blob: 7f56d2c9dd001bda96d2beda6d2c10e0b7649786 [file] [log] [blame]
/* GPL HEADER START
*
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License version 2 only,
* as published by the Free Software Foundation.
*
* This program is distributed in the hope that it will be useful, but
* WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* General Public License version 2 for more details (a copy is included
* in the LICENSE file that accompanied this code).
*
* You should have received a copy of the GNU General Public License
* version 2 along with this program; If not, see http://www.gnu.org/licenses
*
* Please visit http://www.xyratex.com/contact if you need additional
* information or have any questions.
*
* GPL HEADER END
*/
/*
* Copyright 2012 Xyratex Technology Limited
*
* Copyright (c) 2012, Intel Corporation.
*/
#include <crypto/hash.h>
#include <linux/scatterlist.h>
#include "../../../include/linux/libcfs/libcfs.h"
#include "../../../include/linux/libcfs/libcfs_crypto.h"
#include "linux-crypto.h"
/**
* Array of hash algorithm speed in MByte per second
*/
static int cfs_crypto_hash_speeds[CFS_HASH_ALG_MAX];
/**
* Initialize the state descriptor for the specified hash algorithm.
*
* An internal routine to allocate the hash-specific state in \a hdesc for
* use with cfs_crypto_hash_digest() to compute the hash of a single message,
* though possibly in multiple chunks. The descriptor internal state should
* be freed with cfs_crypto_hash_final().
*
* \param[in] hash_alg hash algorithm id (CFS_HASH_ALG_*)
* \param[out] type pointer to the hash description in hash_types[]
* array
* \param[in,out] hdesc hash state descriptor to be initialized
* \param[in] key initial hash value/state, NULL to use default
* value
* \param[in] key_len length of \a key
*
* \retval 0 on success
* \retval negative errno on failure
*/
static int cfs_crypto_hash_alloc(enum cfs_crypto_hash_alg hash_alg,
const struct cfs_crypto_hash_type **type,
struct ahash_request **req,
unsigned char *key,
unsigned int key_len)
{
struct crypto_ahash *tfm;
int err = 0;
*type = cfs_crypto_hash_type(hash_alg);
if (!*type) {
CWARN("Unsupported hash algorithm id = %d, max id is %d\n",
hash_alg, CFS_HASH_ALG_MAX);
return -EINVAL;
}
tfm = crypto_alloc_ahash((*type)->cht_name, 0, CRYPTO_ALG_ASYNC);
if (IS_ERR(tfm)) {
CDEBUG(D_INFO, "Failed to alloc crypto hash %s\n",
(*type)->cht_name);
return PTR_ERR(tfm);
}
*req = ahash_request_alloc(tfm, GFP_KERNEL);
if (!*req) {
CDEBUG(D_INFO, "Failed to alloc ahash_request for %s\n",
(*type)->cht_name);
crypto_free_ahash(tfm);
return -ENOMEM;
}
ahash_request_set_callback(*req, 0, NULL, NULL);
if (key)
err = crypto_ahash_setkey(tfm, key, key_len);
else if ((*type)->cht_key != 0)
err = crypto_ahash_setkey(tfm,
(unsigned char *)&((*type)->cht_key),
(*type)->cht_size);
if (err != 0) {
ahash_request_free(*req);
crypto_free_ahash(tfm);
return err;
}
CDEBUG(D_INFO, "Using crypto hash: %s (%s) speed %d MB/s\n",
crypto_ahash_alg_name(tfm), crypto_ahash_driver_name(tfm),
cfs_crypto_hash_speeds[hash_alg]);
err = crypto_ahash_init(*req);
if (err) {
ahash_request_free(*req);
crypto_free_ahash(tfm);
}
return err;
}
/**
* Calculate hash digest for the passed buffer.
*
* This should be used when computing the hash on a single contiguous buffer.
* It combines the hash initialization, computation, and cleanup.
*
* \param[in] hash_alg id of hash algorithm (CFS_HASH_ALG_*)
* \param[in] buf data buffer on which to compute hash
* \param[in] buf_len length of \a buf in bytes
* \param[in] key initial value/state for algorithm,
* if \a key = NULL use default initial value
* \param[in] key_len length of \a key in bytes
* \param[out] hash pointer to computed hash value,
* if \a hash = NULL then \a hash_len is to digest
* size in bytes, retval -ENOSPC
* \param[in,out] hash_len size of \a hash buffer
*
* \retval -EINVAL \a buf, \a buf_len, \a hash_len,
* \a hash_alg invalid
* \retval -ENOENT \a hash_alg is unsupported
* \retval -ENOSPC \a hash is NULL, or \a hash_len less than
* digest size
* \retval 0 for success
* \retval negative errno for other errors from lower
* layers.
