blob: f56ea643f9bf906d437cc180993ff97f79c8789c [file] [log] [blame]
/*
* GPL HEADER START
*
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License version 2 only,
* as published by the Free Software Foundation.
*
* This program is distributed in the hope that it will be useful, but
* WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* General Public License version 2 for more details (a copy is included
* in the LICENSE file that accompanied this code).
*
* You should have received a copy of the GNU General Public License
* version 2 along with this program; If not, see
* http://www.gnu.org/licenses/gpl-2.0.html
*
* GPL HEADER END
*/
/*
* Copyright (c) 2001, 2010, Oracle and/or its affiliates. All rights reserved.
* Use is subject to license terms.
*
* Copyright (c) 2011, 2015, Intel Corporation.
*/
/*
* This file is part of Lustre, http://www.lustre.org/
* Lustre is a trademark of Sun Microsystems, Inc.
*/
#define DEBUG_SUBSYSTEM S_MDC
# include <linux/module.h>
# include <linux/pagemap.h>
# include <linux/miscdevice.h>
# include <linux/init.h>
# include <linux/utsname.h>
#include "../include/lustre_acl.h"
#include "../include/lustre/lustre_ioctl.h"
#include "../include/obd_class.h"
#include "../include/lustre_lmv.h"
#include "../include/lustre_fid.h"
#include "../include/lprocfs_status.h"
#include "../include/lustre_param.h"
#include "../include/lustre_log.h"
#include "../include/lustre_kernelcomm.h"
#include "mdc_internal.h"
#define REQUEST_MINOR 244
static int mdc_cleanup(struct obd_device *obd);
static inline int mdc_queue_wait(struct ptlrpc_request *req)
{
struct client_obd *cli = &req->rq_import->imp_obd->u.cli;
int rc;
/* obd_get_request_slot() ensures that this client has no more
* than cl_max_rpcs_in_flight RPCs simultaneously inf light
* against an MDT.
*/
rc = obd_get_request_slot(cli);
if (rc != 0)
return rc;
rc = ptlrpc_queue_wait(req);
obd_put_request_slot(cli);
return rc;
}
static int mdc_getstatus(struct obd_export *exp, struct lu_fid *rootfid)
{
struct ptlrpc_request *req;
struct mdt_body *body;
int rc;
req = ptlrpc_request_alloc_pack(class_exp2cliimp(exp),
&RQF_MDS_GETSTATUS,
LUSTRE_MDS_VERSION, MDS_GETSTATUS);
if (!req)
return -ENOMEM;
mdc_pack_body(req, NULL, 0, 0, -1, 0);
req->rq_send_state = LUSTRE_IMP_FULL;
ptlrpc_request_set_replen(req);
rc = ptlrpc_queue_wait(req);
if (rc)
goto out;
body = req_capsule_server_get(&req->rq_pill, &RMF_MDT_BODY);
if (!body) {
rc = -EPROTO;
goto out;
}
*rootfid = body->mbo_fid1;
CDEBUG(D_NET,
"root fid="DFID", last_committed=%llu\n",
PFID(rootfid),
lustre_msg_get_last_committed(req->rq_repmsg));
out:
ptlrpc_req_finished(req);
return rc;
}
/*
* This function now is known to always saying that it will receive 4 buffers
* from server. Even for cases when acl_size and md_size is zero, RPC header
* will contain 4 fields and RPC itself will contain zero size fields. This is
* because mdt_getattr*() _always_ returns 4 fields, but if acl is not needed
* and thus zero, it shrinks it, making zero size. The same story about
* md_size. And this is course of problem when client waits for smaller number
* of fields. This issue will be fixed later when client gets aware of RPC
* layouts. --umka
*/
static int mdc_getattr_common(struct obd_export *exp,
struct ptlrpc_request *req)
{
struct req_capsule *pill = &req->rq_pill;
struct mdt_body *body;
void *eadata;
int rc;
/* Request message already built. */
rc = ptlrpc_queue_wait(req);
if (rc != 0)
return rc;
/* sanity check for the reply */
body = req_capsule_server_get(pill, &RMF_MDT_BODY);
if (!body)
return -EPROTO;
CDEBUG(D_NET, "mode: %o\n", body->mbo_mode);
mdc_update_max_ea_from_body(exp, body);
if (body->mbo_eadatasize != 0) {
eadata = req_capsule_server_sized_get(pill, &RMF_MDT_MD,
body->mbo_eadatasize);
if (!eadata)
return -EPROTO;
}
return 0;
}
static int mdc_getattr(struct obd_export *exp, struct md_op_data *op_data,
struct ptlrpc_request **request)
{
struct ptlrpc_request *req;
int rc;
/* Single MDS without an LMV case */
if (op_data->op_flags & MF_GET_MDT_IDX) {
op_data->op_mds = 0;
return 0;
}
*request = NULL;
req = ptlrpc_request_alloc(class_exp2cliimp(exp), &RQF_MDS_GETATTR);
if (!req)
return -ENOMEM;
rc = ptlrpc_request_pack(req, LUSTRE_MDS_VERSION, MDS_GETATTR);
if (rc) {
ptlrpc_request_free(req);
return rc;
}
mdc_pack_body(req, &op_data->op_fid1, op_data->op_valid,
op_data->op_mode, -1, 0);
req_capsule_set_size(&req->rq_pill, &RMF_MDT_MD, RCL_SERVER,
op_data->op_mode);
ptlrpc_request_set_replen(req);
rc = mdc_getattr_common(exp, req);
if (rc)
ptlrpc_req_finished(req);
else
*request = req;
return rc;
}
static int mdc_getattr_name(struct obd_export *exp, struct md_op_data *op_data,
struct ptlrpc_request **request)
{
struct ptlrpc_request *req;
int rc;
*request = NULL;
req = ptlrpc_request_alloc(class_exp2cliimp(exp),
&RQF_MDS_GETATTR_NAME);
if (!req)
return -ENOMEM;
req_capsule_set_size(&req->rq_pill, &RMF_NAME, RCL_CLIENT,
op_data->op_namelen + 1);
rc = ptlrpc_request_pack(req, LUSTRE_MDS_VERSION, MDS_GETATTR_NAME);
if (rc) {
ptlrpc_request_free(req);
return rc;
}
mdc_pack_body(req, &op_data->op_fid1, op_data->op_valid,
op_data->op_mode, op_data->op_suppgids[0], 0);
if (op_data->op_name) {
char *name = req_capsule_client_get(&req->rq_pill, &RMF_NAME);
LASSERT(strnlen(op_data->op_name, op_data->op_namelen) ==
op_data->op_namelen);
memcpy(name, op_data->op_name, op_data->op_namelen);
}
req_capsule_set_size(&req->rq_pill, &RMF_MDT_MD, RCL_SERVER,
op_data->op_mode);
ptlrpc_request_set_replen(req);
rc = mdc_getattr_common(exp, req);
if (rc)
ptlrpc_req_finished(req);
else
*request = req;
return rc;
}
static int mdc_xattr_common(struct obd_export *exp,
const struct req_format *fmt,
const struct lu_fid *fid,
int opcode, u64 valid,
const char *xattr_name, const char *input,
int input_size, int output_size, int flags,
__u32 suppgid, struct ptlrpc_request **request)
{
struct ptlrpc_request *req;
int xattr_namelen = 0;
char *tmp;
int rc;
*request = NULL;
req = ptlrpc_request_alloc(class_exp2cliimp(exp), fmt);
if (!req)
return -ENOMEM;
if (xattr_name) {
xattr_namelen = strlen(xattr_name) + 1;
req_capsule_set_size(&req->rq_pill, &RMF_NAME, RCL_CLIENT,
xattr_namelen);
}
if (input_size) {
LASSERT(input);
req_capsule_set_size(&req->rq_pill, &RMF_EADATA, RCL_CLIENT,
input_size);
}
/* Flush local XATTR locks to get rid of a possible cancel RPC */
if (opcode == MDS_REINT && fid_is_sane(fid) &&
exp->exp_connect_data.ocd_ibits_known & MDS_INODELOCK_XATTR) {
LIST_HEAD(cancels);
int count;
/* Without that packing would fail */
if (input_size == 0)
req_capsule_set_size(&req->rq_pill, &RMF_EADATA,
RCL_CLIENT, 0);
count = mdc_resource_get_unused(exp, fid,
&cancels, LCK_EX,
MDS_INODELOCK_XATTR);
rc = mdc_prep_elc_req(exp, req, MDS_REINT, &cancels, count);
if (rc) {
ptlrpc_request_free(req);
return rc;
}
} else {
rc = ptlrpc_request_pack(req, LUSTRE_MDS_VERSION, opcode);
if (rc) {
ptlrpc_request_free(req);
return rc;
}
}
if (opcode == MDS_REINT) {
struct mdt_rec_setxattr *rec;
