blob: 3167806931935218f415a439a21d1440b16a8965 [file] [log] [blame]
/*
* GPL HEADER START
*
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License version 2 only,
* as published by the Free Software Foundation.
*
* This program is distributed in the hope that it will be useful, but
* WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* General Public License version 2 for more details (a copy is included
* in the LICENSE file that accompanied this code).
*
* You should have received a copy of the GNU General Public License
* version 2 along with this program; If not, see
* http://www.gnu.org/licenses/gpl-2.0.html
*
* GPL HEADER END
*/
/*
* Copyright (c) 2007, 2010, Oracle and/or its affiliates. All rights reserved.
* Use is subject to license terms.
*
* Copyright (c) 2011, 2015, Intel Corporation.
*/
/*
* This file is part of Lustre, http://www.lustre.org/
* Lustre is a trademark of Sun Microsystems, Inc.
*
* lustre/include/lustre_fid.h
*
* Author: Yury Umanets <umka@clusterfs.com>
*/
#ifndef __LUSTRE_FID_H
#define __LUSTRE_FID_H
/** \defgroup fid fid
*
* @{
*
* http://wiki.old.lustre.org/index.php/Architecture_-_Interoperability_fids_zfs
* describes the FID namespace and interoperability requirements for FIDs.
* The important parts of that document are included here for reference.
*
* FID
* File IDentifier generated by client from range allocated by the SEQuence
* service and stored in struct lu_fid. The FID is composed of three parts:
* SEQuence, ObjectID, and VERsion. The SEQ component is a filesystem
* unique 64-bit integer, and only one client is ever assigned any SEQ value.
* The first 0x400 FID_SEQ_NORMAL [2^33, 2^33 + 0x400] values are reserved
* for system use. The OID component is a 32-bit value generated by the
* client on a per-SEQ basis to allow creating many unique FIDs without
* communication with the server. The VER component is a 32-bit value that
* distinguishes between different FID instantiations, such as snapshots or
* separate subtrees within the filesystem. FIDs with the same VER field
* are considered part of the same namespace.
*
* OLD filesystems are those upgraded from Lustre 1.x that predate FIDs, and
* MDTs use 32-bit ldiskfs internal inode/generation numbers (IGIFs), while
* OSTs use 64-bit Lustre object IDs and generation numbers.
*
* NEW filesystems are those formatted since the introduction of FIDs.
*
* IGIF
* Inode and Generation In FID, a surrogate FID used to globally identify
* an existing object on OLD formatted MDT file system. This would only be
* used on MDT0 in a DNE filesystem, because there cannot be more than one
* MDT in an OLD formatted filesystem. Belongs to sequence in [12, 2^32 - 1]
* range, where inode number is stored in SEQ, and inode generation is in OID.
* NOTE: This assumes no more than 2^32-1 inodes exist in the MDT filesystem,
* which is the maximum possible for an ldiskfs backend. It also assumes
* that the reserved ext3/ext4/ldiskfs inode numbers [0-11] are never visible
* to clients, which has always been true.
*
* IDIF
* object ID In FID, a surrogate FID used to globally identify an existing
* OST object on OLD formatted OST file system. Belongs to a sequence in
* [2^32, 2^33 - 1]. Sequence number is calculated as:
*
* 1 << 32 | (ost_index << 16) | ((objid >> 32) & 0xffff)
*
* that is, SEQ consists of 16-bit OST index, and higher 16 bits of object
* ID. The generation of unique SEQ values per OST allows the IDIF FIDs to
* be identified in the FLD correctly. The OID field is calculated as:
*
* objid & 0xffffffff
*
* that is, it consists of lower 32 bits of object ID. For objects within
* the IDIF range, object ID extraction will be:
*
* o_id = (fid->f_seq & 0x7fff) << 16 | fid->f_oid;
* o_seq = 0; // formerly group number
*
* NOTE: This assumes that no more than 2^48-1 objects have ever been created
* on any OST, and that no more than 65535 OSTs are in use. Both are very
* reasonable assumptions, i.e. an IDIF can uniquely map all objects assuming
* a maximum creation rate of 1M objects per second for a maximum of 9 years,
* or combinations thereof.
*
* OST_MDT0
* Surrogate FID used to identify an existing object on OLD formatted OST
* filesystem. Belongs to the reserved SEQuence 0, and is used prior to
* the introduction of FID-on-OST, at which point IDIF will be used to
* identify objects as residing on a specific OST.