*/
int cfs_crypto_hash_digest(enum cfs_crypto_hash_alg hash_alg,
const void *buf, unsigned int buf_len,
unsigned char *key, unsigned int key_len,
unsigned char *hash, unsigned int *hash_len)
{
struct scatterlist sl;
struct ahash_request *req;
int err;
const struct cfs_crypto_hash_type *type;
if (!buf || buf_len == 0 || !hash_len)
return -EINVAL;
err = cfs_crypto_hash_alloc(hash_alg, &type, &req, key, key_len);
if (err != 0)
return err;
if (!hash || *hash_len < type->cht_size) {
*hash_len = type->cht_size;
crypto_free_ahash(crypto_ahash_reqtfm(req));
ahash_request_free(req);
return -ENOSPC;
}
sg_init_one(&sl, buf, buf_len);
ahash_request_set_crypt(req, &sl, hash, sl.length);
err = crypto_ahash_digest(req);
crypto_free_ahash(crypto_ahash_reqtfm(req));
ahash_request_free(req);
return err;
}
EXPORT_SYMBOL(cfs_crypto_hash_digest);
/**
* Allocate and initialize desriptor for hash algorithm.
*
* This should be used to initialize a hash descriptor for multiple calls
* to a single hash function when computing the hash across multiple
* separate buffers or pages using cfs_crypto_hash_update{,_page}().
*
* The hash descriptor should be freed with cfs_crypto_hash_final().
*
* \param[in] hash_alg algorithm id (CFS_HASH_ALG_*)
* \param[in] key initial value/state for algorithm, if \a key = NULL
* use default initial value
* \param[in] key_len length of \a key in bytes
*
* \retval pointer to descriptor of hash instance
* \retval ERR_PTR(errno) in case of error
*/
struct cfs_crypto_hash_desc *
cfs_crypto_hash_init(enum cfs_crypto_hash_alg hash_alg,
unsigned char *key, unsigned int key_len)
{
struct ahash_request *req;
int err;
const struct cfs_crypto_hash_type *type;
err = cfs_crypto_hash_alloc(hash_alg, &type, &req, key, key_len);
if (err)
return ERR_PTR(err);
return (struct cfs_crypto_hash_desc *)req;
}
EXPORT_SYMBOL(cfs_crypto_hash_init);
/**
* Update hash digest computed on data within the given \a page
*
* \param[in] hdesc hash state descriptor
* \param[in] page data page on which to compute the hash
* \param[in] offset offset within \a page at which to start hash
* \param[in] len length of data on which to compute hash
*
* \retval 0 for success
* \retval negative errno on failure
*/
int cfs_crypto_hash_update_page(struct cfs_crypto_hash_desc *hdesc,
struct page *page, unsigned int offset,
unsigned int len)
{
struct ahash_request *req = (void *)hdesc;
struct scatterlist sl;
sg_init_table(&sl, 1);
sg_set_page(&sl, page, len, offset & ~PAGE_MASK);
ahash_request_set_crypt(req, &sl, NULL, sl.length);
return crypto_ahash_update(req);
}
EXPORT_SYMBOL(cfs_crypto_hash_update_page);
/**
* Update hash digest computed on the specified data
*
* \param[in] hdesc hash state descriptor
* \param[in] buf data buffer on which to compute the hash
* \param[in] buf_len length of \buf on which to compute hash
*
* \retval 0 for success
* \retval negative errno on failure
*/
int cfs_crypto_hash_update(struct cfs_crypto_hash_desc *hdesc,
const void *buf, unsigned int buf_len)
{
struct ahash_request *req = (void *)hdesc;
struct scatterlist sl;
sg_init_one(&sl, buf, buf_len);
ahash_request_set_crypt(req, &sl, NULL, sl.length);
return crypto_ahash_update(req);
}
EXPORT_SYMBOL(cfs_crypto_hash_update);
/**
* Finish hash calculation, copy hash digest to buffer, clean up hash descriptor
*
* \param[in] hdesc hash descriptor
* \param[out] hash pointer to hash buffer to store hash digest
* \param[in,out] hash_len pointer to hash buffer size, if \a hdesc = NULL
* only free \a hdesc instead of computing the hash
*
* \retval 0 for success
* \retval -EOVERFLOW if hash_len is too small for the hash digest
* \retval negative errno for other errors from lower layers
*/
int cfs_crypto_hash_final(struct cfs_crypto_hash_desc *hdesc,
unsigned char *hash, unsigned int *hash_len)
{
int err;
struct ahash_request *req = (void *)hdesc;
int size = crypto_ahash_digestsize(crypto_ahash_reqtfm(req));
if (!hash || !hash_len) {
err = 0;
goto free_ahash;
}
if (*hash_len < size) {
err = -EOVERFLOW;
goto free_ahash;
}
ahash_request_set_crypt(req, NULL, hash, 0);
err = crypto_ahash_final(req);
if (!err)
*hash_len = size;
free_ahash:
crypto_free_ahash(crypto_ahash_reqtfm(req));
ahash_request_free(req);
return err;
}
EXPORT_SYMBOL(cfs_crypto_hash_final);
/**
* Compute the speed of specified hash function
*
* Run a speed test on the given hash algorithm on buffer of the given size.