CLASSERT(sizeof(struct mdt_rec_setxattr) ==
sizeof(struct mdt_rec_reint));
rec = req_capsule_client_get(&req->rq_pill, &RMF_REC_REINT);
rec->sx_opcode = REINT_SETXATTR;
rec->sx_fsuid = from_kuid(&init_user_ns, current_fsuid());
rec->sx_fsgid = from_kgid(&init_user_ns, current_fsgid());
rec->sx_cap = cfs_curproc_cap_pack();
rec->sx_suppgid1 = suppgid;
rec->sx_suppgid2 = -1;
rec->sx_fid = *fid;
rec->sx_valid = valid | OBD_MD_FLCTIME;
rec->sx_time = ktime_get_real_seconds();
rec->sx_size = output_size;
rec->sx_flags = flags;
} else {
mdc_pack_body(req, fid, valid, output_size, suppgid, flags);
}
if (xattr_name) {
tmp = req_capsule_client_get(&req->rq_pill, &RMF_NAME);
memcpy(tmp, xattr_name, xattr_namelen);
}
if (input_size) {
tmp = req_capsule_client_get(&req->rq_pill, &RMF_EADATA);
memcpy(tmp, input, input_size);
}
if (req_capsule_has_field(&req->rq_pill, &RMF_EADATA, RCL_SERVER))
req_capsule_set_size(&req->rq_pill, &RMF_EADATA,
RCL_SERVER, output_size);
ptlrpc_request_set_replen(req);
/* make rpc */
if (opcode == MDS_REINT)
mdc_get_rpc_lock(exp->exp_obd->u.cli.cl_rpc_lock, NULL);
rc = ptlrpc_queue_wait(req);
if (opcode == MDS_REINT)
mdc_put_rpc_lock(exp->exp_obd->u.cli.cl_rpc_lock, NULL);
if (rc)
ptlrpc_req_finished(req);
else
*request = req;
return rc;
}
static int mdc_setxattr(struct obd_export *exp, const struct lu_fid *fid,
u64 valid, const char *xattr_name,
const char *input, int input_size, int output_size,
int flags, __u32 suppgid,
struct ptlrpc_request **request)
{
return mdc_xattr_common(exp, &RQF_MDS_REINT_SETXATTR,
fid, MDS_REINT, valid, xattr_name,
input, input_size, output_size, flags,
suppgid, request);
}
static int mdc_getxattr(struct obd_export *exp, const struct lu_fid *fid,
u64 valid, const char *xattr_name,
const char *input, int input_size, int output_size,
int flags, struct ptlrpc_request **request)
{
return mdc_xattr_common(exp, &RQF_MDS_GETXATTR,
fid, MDS_GETXATTR, valid, xattr_name,
input, input_size, output_size, flags,
-1, request);
}
#ifdef CONFIG_FS_POSIX_ACL
static int mdc_unpack_acl(struct ptlrpc_request *req, struct lustre_md *md)
{
struct req_capsule *pill = &req->rq_pill;
struct mdt_body *body = md->body;
struct posix_acl *acl;
void *buf;
int rc;
if (!body->mbo_aclsize)
return 0;
buf = req_capsule_server_sized_get(pill, &RMF_ACL, body->mbo_aclsize);
if (!buf)
return -EPROTO;
acl = posix_acl_from_xattr(&init_user_ns, buf, body->mbo_aclsize);
if (!acl)
return 0;
if (IS_ERR(acl)) {
rc = PTR_ERR(acl);
CERROR("convert xattr to acl: %d\n", rc);
return rc;
}
rc = posix_acl_valid(&init_user_ns, acl);
if (rc) {
CERROR("validate acl: %d\n", rc);
posix_acl_release(acl);
return rc;
}
md->posix_acl = acl;
return 0;
}
#else
#define mdc_unpack_acl(req, md) 0
#endif
static int mdc_get_lustre_md(struct obd_export *exp,
struct ptlrpc_request *req,
struct obd_export *dt_exp,
struct obd_export *md_exp,
struct lustre_md *md)
{
struct req_capsule *pill = &req->rq_pill;
int rc;
LASSERT(md);
memset(md, 0, sizeof(*md));
md->body = req_capsule_server_get(pill, &RMF_MDT_BODY);
if (md->body->mbo_valid & OBD_MD_FLEASIZE) {
int lmmsize;
struct lov_mds_md *lmm;
if (!S_ISREG(md->body->mbo_mode)) {
CDEBUG(D_INFO,
"OBD_MD_FLEASIZE set, should be a regular file, but is not\n");
rc = -EPROTO;
goto out;
}
if (md->body->mbo_eadatasize == 0) {
CDEBUG(D_INFO,
"OBD_MD_FLEASIZE set, but eadatasize 0\n");
rc = -EPROTO;
goto out;
}
lmmsize = md->body->mbo_eadatasize;
lmm = req_capsule_server_sized_get(pill, &RMF_MDT_MD, lmmsize);
if (!lmm) {
rc = -EPROTO;
goto out;
}
rc = obd_unpackmd(dt_exp, &md->lsm, lmm, lmmsize);
if (rc < 0)
goto out;
if (rc < (typeof(rc))sizeof(*md->lsm)) {
CDEBUG(D_INFO,
"lsm size too small: rc < sizeof (*md->lsm) (%d < %d)\n",
rc, (int)sizeof(*md->lsm));
rc = -EPROTO;
goto out;
}
} else if (md->body->mbo_valid & OBD_MD_FLDIREA) {
int lmvsize;
struct lov_mds_md *lmv;
if (!S_ISDIR(md->body->mbo_mode)) {
CDEBUG(D_INFO,
"OBD_MD_FLDIREA set, should be a directory, but is not\n");
rc = -EPROTO;
goto out;
}
if (md->body->mbo_eadatasize == 0) {
CDEBUG(D_INFO,
"OBD_MD_FLDIREA is set, but eadatasize 0\n");
return -EPROTO;
}
if (md->body->mbo_valid & OBD_MD_MEA) {
lmvsize = md->body->mbo_eadatasize;
lmv = req_capsule_server_sized_get(pill, &RMF_MDT_MD,
lmvsize);
if (!lmv) {
rc = -EPROTO;
goto out;
}
rc = obd_unpackmd(md_exp, (void *)&md->lmv, lmv,
lmvsize);
if (rc < 0)
goto out;
if (rc < (typeof(rc))sizeof(*md->lmv)) {
CDEBUG(D_INFO,
"size too small: rc < sizeof(*md->lmv) (%d < %d)\n",
rc, (int)sizeof(*md->lmv));
rc = -EPROTO;
goto out;
}
}
}
rc = 0;
if (md->body->mbo_valid & OBD_MD_FLACL) {
/* for ACL, it's possible that FLACL is set but aclsize is zero.
* only when aclsize != 0 there's an actual segment for ACL
* in reply buffer.
*/
if (md->body->mbo_aclsize) {
rc = mdc_unpack_acl(req, md);
if (rc)
goto out;
#ifdef CONFIG_FS_POSIX_ACL
} else {
md->posix_acl = NULL;
#endif
}
}
out:
if (rc) {
#ifdef CONFIG_FS_POSIX_ACL
posix_acl_release(md->posix_acl);
#endif
if (md->lsm)
obd_free_memmd(dt_exp, &md->lsm);
}
return rc;
}
static int mdc_free_lustre_md(struct obd_export *exp, struct lustre_md *md)
{
return 0;
}
/**
* Handles both OPEN and SETATTR RPCs for OPEN-CLOSE and SETATTR-DONE_WRITING
* RPC chains.
*/
void mdc_replay_open(struct ptlrpc_request *req)
{
struct md_open_data *mod = req->rq_cb_data;
struct ptlrpc_request *close_req;
struct obd_client_handle *och;
struct lustre_handle old;
struct mdt_body *body;
if (!mod) {
DEBUG_REQ(D_ERROR, req,
"Can't properly replay without open data.");
return;
}
body = req_capsule_server_get(&req->rq_pill, &RMF_MDT_BODY);
och = mod->mod_och;
if (och) {
struct lustre_handle *file_fh;
LASSERT(och->och_magic == OBD_CLIENT_HANDLE_MAGIC);
file_fh = &och->och_fh;
CDEBUG(D_HA, "updating handle from %#llx to %#llx\n",
file_fh->cookie, body->mbo_handle.cookie);
old = *file_fh;
*file_fh = body->mbo_handle;
}
close_req = mod->mod_close_req;
if (close_req) {
__u32 opc = lustre_msg_get_opc(close_req->rq_reqmsg);
struct mdt_ioepoch *epoch;
LASSERT(opc == MDS_CLOSE || opc == MDS_DONE_WRITING);
epoch = req_capsule_client_get(&close_req->rq_pill,
&RMF_MDT_EPOCH);
LASSERT(epoch);
if (och)
LASSERT(!memcmp(&old, &epoch->handle, sizeof(old)));
DEBUG_REQ(D_HA, close_req, "updating close body with new fh");
epoch->handle = body->mbo_handle;
}
}
void mdc_commit_open(struct ptlrpc_request *req)
{
struct md_open_data *mod = req->rq_cb_data;
if (!mod)
return;
/**
* No need to touch md_open_data::mod_och, it holds a reference on
* \var mod and will zero references to each other, \var mod will be
* freed after that when md_open_data::mod_och will put the reference.
*/
/**
* Do not let open request to disappear as it still may be needed
* for close rpc to happen (it may happen on evict only, otherwise
* ptlrpc_request::rq_replay does not let mdc_commit_open() to be
* called), just mark this rpc as committed to distinguish these 2
* cases, see mdc_close() for details. The open request reference will
* be put along with freeing \var mod.