*
* LLOG
* For Lustre Log objects the object sequence 1 is used. This is compatible
* with both OLD and NEW namespaces, as this SEQ number is in the
* ext3/ldiskfs reserved inode range and does not conflict with IGIF
* sequence numbers.
*
* ECHO
* For testing OST IO performance the object sequence 2 is used. This is
* compatible with both OLD and NEW namespaces, as this SEQ number is in
* the ext3/ldiskfs reserved inode range and does not conflict with IGIF
* sequence numbers.
*
* OST_MDT1 .. OST_MAX
* For testing with multiple MDTs the object sequence 3 through 9 is used,
* allowing direct mapping of MDTs 1 through 7 respectively, for a total
* of 8 MDTs including OST_MDT0. This matches the legacy CMD project "group"
* mappings. However, this SEQ range is only for testing prior to any
* production DNE release, as the objects in this range conflict across all
* OSTs, as the OST index is not part of the FID. For production DNE usage,
* OST objects created by MDT1+ will use FID_SEQ_NORMAL FIDs.
*
* DLM OST objid to IDIF mapping
* For compatibility with existing OLD OST network protocol structures, the
* FID must map onto the o_id and o_seq in a manner that ensures existing
* objects are identified consistently for IO, as well as onto the LDLM
* namespace to ensure IDIFs there is only a single resource name for any
* object in the DLM. The OLD OST object DLM resource mapping is:
*
* resource[] = {o_id, o_seq, 0, 0}; // o_seq == 0 for production releases
*
* The NEW OST object DLM resource mapping is the same for both MDT and OST:
*
* resource[] = {SEQ, OID, VER, HASH};
*
* NOTE: for mapping IDIF values to DLM resource names the o_id may be
* larger than the 2^33 reserved sequence numbers for IDIF, so it is possible
* for the o_id numbers to overlap FID SEQ numbers in the resource. However,
* in all production releases the OLD o_seq field is always zero, and all
* valid FID OID values are non-zero, so the lock resources will not collide.
* Even so, the MDT and OST resources are also in different LDLM namespaces.
*/
#include "../../include/linux/libcfs/libcfs.h"
#include "lustre/lustre_idl.h"
struct lu_env;
struct lu_site;
struct lu_context;
struct obd_device;
struct obd_export;
/* Whole sequences space range and zero range definitions */
extern const struct lu_seq_range LUSTRE_SEQ_SPACE_RANGE;
extern const struct lu_seq_range LUSTRE_SEQ_ZERO_RANGE;
extern const struct lu_fid LUSTRE_BFL_FID;
extern const struct lu_fid LU_OBF_FID;
extern const struct lu_fid LU_DOT_LUSTRE_FID;
enum {
/*
* This is how may metadata FIDs may be allocated in one sequence(128k)
*/
LUSTRE_METADATA_SEQ_MAX_WIDTH = 0x0000000000020000ULL,
/*
* This is how many data FIDs could be allocated in one sequence(4B - 1)
*/
LUSTRE_DATA_SEQ_MAX_WIDTH = 0x00000000FFFFFFFFULL,
/*
* How many sequences to allocate to a client at once.
*/
LUSTRE_SEQ_META_WIDTH = 0x0000000000000001ULL,
/*
* seq allocation pool size.
*/
LUSTRE_SEQ_BATCH_WIDTH = LUSTRE_SEQ_META_WIDTH * 1000,
/*
* This is how many sequences may be in one super-sequence allocated to
* MDTs.