* The speed is stored internally in the cfs_crypto_hash_speeds[] array, and
* is available through the cfs_crypto_hash_speed() function.
*
* \param[in] hash_alg hash algorithm id (CFS_HASH_ALG_*)
* \param[in] buf data buffer on which to compute the hash
* \param[in] buf_len length of \buf on which to compute hash
*/
static void cfs_crypto_performance_test(enum cfs_crypto_hash_alg hash_alg)
{
int buf_len = max(PAGE_SIZE, 1048576UL);
void *buf;
unsigned long start, end;
int bcount, err = 0;
struct page *page;
unsigned char hash[CFS_CRYPTO_HASH_DIGESTSIZE_MAX];
unsigned int hash_len = sizeof(hash);
page = alloc_page(GFP_KERNEL);
if (!page) {
err = -ENOMEM;
goto out_err;
}
buf = kmap(page);
memset(buf, 0xAD, PAGE_SIZE);
kunmap(page);
for (start = jiffies, end = start + msecs_to_jiffies(MSEC_PER_SEC),
bcount = 0; time_before(jiffies, end); bcount++) {
struct cfs_crypto_hash_desc *hdesc;
int i;
hdesc = cfs_crypto_hash_init(hash_alg, NULL, 0);
if (IS_ERR(hdesc)) {
err = PTR_ERR(hdesc);
break;
}
for (i = 0; i < buf_len / PAGE_SIZE; i++) {
err = cfs_crypto_hash_update_page(hdesc, page, 0,
PAGE_SIZE);
if (err)
break;
}
err = cfs_crypto_hash_final(hdesc, hash, &hash_len);
if (err)
break;
}
end = jiffies;
__free_page(page);
out_err:
if (err) {
cfs_crypto_hash_speeds[hash_alg] = err;
CDEBUG(D_INFO, "Crypto hash algorithm %s test error: rc = %d\n",
cfs_crypto_hash_name(hash_alg), err);
} else {
unsigned long tmp;
tmp = ((bcount * buf_len / jiffies_to_msecs(end - start)) *
1000) / (1024 * 1024);
cfs_crypto_hash_speeds[hash_alg] = (int)tmp;
CDEBUG(D_CONFIG, "Crypto hash algorithm %s speed = %d MB/s\n",
cfs_crypto_hash_name(hash_alg),
cfs_crypto_hash_speeds[hash_alg]);
}
}
/**
* hash speed in Mbytes per second for valid hash algorithm
*
* Return the performance of the specified \a hash_alg that was previously
* computed using cfs_crypto_performance_test().
*
* \param[in] hash_alg hash algorithm id (CFS_HASH_ALG_*)
*
* \retval positive speed of the hash function in MB/s
* \retval -ENOENT if \a hash_alg is unsupported
* \retval negative errno if \a hash_alg speed is unavailable
*/
int cfs_crypto_hash_speed(enum cfs_crypto_hash_alg hash_alg)
{
if (hash_alg < CFS_HASH_ALG_MAX)
return cfs_crypto_hash_speeds[hash_alg];
return -ENOENT;
}
EXPORT_SYMBOL(cfs_crypto_hash_speed);
/**
* Run the performance test for all hash algorithms.
*
* Run the cfs_crypto_performance_test() benchmark for all of the available
* hash functions using a 1MB buffer size. This is a reasonable buffer size
* for Lustre RPCs, even if the actual RPC size is larger or smaller.
*
* Since the setup cost and computation speed of various hash algorithms is
* a function of the buffer size (and possibly internal contention of offload
* engines), this speed only represents an estimate of the actual speed under
* actual usage, but is reasonable for comparing available algorithms.
*
* The actual speeds are available via cfs_crypto_hash_speed() for later
* comparison.
*
* \retval 0 on success
* \retval -ENOMEM if no memory is available for test buffer
*/
static int cfs_crypto_test_hashes(void)
{
enum cfs_crypto_hash_alg hash_alg;
for (hash_alg = 0; hash_alg < CFS_HASH_ALG_MAX; hash_alg++)
cfs_crypto_performance_test(hash_alg);
return 0;
}
static int adler32;
/**
* Register available hash functions
*
* \retval 0
*/
int cfs_crypto_register(void)
{
request_module("crc32c");
adler32 = cfs_crypto_adler32_register();
/* check all algorithms and do performance test */
cfs_crypto_test_hashes();
return 0;
}
/**
* Unregister previously registered hash functions
*/
void cfs_crypto_unregister(void)
{
if (adler32 == 0)
cfs_crypto_adler32_unregister();
}