*/
ptlrpc_request_addref(req);
spin_lock(&req->rq_lock);
req->rq_committed = 1;
spin_unlock(&req->rq_lock);
req->rq_cb_data = NULL;
obd_mod_put(mod);
}
int mdc_set_open_replay_data(struct obd_export *exp,
struct obd_client_handle *och,
struct lookup_intent *it)
{
struct md_open_data *mod;
struct mdt_rec_create *rec;
struct mdt_body *body;
struct ptlrpc_request *open_req = it->it_request;
struct obd_import *imp = open_req->rq_import;
if (!open_req->rq_replay)
return 0;
rec = req_capsule_client_get(&open_req->rq_pill, &RMF_REC_REINT);
body = req_capsule_server_get(&open_req->rq_pill, &RMF_MDT_BODY);
LASSERT(rec);
/* Incoming message in my byte order (it's been swabbed). */
/* Outgoing messages always in my byte order. */
LASSERT(body);
/* Only if the import is replayable, we set replay_open data */
if (och && imp->imp_replayable) {
mod = obd_mod_alloc();
if (!mod) {
DEBUG_REQ(D_ERROR, open_req,
"Can't allocate md_open_data");
return 0;
}
/**
* Take a reference on \var mod, to be freed on mdc_close().
* It protects \var mod from being freed on eviction (commit
* callback is called despite rq_replay flag).
* Another reference for \var och.
*/
obd_mod_get(mod);
obd_mod_get(mod);
spin_lock(&open_req->rq_lock);
och->och_mod = mod;
mod->mod_och = och;
mod->mod_is_create = it_disposition(it, DISP_OPEN_CREATE) ||
it_disposition(it, DISP_OPEN_STRIPE);
mod->mod_open_req = open_req;
open_req->rq_cb_data = mod;
open_req->rq_commit_cb = mdc_commit_open;
spin_unlock(&open_req->rq_lock);
}
rec->cr_fid2 = body->mbo_fid1;
rec->cr_ioepoch = body->mbo_ioepoch;
rec->cr_old_handle.cookie = body->mbo_handle.cookie;
open_req->rq_replay_cb = mdc_replay_open;
if (!fid_is_sane(&body->mbo_fid1)) {
DEBUG_REQ(D_ERROR, open_req,
"Saving replay request with insane fid");
LBUG();
}
DEBUG_REQ(D_RPCTRACE, open_req, "Set up open replay data");
return 0;
}
static void mdc_free_open(struct md_open_data *mod)
{
int committed = 0;
if (mod->mod_is_create == 0 &&
imp_connect_disp_stripe(mod->mod_open_req->rq_import))
committed = 1;
/*
* No reason to asssert here if the open request has
* rq_replay == 1. It means that mdc_close failed, and
* close request wasn`t sent. It is not fatal to client.
* The worst thing is eviction if the client gets open lock
*/
DEBUG_REQ(D_RPCTRACE, mod->mod_open_req,
"free open request rq_replay = %d\n",
mod->mod_open_req->rq_replay);
ptlrpc_request_committed(mod->mod_open_req, committed);
if (mod->mod_close_req)
ptlrpc_request_committed(mod->mod_close_req, committed);
}
static int mdc_clear_open_replay_data(struct obd_export *exp,
struct obd_client_handle *och)
{
struct md_open_data *mod = och->och_mod;
/**
* It is possible to not have \var mod in a case of eviction between
* lookup and ll_file_open().
**/
if (!mod)
return 0;
LASSERT(mod != LP_POISON);
LASSERT(mod->mod_open_req);
mdc_free_open(mod);
mod->mod_och = NULL;
och->och_mod = NULL;
obd_mod_put(mod);
return 0;
}
/* Prepares the request for the replay by the given reply */
static void mdc_close_handle_reply(struct ptlrpc_request *req,
struct md_op_data *op_data, int rc) {
struct mdt_body *repbody;
struct mdt_ioepoch *epoch;
if (req && rc == -EAGAIN) {
repbody = req_capsule_server_get(&req->rq_pill, &RMF_MDT_BODY);
epoch = req_capsule_client_get(&req->rq_pill, &RMF_MDT_EPOCH);
epoch->flags |= MF_SOM_AU;
if (repbody->mbo_valid & OBD_MD_FLGETATTRLOCK)
op_data->op_flags |= MF_GETATTR_LOCK;
}
}
static int mdc_close(struct obd_export *exp, struct md_op_data *op_data,
struct md_open_data *mod, struct ptlrpc_request **request)
{
struct obd_device *obd = class_exp2obd(exp);
struct ptlrpc_request *req;
struct req_format *req_fmt;
int rc;
int saved_rc = 0;
req_fmt = &RQF_MDS_CLOSE;
if (op_data->op_bias & MDS_HSM_RELEASE) {
req_fmt = &RQF_MDS_RELEASE_CLOSE;
/* allocate a FID for volatile file */
rc = mdc_fid_alloc(NULL, exp, &op_data->op_fid2, op_data);
if (rc < 0) {
CERROR("%s: "DFID" failed to allocate FID: %d\n",
obd->obd_name, PFID(&op_data->op_fid1), rc);
/* save the errcode and proceed to close */
saved_rc = rc;
}
}
*request = NULL;
if (OBD_FAIL_CHECK(OBD_FAIL_MDC_CLOSE))
req = NULL;
else
req = ptlrpc_request_alloc(class_exp2cliimp(exp), req_fmt);
/* Ensure that this close's handle is fixed up during replay. */
if (likely(mod)) {
LASSERTF(mod->mod_open_req &&
mod->mod_open_req->rq_type != LI_POISON,
"POISONED open %p!\n", mod->mod_open_req);
mod->mod_close_req = req;
DEBUG_REQ(D_HA, mod->mod_open_req, "matched open");
/* We no longer want to preserve this open for replay even
* though the open was committed. b=3632, b=3633
*/
spin_lock(&mod->mod_open_req->rq_lock);
mod->mod_open_req->rq_replay = 0;
spin_unlock(&mod->mod_open_req->rq_lock);
} else {
CDEBUG(D_HA,
"couldn't find open req; expecting close error\n");
}
if (!req) {
/*
* TODO: repeat close after errors
*/
CWARN("%s: close of FID "DFID" failed, file reference will be dropped when this client unmounts or is evicted\n",
obd->obd_name, PFID(&op_data->op_fid1));
rc = -ENOMEM;
goto out;
}
rc = ptlrpc_request_pack(req, LUSTRE_MDS_VERSION, MDS_CLOSE);
if (rc) {
ptlrpc_request_free(req);
goto out;
}
/*
* To avoid a livelock (bug 7034), we need to send CLOSE RPCs to a
* portal whose threads are not taking any DLM locks and are therefore
* always progressing
*/
req->rq_request_portal = MDS_READPAGE_PORTAL;
ptlrpc_at_set_req_timeout(req);
mdc_close_pack(req, op_data);
req_capsule_set_size(&req->rq_pill, &RMF_MDT_MD, RCL_SERVER,
obd->u.cli.cl_default_mds_easize);
req_capsule_set_size(&req->rq_pill, &RMF_LOGCOOKIES, RCL_SERVER,
obd->u.cli.cl_default_mds_cookiesize);
ptlrpc_request_set_replen(req);
mdc_get_rpc_lock(obd->u.cli.cl_close_lock, NULL);
rc = ptlrpc_queue_wait(req);
mdc_put_rpc_lock(obd->u.cli.cl_close_lock, NULL);
if (!req->rq_repmsg) {
CDEBUG(D_RPCTRACE, "request failed to send: %p, %d\n", req,
req->rq_status);
if (rc == 0)
rc = req->rq_status ?: -EIO;
} else if (rc == 0 || rc == -EAGAIN) {
struct mdt_body *body;
rc = lustre_msg_get_status(req->rq_repmsg);
if (lustre_msg_get_type(req->rq_repmsg) == PTL_RPC_MSG_ERR) {
DEBUG_REQ(D_ERROR, req,
"type == PTL_RPC_MSG_ERR, err = %d", rc);
if (rc > 0)
rc = -rc;
}
body = req_capsule_server_get(&req->rq_pill, &RMF_MDT_BODY);
if (!body)
rc = -EPROTO;
} else if (rc == -ESTALE) {
/**
* it can be allowed error after 3633 if open was committed and
* server failed before close was sent. Let's check if mod
* exists and return no error in that case
*/
if (mod) {
DEBUG_REQ(D_HA, req, "Reset ESTALE = %d", rc);
if (mod->mod_open_req->rq_committed)
rc = 0;
}
}
out:
if (mod) {
if (rc != 0)
mod->mod_close_req = NULL;
/* Since now, mod is accessed through open_req only,
* thus close req does not keep a reference on mod anymore.
*/
obd_mod_put(mod);
}
*request = req;
mdc_close_handle_reply(req, op_data, rc);
return rc < 0 ? rc : saved_rc;
}
static int mdc_done_writing(struct obd_export *exp, struct md_op_data *op_data,
struct md_open_data *mod)
{
struct obd_device *obd = class_exp2obd(exp);
struct ptlrpc_request *req;
int rc;
req = ptlrpc_request_alloc(class_exp2cliimp(exp),
&RQF_MDS_DONE_WRITING);
if (!req)
return -ENOMEM;
rc = ptlrpc_request_pack(req, LUSTRE_MDS_VERSION, MDS_DONE_WRITING);
if (rc) {
ptlrpc_request_free(req);
return rc;
}
if (mod) {
LASSERTF(mod->mod_open_req &&
mod->mod_open_req->rq_type != LI_POISON,
"POISONED setattr %p!\n", mod->mod_open_req);
mod->mod_close_req = req;
DEBUG_REQ(D_HA, mod->mod_open_req, "matched setattr");
/* We no longer want to preserve this setattr for replay even
* though the open was committed. b=3632, b=3633
*/
spin_lock(&mod->mod_open_req->rq_lock);
mod->mod_open_req->rq_replay = 0;
spin_unlock(&mod->mod_open_req->rq_lock);
}
mdc_close_pack(req, op_data);
ptlrpc_request_set_replen(req);
mdc_get_rpc_lock(obd->u.cli.cl_close_lock, NULL);
rc = ptlrpc_queue_wait(req);
mdc_put_rpc_lock(obd->u.cli.cl_close_lock, NULL);
if (rc == -ESTALE) {
/**
* it can be allowed error after 3633 if open or setattr were
* committed and server failed before close was sent.
