find the clocks */
flex->clk = devm_clk_get(dev, "fspi");
if (IS_ERR(flex->clk))
return PTR_ERR(flex->clk);
/* find ddrsmp value */
ret = of_property_read_u32(dev->of_node, "ddrsmp",
&flex->ddr_smp);
if (ret)
flex->ddr_smp = 0;
/* enable the clock */
ret = fsl_flexspi_init_rpm(flex);
if (ret) {
dev_err(dev, "can not enable the clock\n");
goto clk_failed;
}
/* find the irq */
ret = platform_get_irq(pdev, 0);
if (ret < 0) {
dev_err(dev, "failed to get the irq: %d\n", ret);
goto clk_failed;
}
ret = devm_request_irq(dev, ret,
fsl_flexspi_irq_handler, 0, pdev->name, flex);
if (ret) {
dev_err(dev, "failed to request irq: %d\n", ret);
goto clk_failed;
}
ret = fsl_flexspi_nor_setup(flex);
if (ret)
goto clk_failed;
if (of_get_property(np, "fsl,qspi-has-second-chip", NULL))
flex->has_second_chip = true;
mutex_init(&flex->lock);
/* iterate the subnodes. */
for_each_available_child_of_node(dev->of_node, np) {
enum read_mode mode = SPI_NOR_DDR_OCTAL;
u32 dummy = 0;
/* skip the holes */
if (!flex->has_second_chip)
i *= 2;
nor = &flex->nor[i];
mtd = &nor->mtd;
nor->dev = dev;
spi_nor_set_flash_node(nor, np);
nor->priv = flex;
/* fill the hooks */
nor->read_reg = fsl_flexspi_read_reg;
nor->write_reg = fsl_flexspi_write_reg;
nor->read = fsl_flexspi_read;
nor->write = fsl_flexspi_write;
nor->erase = fsl_flexspi_erase;
nor->prepare = fsl_flexspi_prep;
nor->unprepare = fsl_flexspi_unprep;
ret = of_property_read_u32(np, "spi-max-frequency",
&flex->clk_rate);
if (ret < 0)
goto mutex_failed;
/* Can we enable the DDR Quad Read? */
ret = of_property_read_u32(np, "spi-nor,ddr-quad-read-dummy",
&dummy);
if (!ret && dummy > 0)
mode = SPI_NOR_DDR_OCTAL;
/* set the chip address for READID */
fsl_flexspi_set_base_addr(flex, nor);
ret = spi_nor_scan(nor, NULL, mode);
if (ret)
goto mutex_failed;
ret = mtd_device_register(mtd, NULL, 0);
if (ret)
goto mutex_failed;
/* Set the correct NOR size now. */
if (flex->nor_size == 0) {
flex->nor_size = mtd->size;
/* Map the SPI NOR to accessiable address */
fsl_flexspi_set_map_addr(flex);
}
/*
* The TX FIFO is 64 bytes in the Vybrid, but the Page Program
* may writes 265 bytes per time. The write is working in the
* unit of the TX FIFO, not in the unit of the SPI NOR's page
* size.
*
* So shrink the spi_nor->page_size if it is larger then the
* TX FIFO.
*/
if (nor->page_size > flex->devtype_data->txfifo)
nor->page_size = flex->devtype_data->txfifo;
i++;
}
/* finish the rest init. */
ret = fsl_flexspi_nor_setup_last(flex);
if (ret)
goto last_init_failed;
/* indicate the controller has been initialized */
flex->flags |= FLEXSPI_INITILIZED;
return 0;
last_init_failed:
for (i = 0; i < flex->nor_num; i++) {
/* skip the holes */
if (!flex->has_second_chip)
i *= 2;
mtd_device_unregister(&flex->mtd[i]);
}
mutex_failed:
mutex_destroy(&flex->lock);
clk_failed:
dev_err(dev, "Freescale FlexSPI probe failed\n");
return ret;
}
static int fsl_flexspi_remove(struct platform_device *pdev)
{
struct fsl_flexspi *flex = platform_get_drvdata(pdev);
int i;
for (i = 0; i < flex->nor_num; i++) {
/* skip the holes */
if (!flex->has_second_chip)
i *= 2;
mtd_device_unregister(&flex->nor[i].mtd);
}
/* disable the hardware */
writel(FLEXSPI_MCR0_MDIS_MASK, flex->iobase + FLEXSPI_MCR0);
pm_runtime_disable(flex->dev);
mutex_destroy(&flex->lock);
if (flex->ahb_addr)
iounmap(flex->ahb_addr);
return 0;
}
static int fsl_flexspi_initialized(struct fsl_flexspi *flex)
{
return flex->flags & FLEXSPI_INITILIZED;
}
static int fsl_flexspi_need_reinit(struct fsl_flexspi *flex)
{
/* we always use the controller in combination mode, so we check this */
/* register bit to determine if the controller once lost power, such as */
/* suspend/resume, and need to be re-init */
return !(readl(flex->iobase + FLEXSPI_MCR0) & FLEXSPI_MCR0_OCTCOMB_EN_MASK);
}
int fsl_flexspi_runtime_suspend(struct device *dev)
{
struct fsl_flexspi *flex = dev_get_drvdata(dev);
fsl_flexspi_clk_disable_unprep(flex);
return 0;
}
int fsl_flexspi_runtime_resume(struct device *dev)
{
struct fsl_flexspi *flex = dev_get_drvdata(dev);
fsl_flexspi_clk_prep_enable(flex);
if (fsl_flexspi_initialized(flex) &&
fsl_flexspi_need_reinit(flex)) {
fsl_flexspi_nor_setup(flex);
fsl_flexspi_set_map_addr(flex);
fsl_flexspi_nor_setup_last(flex);
}
return 0;
}
static const struct dev_pm_ops fsl_flexspi_pm_ops = {
SET_RUNTIME_PM_OPS(fsl_flexspi_runtime_suspend, fsl_flexspi_runtime_resume, NULL)
SET_SYSTEM_SLEEP_PM_OPS(pm_runtime_force_suspend, pm_runtime_force_resume)
};
static struct platform_driver fsl_flexspi_driver = {
.driver = {
.name = "fsl-flexspi",
.bus = &platform_bus_type,
.pm = &fsl_flexspi_pm_ops,
.of_match_table = fsl_flexspi_dt_ids,
},
.probe = fsl_flexspi_probe,
.remove = fsl_flexspi_remove,
};
module_platform_driver(fsl_flexspi_driver);
MODULE_DESCRIPTION("Freescale FlexSPI Controller Driver");
MODULE_AUTHOR("Freescale Semiconductor Inc.");
MODULE_LICENSE("GPL v2");