*/
LUSTRE_SEQ_SUPER_WIDTH = ((1ULL << 30ULL) * LUSTRE_SEQ_META_WIDTH)
};
enum {
/** 2^6 FIDs for OI containers */
OSD_OI_FID_OID_BITS = 6,
/** reserve enough FIDs in case we want more in the future */
OSD_OI_FID_OID_BITS_MAX = 10,
};
/** special OID for local objects */
enum local_oid {
/** \see fld_mod_init */
FLD_INDEX_OID = 3UL,
/** \see fid_mod_init */
FID_SEQ_CTL_OID = 4UL,
FID_SEQ_SRV_OID = 5UL,
/** \see mdd_mod_init */
MDD_ROOT_INDEX_OID = 6UL, /* deprecated in 2.4 */
MDD_ORPHAN_OID = 7UL, /* deprecated in 2.4 */
MDD_LOV_OBJ_OID = 8UL,
MDD_CAPA_KEYS_OID = 9UL,
/** \see mdt_mod_init */
LAST_RECV_OID = 11UL,
OSD_FS_ROOT_OID = 13UL,
ACCT_USER_OID = 15UL,
ACCT_GROUP_OID = 16UL,
LFSCK_BOOKMARK_OID = 17UL,
OTABLE_IT_OID = 18UL,
/* These two definitions are obsolete
* OFD_GROUP0_LAST_OID = 20UL,
* OFD_GROUP4K_LAST_OID = 20UL+4096,
*/
OFD_LAST_GROUP_OID = 4117UL,
LLOG_CATALOGS_OID = 4118UL,
MGS_CONFIGS_OID = 4119UL,
OFD_HEALTH_CHECK_OID = 4120UL,
MDD_LOV_OBJ_OSEQ = 4121UL,
LFSCK_NAMESPACE_OID = 4122UL,
REMOTE_PARENT_DIR_OID = 4123UL,
SLAVE_LLOG_CATALOGS_OID = 4124UL,
};
static inline void lu_local_obj_fid(struct lu_fid *fid, __u32 oid)
{
fid->f_seq = FID_SEQ_LOCAL_FILE;
fid->f_oid = oid;
fid->f_ver = 0;
}
static inline void lu_local_name_obj_fid(struct lu_fid *fid, __u32 oid)
{
fid->f_seq = FID_SEQ_LOCAL_NAME;
fid->f_oid = oid;
fid->f_ver = 0;
}
/* For new FS (>= 2.4), the root FID will be changed to
* [FID_SEQ_ROOT:1:0], for existing FS, (upgraded to 2.4),
* the root FID will still be IGIF
*/
static inline int fid_is_root(const struct lu_fid *fid)
{
return unlikely((fid_seq(fid) == FID_SEQ_ROOT &&
fid_oid(fid) == 1));
}
static inline int fid_is_dot_lustre(const struct lu_fid *fid)
{
return unlikely(fid_seq(fid) == FID_SEQ_DOT_LUSTRE &&
fid_oid(fid) == FID_OID_DOT_LUSTRE);
}
static inline int fid_is_obf(const struct lu_fid *fid)
{
return unlikely(fid_seq(fid) == FID_SEQ_DOT_LUSTRE &&
fid_oid(fid) == FID_OID_DOT_LUSTRE_OBF);
}
static inline int fid_is_otable_it(const struct lu_fid *fid)
{
return unlikely(fid_seq(fid) == FID_SEQ_LOCAL_FILE &&
fid_oid(fid) == OTABLE_IT_OID);
}
static inline int fid_is_acct(const struct lu_fid *fid)
{
return fid_seq(fid) == FID_SEQ_LOCAL_FILE &&
(fid_oid(fid) == ACCT_USER_OID ||
fid_oid(fid) == ACCT_GROUP_OID);
}
static inline int fid_is_quota(const struct lu_fid *fid)
{
return fid_seq(fid) == FID_SEQ_QUOTA ||
fid_seq(fid) == FID_SEQ_QUOTA_GLB;
}
static inline int fid_is_namespace_visible(const struct lu_fid *fid)
{
const __u64 seq = fid_seq(fid);
/* Here, we cannot distinguish whether the normal FID is for OST
* object or not. It is caller's duty to check more if needed.
*/
return (!fid_is_last_id(fid) &&
(fid_seq_is_norm(seq) || fid_seq_is_igif(seq))) ||
fid_is_root(fid) || fid_is_dot_lustre(fid);
}
static inline int fid_seq_in_fldb(__u64 seq)
{
return fid_seq_is_igif(seq) || fid_seq_is_norm(seq) ||
fid_seq_is_root(seq) || fid_seq_is_dot(seq);
}
static inline void lu_last_id_fid(struct lu_fid *fid, __u64 seq, __u32 ost_idx)
{
if (fid_seq_is_mdt0(seq)) {
fid->f_seq = fid_idif_seq(0, ost_idx);
} else {
LASSERTF(fid_seq_is_norm(seq) || fid_seq_is_echo(seq) ||
fid_seq_is_idif(seq), "%#llx\n", seq);
fid->f_seq = seq;
}
fid->f_oid = 0;
fid->f_ver = 0;
}
/* seq client type */
enum lu_cli_type {
LUSTRE_SEQ_METADATA = 1,
LUSTRE_SEQ_DATA
};
enum lu_mgr_type {
LUSTRE_SEQ_SERVER,
LUSTRE_SEQ_CONTROLLER
};
/* Client sequence manager interface. */
struct lu_client_seq {
/* Sequence-controller export. */
struct obd_export *lcs_exp;
struct mutex lcs_mutex;
/*
* Range of allowed for allocation sequences. When using lu_client_seq on
* clients, this contains meta-sequence range. And for servers this
* contains super-sequence range.