* Let's check if mod exists and return no error in that case
*/
if (mod) {
if (mod->mod_open_req->rq_committed)
rc = 0;
}
}
if (mod) {
if (rc != 0)
mod->mod_close_req = NULL;
LASSERT(mod->mod_open_req);
mdc_free_open(mod);
/* Since now, mod is accessed through setattr req only,
* thus DW req does not keep a reference on mod anymore.
*/
obd_mod_put(mod);
}
mdc_close_handle_reply(req, op_data, rc);
ptlrpc_req_finished(req);
return rc;
}
static int mdc_getpage(struct obd_export *exp, const struct lu_fid *fid,
u64 offset, struct page **pages, int npages,
struct ptlrpc_request **request)
{
struct ptlrpc_bulk_desc *desc;
struct ptlrpc_request *req;
wait_queue_head_t waitq;
struct l_wait_info lwi;
int resends = 0;
int rc;
int i;
*request = NULL;
init_waitqueue_head(&waitq);
restart_bulk:
req = ptlrpc_request_alloc(class_exp2cliimp(exp), &RQF_MDS_READPAGE);
if (!req)
return -ENOMEM;
rc = ptlrpc_request_pack(req, LUSTRE_MDS_VERSION, MDS_READPAGE);
if (rc) {
ptlrpc_request_free(req);
return rc;
}
req->rq_request_portal = MDS_READPAGE_PORTAL;
ptlrpc_at_set_req_timeout(req);
desc = ptlrpc_prep_bulk_imp(req, npages, 1, BULK_PUT_SINK,
MDS_BULK_PORTAL);
if (!desc) {
ptlrpc_request_free(req);
return -ENOMEM;
}
/* NB req now owns desc and will free it when it gets freed */
for (i = 0; i < npages; i++)
ptlrpc_prep_bulk_page_pin(desc, pages[i], 0, PAGE_SIZE);
mdc_readdir_pack(req, offset, PAGE_SIZE * npages, fid);
ptlrpc_request_set_replen(req);
rc = ptlrpc_queue_wait(req);
if (rc) {
ptlrpc_req_finished(req);
if (rc != -ETIMEDOUT)
return rc;
resends++;
if (!client_should_resend(resends, &exp->exp_obd->u.cli)) {
CERROR("%s: too many resend retries: rc = %d\n",
exp->exp_obd->obd_name, -EIO);
return -EIO;
}
lwi = LWI_TIMEOUT_INTR(cfs_time_seconds(resends), NULL, NULL,
NULL);
l_wait_event(waitq, 0, &lwi);
goto restart_bulk;
}
rc = sptlrpc_cli_unwrap_bulk_read(req, req->rq_bulk,
req->rq_bulk->bd_nob_transferred);
if (rc < 0) {
ptlrpc_req_finished(req);
return rc;
}
if (req->rq_bulk->bd_nob_transferred & ~LU_PAGE_MASK) {
CERROR("%s: unexpected bytes transferred: %d (%ld expected)\n",
exp->exp_obd->obd_name, req->rq_bulk->bd_nob_transferred,
PAGE_SIZE * npages);
ptlrpc_req_finished(req);
return -EPROTO;
}
*request = req;
return 0;
}
static void mdc_release_page(struct page *page, int remove)
{
if (remove) {
lock_page(page);
if (likely(page->mapping))
truncate_complete_page(page->mapping, page);
unlock_page(page);
}
put_page(page);
}
static struct page *mdc_page_locate(struct address_space *mapping, __u64 *hash,
__u64 *start, __u64 *end, int hash64)
{
/*
* Complement of hash is used as an index so that
* radix_tree_gang_lookup() can be used to find a page with starting
* hash _smaller_ than one we are looking for.
*/
unsigned long offset = hash_x_index(*hash, hash64);
struct page *page;
int found;
spin_lock_irq(&mapping->tree_lock);
found = radix_tree_gang_lookup(&mapping->page_tree,
(void **)&page, offset, 1);
if (found > 0 && !radix_tree_exceptional_entry(page)) {
struct lu_dirpage *dp;
get_page(page);
spin_unlock_irq(&mapping->tree_lock);
/*
* In contrast to find_lock_page() we are sure that directory
* page cannot be truncated (while DLM lock is held) and,
* hence, can avoid restart.
*
* In fact, page cannot be locked here at all, because
* mdc_read_page_remote does synchronous io.
*/
wait_on_page_locked(page);
if (PageUptodate(page)) {
dp = kmap(page);
if (BITS_PER_LONG == 32 && hash64) {
*start = le64_to_cpu(dp->ldp_hash_start) >> 32;
*end = le64_to_cpu(dp->ldp_hash_end) >> 32;
*hash = *hash >> 32;
} else {
*start = le64_to_cpu(dp->ldp_hash_start);
*end = le64_to_cpu(dp->ldp_hash_end);
}
if (unlikely(*start == 1 && *hash == 0))
*hash = *start;
else
LASSERTF(*start <= *hash, "start = %#llx,end = %#llx,hash = %#llx\n",
*start, *end, *hash);
CDEBUG(D_VFSTRACE, "offset %lx [%#llx %#llx], hash %#llx\n",
offset, *start, *end, *hash);
if (*hash > *end) {
kunmap(page);
mdc_release_page(page, 0);
page = NULL;
} else if (*end != *start && *hash == *end) {
/*
* upon hash collision, remove this page,
* otherwise put page reference, and
* mdc_read_page_remote() will issue RPC to
* fetch the page we want.
*/
kunmap(page);
mdc_release_page(page,
le32_to_cpu(dp->ldp_flags) & LDF_COLLIDE);
page = NULL;
}
} else {
put_page(page);
page = ERR_PTR(-EIO);
}
} else {
spin_unlock_irq(&mapping->tree_lock);
page = NULL;
}
return page;
}
/*
* Adjust a set of pages, each page containing an array of lu_dirpages,
* so that each page can be used as a single logical lu_dirpage.
*
* A lu_dirpage is laid out as follows, where s = ldp_hash_start,
* e = ldp_hash_end, f = ldp_flags, p = padding, and each "ent" is a
* struct lu_dirent. It has size up to LU_PAGE_SIZE. The ldp_hash_end
* value is used as a cookie to request the next lu_dirpage in a
* directory listing that spans multiple pages (two in this example):
* ________
* | |
* .|--------v------- -----.
* |s|e|f|p|ent|ent| ... |ent|
* '--|-------------- -----' Each PAGE contains a single
* '------. lu_dirpage.
* .---------v------- -----.
* |s|e|f|p|ent| 0 | ... | 0 |
* '----------------- -----'
*
* However, on hosts where the native VM page size (PAGE_SIZE) is
* larger than LU_PAGE_SIZE, a single host page may contain multiple
* lu_dirpages. After reading the lu_dirpages from the MDS, the
* ldp_hash_end of the first lu_dirpage refers to the one immediately
* after it in the same PAGE (arrows simplified for brevity, but
* in general e0==s1, e1==s2, etc.):
*
* .-------------------- -----.
* |s0|e0|f0|p|ent|ent| ... |ent|
* |---v---------------- -----|
* |s1|e1|f1|p|ent|ent| ... |ent|
* |---v---------------- -----| Here, each PAGE contains
* ... multiple lu_dirpages.
* |---v---------------- -----|
* |s'|e'|f'|p|ent|ent| ... |ent|
* '---|---------------- -----'
* v
* .----------------------------.
* | next PAGE |
*
* This structure is transformed into a single logical lu_dirpage as follows:
*
* - Replace e0 with e' so the request for the next lu_dirpage gets the page
* labeled 'next PAGE'.
*
* - Copy the LDF_COLLIDE flag from f' to f0 to correctly reflect whether
* a hash collision with the next page exists.
*
* - Adjust the lde_reclen of the ending entry of each lu_dirpage to span
* to the first entry of the next lu_dirpage.
*/
#if PAGE_SIZE > LU_PAGE_SIZE
static void mdc_adjust_dirpages(struct page **pages, int cfs_pgs, int lu_pgs)
{
int i;
for (i = 0; i < cfs_pgs; i++) {
struct lu_dirpage *dp = kmap(pages[i]);
__u64 hash_end = le64_to_cpu(dp->ldp_hash_end);
__u32 flags = le32_to_cpu(dp->ldp_flags);
struct lu_dirpage *first = dp;
struct lu_dirent *end_dirent = NULL;
struct lu_dirent *ent;
while (--lu_pgs > 0) {
ent = lu_dirent_start(dp);
for (end_dirent = ent; ent;
end_dirent = ent, ent = lu_dirent_next(ent));
/* Advance dp to next lu_dirpage. */
dp = (struct lu_dirpage *)((char *)dp + LU_PAGE_SIZE);
/* Check if we've reached the end of the CFS_PAGE. */
if (!((unsigned long)dp & ~PAGE_MASK))
break;
/* Save the hash and flags of this lu_dirpage. */
hash_end = le64_to_cpu(dp->ldp_hash_end);
flags = le32_to_cpu(dp->ldp_flags);
/* Check if lu_dirpage contains no entries. */
if (!end_dirent)
break;
/*
* Enlarge the end entry lde_reclen from 0 to
* first entry of next lu_dirpage.
*/
LASSERT(!le16_to_cpu(end_dirent->lde_reclen));
end_dirent->lde_reclen =
cpu_to_le16((char *)(dp->ldp_entries) -
(char *)end_dirent);
}
first->ldp_hash_end = hash_end;
first->ldp_flags &= ~cpu_to_le32(LDF_COLLIDE);
first->ldp_flags |= flags & cpu_to_le32(LDF_COLLIDE);
kunmap(pages[i]);
}
LASSERTF(lu_pgs == 0, "left = %d", lu_pgs);
}
#else
#define mdc_adjust_dirpages(pages, cfs_pgs, lu_pgs) do {} while (0)
#endif /* PAGE_SIZE > LU_PAGE_SIZE */
/* parameters for readdir page */
struct readpage_param {
struct md_op_data *rp_mod;
__u64 rp_off;
int rp_hash64;
struct obd_export *rp_exp;
struct md_callback *rp_cb;
};
/**
* Read pages from server.
*
* Page in MDS_READPAGE RPC is packed in LU_PAGE_SIZE, and each page contains
* a header lu_dirpage which describes the start/end hash, and whether this
* page is empty (contains no dir entry) or hash collide with next page.
* After client receives reply, several pages will be integrated into dir page
* in PAGE_SIZE (if PAGE_SIZE greater than LU_PAGE_SIZE), and the
* lu_dirpage for this integrated page will be adjusted.
**/
static int mdc_read_page_remote(void *data, struct page *page0)
{
struct readpage_param *rp = data;
struct page **page_pool;
struct page *page;
struct lu_dirpage *dp;
int rd_pgs = 0; /* number of pages read actually */
int npages;
struct md_op_data *op_data = rp->rp_mod;
struct ptlrpc_request *req;
int max_pages = op_data->op_max_pages;
struct inode *inode;
struct lu_fid *fid;
int i;
int rc;
LASSERT(max_pages > 0 && max_pages <= PTLRPC_MAX_BRW_PAGES);
inode = op_data->op_data;
fid = &op_data->op_fid1;
LASSERT(inode);
page_pool = kcalloc(max_pages, sizeof(page), GFP_NOFS);
if (page_pool) {
page_pool[0] = page0;
} else {
page_pool = &page0;
max_pages = 1;
}
for (npages = 1; npages < max_pages; npages++) {
page = page_cache_alloc_cold(inode->i_mapping);
if (!page)
break;
page_pool[npages] = page;
}
rc = mdc_getpage(rp->rp_exp, fid, rp->rp_off, page_pool, npages, &req);
if (!rc) {
int lu_pgs = req->rq_bulk->bd_nob_transferred;
rd_pgs = (req->rq_bulk->bd_nob_transferred +
PAGE_SIZE - 1) >> PAGE_SHIFT;
lu_pgs >>= LU_PAGE_SHIFT;
LASSERT(!(req->rq_bulk->bd_nob_transferred & ~LU_PAGE_MASK));
CDEBUG(D_INODE, "read %d(%d) pages\n", rd_pgs, lu_pgs);
mdc_adjust_dirpages(page_pool, rd_pgs, lu_pgs);
SetPageUptodate(page0);
}
unlock_page(page0);
ptlrpc_req_finished(req);
CDEBUG(D_CACHE, "read %d/%d pages\n", rd_pgs, npages);
for (i = 1; i < npages; i++) {
unsigned long offset;
__u64 hash;
int ret;
page = page_pool[i];
if (rc < 0 || i >= rd_pgs) {
put_page(page);
continue;
}
SetPageUptodate(page);
dp = kmap(page);
hash = le64_to_cpu(dp->ldp_hash_start);
kunmap(page);
offset = hash_x_index(hash, rp->rp_hash64);
prefetchw(&page->flags);
ret = add_to_page_cache_lru(page, inode->i_mapping, offset,
GFP_KERNEL);
if (!ret)
unlock_page(page);
else
CDEBUG(D_VFSTRACE, "page %lu add to page cache failed: rc = %d\n",
offset, ret);
put_page(page);
}
if (page_pool != &page0)
kfree(page_pool);
return rc;
}
/**
* Read dir page from cache first, if it can not find it, read it from
* server and add into the cache.
*
* \param[in] exp MDC export
* \param[in] op_data client MD stack parameters, transferring parameters
* between different layers on client MD stack.
* \param[in] cb_op callback required for ldlm lock enqueue during
* read page
* \param[in] hash_offset the hash offset of the page to be read
* \param[in] ppage the page to be read
*
* retval = 0 get the page successfully
* errno(<0) get the page failed
*/
static int mdc_read_page(struct obd_export *exp, struct md_op_data *op_data,
struct md_callback *cb_op, __u64 hash_offset,
struct page **ppage)
{
struct lookup_intent it = { .it_op = IT_READDIR };
struct page *page;
struct inode *dir = op_data->op_data;
struct address_space *mapping;
struct lu_dirpage *dp;
__u64 start = 0;
__u64 end = 0;
struct lustre_handle lockh;
struct ptlrpc_request *enq_req = NULL;
struct readpage_param rp_param;
int rc;
*ppage = NULL;
LASSERT(dir);
mapping = dir->i_mapping;
rc = mdc_intent_lock(exp, op_data, &it, &enq_req,
cb_op->md_blocking_ast, 0);
if (enq_req)
ptlrpc_req_finished(enq_req);
if (rc < 0) {
CERROR("%s: "DFID" lock enqueue fails: rc = %d\n",
exp->exp_obd->obd_name, PFID(&op_data->op_fid1), rc);
return rc;
}
rc = 0;
lockh.cookie = it.it_lock_handle;
mdc_set_lock_data(exp, &lockh, dir, NULL);
rp_param.rp_off = hash_offset;
rp_param.rp_hash64 = op_data->op_cli_flags & CLI_HASH64;
page = mdc_page_locate(mapping, &rp_param.rp_off, &start, &end,
rp_param.rp_hash64);
if (IS_ERR(page)) {
CDEBUG(D_INFO, "%s: dir page locate: " DFID " at %llu: rc %ld\n",
exp->exp_obd->obd_name, PFID(&op_data->op_fid1),
rp_param.rp_off, PTR_ERR(page));
rc = PTR_ERR(page);
goto out_unlock;
} else if (page) {
/*
* XXX nikita: not entirely correct handling of a corner case:
* suppose hash chain of entries with hash value HASH crosses
* border between pages P0 and P1. First both P0 and P1 are
* cached, seekdir() is called for some entry from the P0 part
* of the chain. Later P0 goes out of cache. telldir(HASH)
* happens and finds P1, as it starts with matching hash
* value. Remaining entries from P0 part of the chain are
* skipped. (Is that really a bug?)
*
* Possible solutions: 0. don't cache P1 is such case, handle
* it as an "overflow" page. 1. invalidate all pages at
* once. 2. use HASH|1 as an index for P1.
*/
goto hash_collision;
}
rp_param.rp_exp = exp;
rp_param.rp_mod = op_data;
page = read_cache_page(mapping,
hash_x_index(rp_param.rp_off,
rp_param.rp_hash64),
mdc_read_page_remote, &rp_param);
if (IS_ERR(page)) {
CERROR("%s: read cache page: "DFID" at %llu: rc %ld\n",
exp->exp_obd->obd_name, PFID(&op_data->op_fid1),
rp_param.rp_off, PTR_ERR(page));
rc = PTR_ERR(page);
goto out_unlock;
}
wait_on_page_locked(page);
(void)kmap(page);
if (!PageUptodate(page)) {
CERROR("%s: page not updated: "DFID" at %llu: rc %d\n",
exp->exp_obd->obd_name, PFID(&op_data->op_fid1),
rp_param.rp_off, -5);
goto fail;
}
if (!PageChecked(page))
SetPageChecked(page);
if (PageError(page)) {
CERROR("%s: page error: "DFID" at %llu: rc %d\n",
exp->exp_obd->obd_name, PFID(&op_data->op_fid1),
rp_param.rp_off, -5);
goto fail;
}
hash_collision:
dp = page_address(page);
if (BITS_PER_LONG == 32 && rp_param.rp_hash64) {
start = le64_to_cpu(dp->ldp_hash_start) >> 32;
end = le64_to_cpu(dp->ldp_hash_end) >> 32;
rp_param.rp_off = hash_offset >> 32;
} else {
start = le64_to_cpu(dp->ldp_hash_start);
end = le64_to_cpu(dp->ldp_hash_end);
rp_param.rp_off = hash_offset;
}
if (end == start) {
LASSERT(start == rp_param.rp_off);
CWARN("Page-wide hash collision: %#lx\n", (unsigned long)end);
#if BITS_PER_LONG == 32
CWARN("Real page-wide hash collision at [%llu %llu] with hash %llu\n",
le64_to_cpu(dp->ldp_hash_start),
le64_to_cpu(dp->ldp_hash_end), hash_offset);
#endif
/*
* Fetch whole overflow chain...
*
* XXX not yet.