*/
struct lu_seq_range lcs_space;
/* Seq related proc */
struct dentry *lcs_debugfs_entry;
/* This holds last allocated fid in last obtained seq */
struct lu_fid lcs_fid;
/* LUSTRE_SEQ_METADATA or LUSTRE_SEQ_DATA */
enum lu_cli_type lcs_type;
/*
* Service uuid, passed from MDT + seq name to form unique seq name to
* use it with procfs.
*/
char lcs_name[LUSTRE_MDT_MAXNAMELEN];
/*
* Sequence width, that is how many objects may be allocated in one
* sequence. Default value for it is LUSTRE_SEQ_MAX_WIDTH.
*/
__u64 lcs_width;
/* wait queue for fid allocation and update indicator */
wait_queue_head_t lcs_waitq;
int lcs_update;
};
/* Client methods */
void seq_client_flush(struct lu_client_seq *seq);
int seq_client_alloc_fid(const struct lu_env *env, struct lu_client_seq *seq,
struct lu_fid *fid);
/* Fids common stuff */
int fid_is_local(const struct lu_env *env,
struct lu_site *site, const struct lu_fid *fid);
enum lu_cli_type;
int client_fid_init(struct obd_device *obd, struct obd_export *exp,
enum lu_cli_type type);
int client_fid_fini(struct obd_device *obd);
/* fid locking */
struct ldlm_namespace;
/*
* Build (DLM) resource name from FID.
*
* NOTE: until Lustre 1.8.7/2.1.1 the fid_ver() was packed into name[2],
* but was moved into name[1] along with the OID to avoid consuming the
* renaming name[2,3] fields that need to be used for the quota identifier.
*/
static inline void
fid_build_reg_res_name(const struct lu_fid *fid, struct ldlm_res_id *res)
{
memset(res, 0, sizeof(*res));
res->name[LUSTRE_RES_ID_SEQ_OFF] = fid_seq(fid);
res->name[LUSTRE_RES_ID_VER_OID_OFF] = fid_ver_oid(fid);
}
/*
* Return true if resource is for object identified by FID.
*/
static inline bool fid_res_name_eq(const struct lu_fid *fid,
const struct ldlm_res_id *res)
{
return res->name[LUSTRE_RES_ID_SEQ_OFF] == fid_seq(fid) &&
res->name[LUSTRE_RES_ID_VER_OID_OFF] == fid_ver_oid(fid);
}
/*
* Extract FID from LDLM resource. Reverse of fid_build_reg_res_name().
*/
static inline void
fid_extract_from_res_name(struct lu_fid *fid, const struct ldlm_res_id *res)
{
fid->f_seq = res->name[LUSTRE_RES_ID_SEQ_OFF];
fid->f_oid = (__u32)(res->name[LUSTRE_RES_ID_VER_OID_OFF]);
fid->f_ver = (__u32)(res->name[LUSTRE_RES_ID_VER_OID_OFF] >> 32);
LASSERT(fid_res_name_eq(fid, res));
}
/*
* Build (DLM) resource identifier from global quota FID and quota ID.