*/
goto fail;
}
*ppage = page;
out_unlock:
ldlm_lock_decref(&lockh, it.it_lock_mode);
return rc;
fail:
kunmap(page);
mdc_release_page(page, 1);
rc = -EIO;
goto out_unlock;
}
static int mdc_statfs(const struct lu_env *env,
struct obd_export *exp, struct obd_statfs *osfs,
__u64 max_age, __u32 flags)
{
struct obd_device *obd = class_exp2obd(exp);
struct ptlrpc_request *req;
struct obd_statfs *msfs;
struct obd_import *imp = NULL;
int rc;
/*
* Since the request might also come from lprocfs, so we need
* sync this with client_disconnect_export Bug15684
*/
down_read(&obd->u.cli.cl_sem);
if (obd->u.cli.cl_import)
imp = class_import_get(obd->u.cli.cl_import);
up_read(&obd->u.cli.cl_sem);
if (!imp)
return -ENODEV;
req = ptlrpc_request_alloc_pack(imp, &RQF_MDS_STATFS,
LUSTRE_MDS_VERSION, MDS_STATFS);
if (!req) {
rc = -ENOMEM;
goto output;
}
ptlrpc_request_set_replen(req);
if (flags & OBD_STATFS_NODELAY) {
/* procfs requests not want stay in wait for avoid deadlock */
req->rq_no_resend = 1;
req->rq_no_delay = 1;
}
rc = ptlrpc_queue_wait(req);
if (rc) {
/* check connection error first */
if (imp->imp_connect_error)
rc = imp->imp_connect_error;
goto out;
}
msfs = req_capsule_server_get(&req->rq_pill, &RMF_OBD_STATFS);
if (!msfs) {
rc = -EPROTO;
goto out;
}
*osfs = *msfs;
out:
ptlrpc_req_finished(req);
output:
class_import_put(imp);
return rc;
}
static int mdc_ioc_fid2path(struct obd_export *exp, struct getinfo_fid2path *gf)
{
__u32 keylen, vallen;
void *key;
int rc;
if (gf->gf_pathlen > PATH_MAX)
return -ENAMETOOLONG;
if (gf->gf_pathlen < 2)
return -EOVERFLOW;
/* Key is KEY_FID2PATH + getinfo_fid2path description */
keylen = cfs_size_round(sizeof(KEY_FID2PATH)) + sizeof(*gf);
key = kzalloc(keylen, GFP_NOFS);
if (!key)
return -ENOMEM;
memcpy(key, KEY_FID2PATH, sizeof(KEY_FID2PATH));
memcpy(key + cfs_size_round(sizeof(KEY_FID2PATH)), gf, sizeof(*gf));
CDEBUG(D_IOCTL, "path get "DFID" from %llu #%d\n",
PFID(&gf->gf_fid), gf->gf_recno, gf->gf_linkno);
if (!fid_is_sane(&gf->gf_fid)) {
rc = -EINVAL;
goto out;
}
/* Val is struct getinfo_fid2path result plus path */
vallen = sizeof(*gf) + gf->gf_pathlen;
rc = obd_get_info(NULL, exp, keylen, key, &vallen, gf, NULL);
if (rc != 0 && rc != -EREMOTE)
goto out;
if (vallen <= sizeof(*gf)) {
rc = -EPROTO;
goto out;
} else if (vallen > sizeof(*gf) + gf->gf_pathlen) {
rc = -EOVERFLOW;
goto out;
}
CDEBUG(D_IOCTL, "path get "DFID" from %llu #%d\n%s\n",
PFID(&gf->gf_fid), gf->gf_recno, gf->gf_linkno, gf->gf_path);
out:
kfree(key);
return rc;
}
static int mdc_ioc_hsm_progress(struct obd_export *exp,
struct hsm_progress_kernel *hpk)
{
struct obd_import *imp = class_exp2cliimp(exp);
struct hsm_progress_kernel *req_hpk;
struct ptlrpc_request *req;
int rc;
req = ptlrpc_request_alloc_pack(imp, &RQF_MDS_HSM_PROGRESS,
LUSTRE_MDS_VERSION, MDS_HSM_PROGRESS);
if (!req) {
rc = -ENOMEM;
goto out;
}
mdc_pack_body(req, NULL, 0, 0, -1, 0);
/* Copy hsm_progress struct */
req_hpk = req_capsule_client_get(&req->rq_pill, &RMF_MDS_HSM_PROGRESS);
if (!req_hpk) {
rc = -EPROTO;
goto out;
}
*req_hpk = *hpk;
req_hpk->hpk_errval = lustre_errno_hton(hpk->hpk_errval);
ptlrpc_request_set_replen(req);
rc = mdc_queue_wait(req);
out:
ptlrpc_req_finished(req);
return rc;
}
static int mdc_ioc_hsm_ct_register(struct obd_import *imp, __u32 archives)
{
__u32 *archive_mask;
struct ptlrpc_request *req;
int rc;
req = ptlrpc_request_alloc_pack(imp, &RQF_MDS_HSM_CT_REGISTER,
LUSTRE_MDS_VERSION,
MDS_HSM_CT_REGISTER);
if (!req) {
rc = -ENOMEM;
goto out;
}
mdc_pack_body(req, NULL, 0, 0, -1, 0);
/* Copy hsm_progress struct */
archive_mask = req_capsule_client_get(&req->rq_pill,
&RMF_MDS_HSM_ARCHIVE);
if (!archive_mask) {
rc = -EPROTO;
goto out;
}
*archive_mask = archives;
ptlrpc_request_set_replen(req);
rc = mdc_queue_wait(req);
out:
ptlrpc_req_finished(req);
return rc;
}
static int mdc_ioc_hsm_current_action(struct obd_export *exp,
struct md_op_data *op_data)
{
struct hsm_current_action *hca = op_data->op_data;
struct hsm_current_action *req_hca;
struct ptlrpc_request *req;
int rc;
req = ptlrpc_request_alloc(class_exp2cliimp(exp),
&RQF_MDS_HSM_ACTION);
if (!req)
return -ENOMEM;
rc = ptlrpc_request_pack(req, LUSTRE_MDS_VERSION, MDS_HSM_ACTION);
if (rc) {
ptlrpc_request_free(req);
return rc;
}
mdc_pack_body(req, &op_data->op_fid1, 0, 0,
op_data->op_suppgids[0], 0);
ptlrpc_request_set_replen(req);
rc = mdc_queue_wait(req);
if (rc)
goto out;
req_hca = req_capsule_server_get(&req->rq_pill,
&RMF_MDS_HSM_CURRENT_ACTION);
if (!req_hca) {
rc = -EPROTO;
goto out;
}
*hca = *req_hca;
out:
ptlrpc_req_finished(req);
return rc;
}
static int mdc_ioc_hsm_ct_unregister(struct obd_import *imp)
{
struct ptlrpc_request *req;
int rc;
req = ptlrpc_request_alloc_pack(imp, &RQF_MDS_HSM_CT_UNREGISTER,
LUSTRE_MDS_VERSION,
MDS_HSM_CT_UNREGISTER);
if (!req) {
rc = -ENOMEM;
goto out;
}
mdc_pack_body(req, NULL, 0, 0, -1, 0);
ptlrpc_request_set_replen(req);
rc = mdc_queue_wait(req);
out:
ptlrpc_req_finished(req);
return rc;
}
static int mdc_ioc_hsm_state_get(struct obd_export *exp,
struct md_op_data *op_data)
{
struct hsm_user_state *hus = op_data->op_data;
struct hsm_user_state *req_hus;
struct ptlrpc_request *req;
int rc;
req = ptlrpc_request_alloc(class_exp2cliimp(exp),
&RQF_MDS_HSM_STATE_GET);
if (!req)
return -ENOMEM;
rc = ptlrpc_request_pack(req, LUSTRE_MDS_VERSION, MDS_HSM_STATE_GET);
if (rc != 0) {
ptlrpc_request_free(req);
return rc;
}
mdc_pack_body(req, &op_data->op_fid1, 0, 0,
op_data->op_suppgids[0], 0);
ptlrpc_request_set_replen(req);
rc = mdc_queue_wait(req);
if (rc)
goto out;
req_hus = req_capsule_server_get(&req->rq_pill, &RMF_HSM_USER_STATE);
if (!req_hus) {
rc = -EPROTO;
goto out;
}
*hus = *req_hus;
out:
ptlrpc_req_finished(req);
return rc;
}
static int mdc_ioc_hsm_state_set(struct obd_export *exp,
struct md_op_data *op_data)
{
struct hsm_state_set *hss = op_data->op_data;
struct hsm_state_set *req_hss;
struct ptlrpc_request *req;
int rc;
req = ptlrpc_request_alloc(class_exp2cliimp(exp),
&RQF_MDS_HSM_STATE_SET);
if (!req)
return -ENOMEM;
rc = ptlrpc_request_pack(req, LUSTRE_MDS_VERSION, MDS_HSM_STATE_SET);
if (rc) {
ptlrpc_request_free(req);
return rc;
}
mdc_pack_body(req, &op_data->op_fid1, 0, 0,
op_data->op_suppgids[0], 0);
/* Copy states */
req_hss = req_capsule_client_get(&req->rq_pill, &RMF_HSM_STATE_SET);
if (!req_hss) {
rc = -EPROTO;
goto out;
}
*req_hss = *hss;
ptlrpc_request_set_replen(req);
rc = mdc_queue_wait(req);
out:
ptlrpc_req_finished(req);
return rc;
}
static int mdc_ioc_hsm_request(struct obd_export *exp,
struct hsm_user_request *hur)
{
struct obd_import *imp = class_exp2cliimp(exp);
struct ptlrpc_request *req;
struct hsm_request *req_hr;
struct hsm_user_item *req_hui;
char *req_opaque;
int rc;
req = ptlrpc_request_alloc(imp, &RQF_MDS_HSM_REQUEST);
if (!req) {
rc = -ENOMEM;
goto out;
}
req_capsule_set_size(&req->rq_pill, &RMF_MDS_HSM_USER_ITEM, RCL_CLIENT,
hur->hur_request.hr_itemcount
* sizeof(struct hsm_user_item));
req_capsule_set_size(&req->rq_pill, &RMF_GENERIC_DATA, RCL_CLIENT,
hur->hur_request.hr_data_len);
rc = ptlrpc_request_pack(req, LUSTRE_MDS_VERSION, MDS_HSM_REQUEST);
if (rc) {
ptlrpc_request_free(req);
return rc;
}
mdc_pack_body(req, NULL, 0, 0, -1, 0);
/* Copy hsm_request struct */
req_hr = req_capsule_client_get(&req->rq_pill, &RMF_MDS_HSM_REQUEST);
if (!req_hr) {
rc = -EPROTO;
goto out;
}
*req_hr = hur->hur_request;
/* Copy hsm_user_item structs */
req_hui = req_capsule_client_get(&req->rq_pill, &RMF_MDS_HSM_USER_ITEM);
if (!req_hui) {
rc = -EPROTO;
goto out;
}
memcpy(req_hui, hur->hur_user_item,
hur->hur_request.hr_itemcount * sizeof(struct hsm_user_item));
/* Copy opaque field */
req_opaque = req_capsule_client_get(&req->rq_pill, &RMF_GENERIC_DATA);
if (!req_opaque) {
rc = -EPROTO;
goto out;
}
memcpy(req_opaque, hur_data(hur), hur->hur_request.hr_data_len);
ptlrpc_request_set_replen(req);
rc = mdc_queue_wait(req);
out:
ptlrpc_req_finished(req);
return rc;
}
static struct kuc_hdr *changelog_kuc_hdr(char *buf, size_t len, u32 flags)
{
struct kuc_hdr *lh = (struct kuc_hdr *)buf;
LASSERT(len <= KUC_CHANGELOG_MSG_MAXSIZE);
lh->kuc_magic = KUC_MAGIC;
lh->kuc_transport = KUC_TRANSPORT_CHANGELOG;
lh->kuc_flags = flags;
lh->kuc_msgtype = CL_RECORD;
lh->kuc_msglen = len;
return lh;
}
struct changelog_show {
__u64 cs_startrec;
enum changelog_send_flag cs_flags;
struct file *cs_fp;
char *cs_buf;
struct obd_device *cs_obd;
};
static inline char *cs_obd_name(struct changelog_show *cs)
{
return cs->cs_obd->obd_name;
}
static int changelog_kkuc_cb(const struct lu_env *env, struct llog_handle *llh,
struct llog_rec_hdr *hdr, void *data)
{
struct changelog_show *cs = data;
struct llog_changelog_rec *rec = (struct llog_changelog_rec *)hdr;
struct kuc_hdr *lh;
size_t len;
int rc;
if (rec->cr_hdr.lrh_type != CHANGELOG_REC) {
rc = -EINVAL;
CERROR("%s: not a changelog rec %x/%d: rc = %d\n",
cs_obd_name(cs), rec->cr_hdr.lrh_type,
rec->cr.cr_type, rc);
return rc;
}
if (rec->cr.cr_index < cs->cs_startrec) {
/* Skip entries earlier than what we are interested in */
CDEBUG(D_HSM, "rec=%llu start=%llu\n",
rec->cr.cr_index, cs->cs_startrec);
return 0;
}
CDEBUG(D_HSM, "%llu %02d%-5s %llu 0x%x t=" DFID " p=" DFID
" %.*s\n", rec->cr.cr_index, rec->cr.cr_type,
changelog_type2str(rec->cr.cr_type), rec->cr.cr_time,
rec->cr.cr_flags & CLF_FLAGMASK,
PFID(&rec->cr.cr_tfid), PFID(&rec->cr.cr_pfid),
rec->cr.cr_namelen, changelog_rec_name(&rec->cr));
len = sizeof(*lh) + changelog_rec_size(&rec->cr) + rec->cr.cr_namelen;
/* Set up the message */
lh = changelog_kuc_hdr(cs->cs_buf, len, cs->cs_flags);
memcpy(lh + 1, &rec->cr, len - sizeof(*lh));
rc = libcfs_kkuc_msg_put(cs->cs_fp, lh);
CDEBUG(D_HSM, "kucmsg fp %p len %zu rc %d\n", cs->cs_fp, len, rc);
return rc;
}
static int mdc_changelog_send_thread(void *csdata)
{
enum llog_flag flags = LLOG_F_IS_CAT;
struct changelog_show *cs = csdata;
struct llog_ctxt *ctxt = NULL;
struct llog_handle *llh = NULL;
struct kuc_hdr *kuch;
int rc;
CDEBUG(D_HSM, "changelog to fp=%p start %llu\n",
cs->cs_fp, cs->cs_startrec);
cs->cs_buf = kzalloc(KUC_CHANGELOG_MSG_MAXSIZE, GFP_NOFS);
if (!cs->cs_buf) {
rc = -ENOMEM;
goto out;
}
/* Set up the remote catalog handle */
ctxt = llog_get_context(cs->cs_obd, LLOG_CHANGELOG_REPL_CTXT);
if (!ctxt) {
rc = -ENOENT;
goto out;
}
rc = llog_open(NULL, ctxt, &llh, NULL, CHANGELOG_CATALOG,
LLOG_OPEN_EXISTS);
if (rc) {
CERROR("%s: fail to open changelog catalog: rc = %d\n",
cs_obd_name(cs), rc);
goto out;
}
if (cs->cs_flags & CHANGELOG_FLAG_JOBID)
flags |= LLOG_F_EXT_JOBID;
rc = llog_init_handle(NULL, llh, flags, NULL);
if (rc) {
CERROR("llog_init_handle failed %d\n", rc);
goto out;
}
rc = llog_cat_process(NULL, llh, changelog_kkuc_cb, cs, 0, 0);
/* Send EOF no matter what our result */
kuch = changelog_kuc_hdr(cs->cs_buf, sizeof(*kuch), cs->cs_flags);
if (kuch) {
kuch->kuc_msgtype = CL_EOF;
libcfs_kkuc_msg_put(cs->cs_fp, kuch);
}
out:
fput(cs->cs_fp);
if (llh)
llog_cat_close(NULL, llh);
if (ctxt)
llog_ctxt_put(ctxt);
kfree(cs->cs_buf);
kfree(cs);
return rc;
}
static int mdc_ioc_changelog_send(struct obd_device *obd,
struct ioc_changelog *icc)
{
struct changelog_show *cs;
struct task_struct *task;
int rc;
/* Freed in mdc_changelog_send_thread */
cs = kzalloc(sizeof(*cs), GFP_NOFS);
if (!cs)
return -ENOMEM;
cs->cs_obd = obd;
cs->cs_startrec = icc->icc_recno;
/* matching fput in mdc_changelog_send_thread */
cs->cs_fp = fget(icc->icc_id);
cs->cs_flags = icc->icc_flags;
/*
* New thread because we should return to user app before
* writing into our pipe
*/
task = kthread_run(mdc_changelog_send_thread, cs,
"mdc_clg_send_thread");
if (IS_ERR(task)) {
rc = PTR_ERR(task);
CERROR("%s: can't start changelog thread: rc = %d\n",
cs_obd_name(cs), rc);
kfree(cs);
} else {
rc = 0;
CDEBUG(D_HSM, "%s: started changelog thread\n",
cs_obd_name(cs));
}
CERROR("Failed to start changelog thread: %d\n", rc);
return rc;
}
static int mdc_ioc_hsm_ct_start(struct obd_export *exp,
struct lustre_kernelcomm *lk);
static int mdc_quotacheck(struct obd_device *unused, struct obd_export *exp,
struct obd_quotactl *oqctl)
{
struct client_obd *cli = &exp->exp_obd->u.cli;
struct ptlrpc_request *req;
struct obd_quotactl *body;
int rc;
req = ptlrpc_request_alloc_pack(class_exp2cliimp(exp),
&RQF_MDS_QUOTACHECK, LUSTRE_MDS_VERSION,
MDS_QUOTACHECK);
if (!req)
return -ENOMEM;
body = req_capsule_client_get(&req->rq_pill, &RMF_OBD_QUOTACTL);
*body = *oqctl;
ptlrpc_request_set_replen(req);
/* the next poll will find -ENODATA, that means quotacheck is
* going on
*/
cli->cl_qchk_stat = -ENODATA;
rc = ptlrpc_queue_wait(req);
if (rc)
cli->cl_qchk_stat = rc;
ptlrpc_req_finished(req);
return rc;
}
static int mdc_quota_poll_check(struct obd_export *exp,
struct if_quotacheck *qchk)
{
struct client_obd *cli = &exp->exp_obd->u.cli;
int rc;
qchk->obd_uuid = cli->cl_target_uuid;
memcpy(qchk->obd_type, LUSTRE_MDS_NAME, strlen(LUSTRE_MDS_NAME));
rc = cli->cl_qchk_stat;
/* the client is not the previous one */
if (rc == CL_NOT_QUOTACHECKED)
rc = -EINTR;
return rc;
}
static int mdc_quotactl(struct obd_device *unused, struct obd_export *exp,
struct obd_quotactl *oqctl)
{
struct ptlrpc_request *req;
struct obd_quotactl *oqc;
int rc;
req = ptlrpc_request_alloc_pack(class_exp2cliimp(exp),
&RQF_MDS_QUOTACTL, LUSTRE_MDS_VERSION,
MDS_QUOTACTL);
if (!req)
return -ENOMEM;
oqc = req_capsule_client_get(&req->rq_pill, &RMF_OBD_QUOTACTL);
*oqc = *oqctl;
ptlrpc_request_set_replen(req);
ptlrpc_at_set_req_timeout(req);
req->rq_no_resend = 1;
rc = ptlrpc_queue_wait(req);
if (rc)
CERROR("ptlrpc_queue_wait failed, rc: %d\n", rc);
if (req->rq_repmsg) {
oqc = req_capsule_server_get(&req->rq_pill, &RMF_OBD_QUOTACTL);
if (oqc) {
*oqctl = *oqc;
} else if (!rc) {
CERROR("Can't unpack obd_quotactl\n");
rc = -EPROTO;
}
} else if (!rc) {
CERROR("Can't unpack obd_quotactl\n");
rc = -EPROTO;
}
ptlrpc_req_finished(req);
return rc;
}
static int mdc_ioc_swap_layouts(struct obd_export *exp,
struct md_op_data *op_data)
{
LIST_HEAD(cancels);
struct ptlrpc_request *req;
int rc, count;
struct mdc_swap_layouts *msl, *payload;
msl = op_data->op_data;
/* When the MDT will get the MDS_SWAP_LAYOUTS RPC the
* first thing it will do is to cancel the 2 layout
* locks hold by this client.