*/
static inline void
fid_build_quota_res_name(const struct lu_fid *glb_fid, union lquota_id *qid,
struct ldlm_res_id *res)
{
fid_build_reg_res_name(glb_fid, res);
res->name[LUSTRE_RES_ID_QUOTA_SEQ_OFF] = fid_seq(&qid->qid_fid);
res->name[LUSTRE_RES_ID_QUOTA_VER_OID_OFF] = fid_ver_oid(&qid->qid_fid);
}
/*
* Extract global FID and quota ID from resource name
*/
static inline void fid_extract_from_quota_res(struct lu_fid *glb_fid,
union lquota_id *qid,
const struct ldlm_res_id *res)
{
fid_extract_from_res_name(glb_fid, res);
qid->qid_fid.f_seq = res->name[LUSTRE_RES_ID_QUOTA_SEQ_OFF];
qid->qid_fid.f_oid = (__u32)res->name[LUSTRE_RES_ID_QUOTA_VER_OID_OFF];
qid->qid_fid.f_ver =
(__u32)(res->name[LUSTRE_RES_ID_QUOTA_VER_OID_OFF] >> 32);
}
static inline void
fid_build_pdo_res_name(const struct lu_fid *fid, unsigned int hash,
struct ldlm_res_id *res)
{
fid_build_reg_res_name(fid, res);
res->name[LUSTRE_RES_ID_HSH_OFF] = hash;
}
/**
* Build DLM resource name from object id & seq, which will be removed
* finally, when we replace ost_id with FID in data stack.
*
* Currently, resid from the old client, whose res[0] = object_id,
* res[1] = object_seq, is just opposite with Metatdata
* resid, where, res[0] = fid->f_seq, res[1] = fid->f_oid.
* To unify the resid identification, we will reverse the data
* resid to keep it same with Metadata resid, i.e.
*
* For resid from the old client,
* res[0] = objid, res[1] = 0, still keep the original order,
* for compatibility.
*
* For new resid
* res will be built from normal FID directly, i.e. res[0] = f_seq,
* res[1] = f_oid + f_ver.
*/
static inline void ostid_build_res_name(const struct ost_id *oi,
struct ldlm_res_id *name)
{
memset(name, 0, sizeof(*name));
if (fid_seq_is_mdt0(ostid_seq(oi))) {
name->name[LUSTRE_RES_ID_SEQ_OFF] = ostid_id(oi);
name->name[LUSTRE_RES_ID_VER_OID_OFF] = ostid_seq(oi);
} else {
fid_build_reg_res_name(&oi->oi_fid, name);
}
}
/**
* Return true if the resource is for the object identified by this id & group.
*/
static inline int ostid_res_name_eq(const struct ost_id *oi,
const struct ldlm_res_id *name)
{
/* Note: it is just a trick here to save some effort, probably the
* correct way would be turn them into the FID and compare
*/
if (fid_seq_is_mdt0(ostid_seq(oi))) {
return name->name[LUSTRE_RES_ID_SEQ_OFF] == ostid_id(oi) &&
name->name[LUSTRE_RES_ID_VER_OID_OFF] == ostid_seq(oi);
} else {
return name->name[LUSTRE_RES_ID_SEQ_OFF] == ostid_seq(oi) &&
name->name[LUSTRE_RES_ID_VER_OID_OFF] == ostid_id(oi);
}
}
/* The same as osc_build_res_name() */
static inline void ost_fid_build_resid(const struct lu_fid *fid,
struct ldlm_res_id *resname)
{
if (fid_is_mdt0(fid) || fid_is_idif(fid)) {
struct ost_id oi;
oi.oi.oi_id = 0; /* gcc 4.7.2 complains otherwise */
if (fid_to_ostid(fid, &oi) != 0)
return;
ostid_build_res_name(&oi, resname);
} else {
fid_build_reg_res_name(fid, resname);
}
}
static inline void ost_fid_from_resid(struct lu_fid *fid,
const struct ldlm_res_id *name,
int ost_idx)
{
if (fid_seq_is_mdt0(name->name[LUSTRE_RES_ID_VER_OID_OFF])) {
/* old resid */
struct ost_id oi;
ostid_set_seq(&oi, name->name[LUSTRE_RES_ID_VER_OID_OFF]);
ostid_set_id(&oi, name->name[LUSTRE_RES_ID_SEQ_OFF]);
ostid_to_fid(fid, &oi, ost_idx);
} else {
/* new resid */
fid_extract_from_res_name(fid, name);
}
}
/**
* Flatten 128-bit FID values into a 64-bit value for use as an inode number.
* For non-IGIF FIDs this starts just over 2^32, and continues without
* conflict until 2^64, at which point we wrap the high 24 bits of the SEQ
* into the range where there may not be many OID values in use, to minimize
* the risk of conflict.
*
* Suppose LUSTRE_SEQ_MAX_WIDTH less than (1 << 24) which is currently true,
* the time between re-used inode numbers is very long - 2^40 SEQ numbers,
* or about 2^40 client mounts, if clients create less than 2^24 files/mount.
*/
static inline __u64 fid_flatten(const struct lu_fid *fid)
{
__u64 ino;
__u64 seq;
if (fid_is_igif(fid)) {
ino = lu_igif_ino(fid);
return ino;
}
seq = fid_seq(fid);
ino = (seq << 24) + ((seq >> 24) & 0xffffff0000ULL) + fid_oid(fid);
return ino ? ino : fid_oid(fid);
}
static inline __u32 fid_hash(const struct lu_fid *f, int bits)
{
/* all objects with same id and different versions will belong to same
* collisions list.
*/
return hash_long(fid_flatten(f), bits);
}
/**
* map fid to 32 bit value for ino on 32bit systems.
*/
static inline __u32 fid_flatten32(const struct lu_fid *fid)
{
__u32 ino;
__u64 seq;
if (fid_is_igif(fid)) {
ino = lu_igif_ino(fid);
return ino;
}
seq = fid_seq(fid) - FID_SEQ_START;
/* Map the high bits of the OID into higher bits of the inode number so
* that inodes generated at about the same time have a reduced chance
* of collisions. This will give a period of 2^12 = 1024 unique clients
* (from SEQ) and up to min(LUSTRE_SEQ_MAX_WIDTH, 2^20) = 128k objects
* (from OID), or up to 128M inodes without collisions for new files.
*/
ino = ((seq & 0x000fffffULL) << 12) + ((seq >> 8) & 0xfffff000) +
(seq >> (64 - (40 - 8)) & 0xffffff00) +
(fid_oid(fid) & 0xff000fff) + ((fid_oid(fid) & 0x00fff000) << 8);
return ino ? ino : fid_oid(fid);
}
static inline int lu_fid_diff(const struct lu_fid *fid1,
const struct lu_fid *fid2)
{
LASSERTF(fid_seq(fid1) == fid_seq(fid2), "fid1:"DFID", fid2:"DFID"\n",
PFID(fid1), PFID(fid2));
if (fid_is_idif(fid1) && fid_is_idif(fid2))
return fid_idif_id(fid1->f_seq, fid1->f_oid, fid1->f_ver) -
fid_idif_id(fid2->f_seq, fid2->f_oid, fid2->f_ver);
return fid_oid(fid1) - fid_oid(fid2);
}
#define LUSTRE_SEQ_SRV_NAME "seq_srv"
#define LUSTRE_SEQ_CTL_NAME "seq_ctl"
/* Range common stuff */
static inline void range_cpu_to_le(struct lu_seq_range *dst, const struct lu_seq_range *src)
{
dst->lsr_start = cpu_to_le64(src->lsr_start);
dst->lsr_end = cpu_to_le64(src->lsr_end);
dst->lsr_index = cpu_to_le32(src->lsr_index);
dst->lsr_flags = cpu_to_le32(src->lsr_flags);
}
static inline void range_le_to_cpu(struct lu_seq_range *dst, const struct lu_seq_range *src)
{
dst->lsr_start = le64_to_cpu(src->lsr_start);
dst->lsr_end = le64_to_cpu(src->lsr_end);
dst->lsr_index = le32_to_cpu(src->lsr_index);
dst->lsr_flags = le32_to_cpu(src->lsr_flags);
}
static inline void range_cpu_to_be(struct lu_seq_range *dst, const struct lu_seq_range *src)
{
dst->lsr_start = cpu_to_be64(src->lsr_start);
dst->lsr_end = cpu_to_be64(src->lsr_end);
dst->lsr_index = cpu_to_be32(src->lsr_index);
dst->lsr_flags = cpu_to_be32(src->lsr_flags);
}
static inline void range_be_to_cpu(struct lu_seq_range *dst, const struct lu_seq_range *src)
{
dst->lsr_start = be64_to_cpu(src->lsr_start);
dst->lsr_end = be64_to_cpu(src->lsr_end);
dst->lsr_index = be32_to_cpu(src->lsr_index);
dst->lsr_flags = be32_to_cpu(src->lsr_flags);
}
/** @} fid */
#endif /* __LUSTRE_FID_H */