* So the client must cancel its layout locks on the 2 fids
* with the request RPC to avoid extra RPC round trips
*/
count = mdc_resource_get_unused(exp, &op_data->op_fid1, &cancels,
LCK_CR, MDS_INODELOCK_LAYOUT |
MDS_INODELOCK_XATTR);
count += mdc_resource_get_unused(exp, &op_data->op_fid2, &cancels,
LCK_CR, MDS_INODELOCK_LAYOUT |
MDS_INODELOCK_XATTR);
req = ptlrpc_request_alloc(class_exp2cliimp(exp),
&RQF_MDS_SWAP_LAYOUTS);
if (!req) {
ldlm_lock_list_put(&cancels, l_bl_ast, count);
return -ENOMEM;
}
rc = mdc_prep_elc_req(exp, req, MDS_SWAP_LAYOUTS, &cancels, count);
if (rc) {
ptlrpc_request_free(req);
return rc;
}
mdc_swap_layouts_pack(req, op_data);
payload = req_capsule_client_get(&req->rq_pill, &RMF_SWAP_LAYOUTS);
LASSERT(payload);
*payload = *msl;
ptlrpc_request_set_replen(req);
rc = ptlrpc_queue_wait(req);
ptlrpc_req_finished(req);
return rc;
}
static int mdc_iocontrol(unsigned int cmd, struct obd_export *exp, int len,
void *karg, void __user *uarg)
{
struct obd_device *obd = exp->exp_obd;
struct obd_ioctl_data *data = karg;
struct obd_import *imp = obd->u.cli.cl_import;
int rc;
if (!try_module_get(THIS_MODULE)) {
CERROR("%s: cannot get module '%s'\n", obd->obd_name,
module_name(THIS_MODULE));
return -EINVAL;
}
switch (cmd) {
case OBD_IOC_CHANGELOG_SEND:
rc = mdc_ioc_changelog_send(obd, karg);
goto out;
case OBD_IOC_CHANGELOG_CLEAR: {
struct ioc_changelog *icc = karg;
struct changelog_setinfo cs = {
.cs_recno = icc->icc_recno,
.cs_id = icc->icc_id
};
rc = obd_set_info_async(NULL, exp, strlen(KEY_CHANGELOG_CLEAR),
KEY_CHANGELOG_CLEAR, sizeof(cs), &cs,
NULL);
goto out;
}
case OBD_IOC_FID2PATH:
rc = mdc_ioc_fid2path(exp, karg);
goto out;
case LL_IOC_HSM_CT_START:
rc = mdc_ioc_hsm_ct_start(exp, karg);
/* ignore if it was already registered on this MDS. */
if (rc == -EEXIST)
rc = 0;
goto out;
case LL_IOC_HSM_PROGRESS:
rc = mdc_ioc_hsm_progress(exp, karg);
goto out;
case LL_IOC_HSM_STATE_GET:
rc = mdc_ioc_hsm_state_get(exp, karg);
goto out;
case LL_IOC_HSM_STATE_SET:
rc = mdc_ioc_hsm_state_set(exp, karg);
goto out;
case LL_IOC_HSM_ACTION:
rc = mdc_ioc_hsm_current_action(exp, karg);
goto out;
case LL_IOC_HSM_REQUEST:
rc = mdc_ioc_hsm_request(exp, karg);
goto out;
case OBD_IOC_CLIENT_RECOVER:
rc = ptlrpc_recover_import(imp, data->ioc_inlbuf1, 0);
if (rc < 0)
goto out;
rc = 0;
goto out;
case IOC_OSC_SET_ACTIVE:
rc = ptlrpc_set_import_active(imp, data->ioc_offset);
goto out;
case OBD_IOC_POLL_QUOTACHECK:
rc = mdc_quota_poll_check(exp, (struct if_quotacheck *)karg);
goto out;
case OBD_IOC_PING_TARGET:
rc = ptlrpc_obd_ping(obd);
goto out;
/*
* Normally IOC_OBD_STATFS, OBD_IOC_QUOTACTL iocontrol are handled by
* LMV instead of MDC. But when the cluster is upgraded from 1.8,
* there'd be no LMV layer thus we might be called here. Eventually
* this code should be removed.
* bz20731, LU-592.
*/
case IOC_OBD_STATFS: {
struct obd_statfs stat_buf = {0};
if (*((__u32 *)data->ioc_inlbuf2) != 0) {
rc = -ENODEV;
goto out;
}
/* copy UUID */
if (copy_to_user(data->ioc_pbuf2, obd2cli_tgt(obd),
min_t(size_t, data->ioc_plen2,
sizeof(struct obd_uuid)))) {
rc = -EFAULT;
goto out;
}
rc = mdc_statfs(NULL, obd->obd_self_export, &stat_buf,
cfs_time_shift_64(-OBD_STATFS_CACHE_SECONDS),
0);
if (rc != 0)
goto out;
if (copy_to_user(data->ioc_pbuf1, &stat_buf,
min_t(size_t, data->ioc_plen1,
sizeof(stat_buf)))) {
rc = -EFAULT;
goto out;
}
rc = 0;
goto out;
}
case OBD_IOC_QUOTACTL: {
struct if_quotactl *qctl = karg;
struct obd_quotactl *oqctl;
oqctl = kzalloc(sizeof(*oqctl), GFP_NOFS);
if (!oqctl) {
rc = -ENOMEM;
goto out;
}
QCTL_COPY(oqctl, qctl);
rc = obd_quotactl(exp, oqctl);
if (rc == 0) {
QCTL_COPY(qctl, oqctl);
qctl->qc_valid = QC_MDTIDX;
qctl->obd_uuid = obd->u.cli.cl_target_uuid;
}
kfree(oqctl);
goto out;
}
case LL_IOC_GET_CONNECT_FLAGS:
if (copy_to_user(uarg, exp_connect_flags_ptr(exp),
sizeof(*exp_connect_flags_ptr(exp)))) {
rc = -EFAULT;
goto out;
}
rc = 0;
goto out;
case LL_IOC_LOV_SWAP_LAYOUTS:
rc = mdc_ioc_swap_layouts(exp, karg);
goto out;
default:
CERROR("unrecognised ioctl: cmd = %#x\n", cmd);
rc = -ENOTTY;
goto out;
}
out:
module_put(THIS_MODULE);
return rc;
}
static int mdc_get_info_rpc(struct obd_export *exp,
u32 keylen, void *key,
int vallen, void *val)
{
struct obd_import *imp = class_exp2cliimp(exp);
struct ptlrpc_request *req;
char *tmp;
int rc = -EINVAL;
req = ptlrpc_request_alloc(imp, &RQF_MDS_GET_INFO);
if (!req)
return -ENOMEM;
req_capsule_set_size(&req->rq_pill, &RMF_GETINFO_KEY,
RCL_CLIENT, keylen);
req_capsule_set_size(&req->rq_pill, &RMF_GETINFO_VALLEN,
RCL_CLIENT, sizeof(__u32));
rc = ptlrpc_request_pack(req, LUSTRE_MDS_VERSION, MDS_GET_INFO);
if (rc) {
ptlrpc_request_free(req);
return rc;
}
tmp = req_capsule_client_get(&req->rq_pill, &RMF_GETINFO_KEY);
memcpy(tmp, key, keylen);
tmp = req_capsule_client_get(&req->rq_pill, &RMF_GETINFO_VALLEN);
memcpy(tmp, &vallen, sizeof(__u32));
req_capsule_set_size(&req->rq_pill, &RMF_GETINFO_VAL,
RCL_SERVER, vallen);
ptlrpc_request_set_replen(req);
rc = ptlrpc_queue_wait(req);
/* -EREMOTE means the get_info result is partial, and it needs to
* continue on another MDT, see fid2path part in lmv_iocontrol
*/
if (rc == 0 || rc == -EREMOTE) {
tmp = req_capsule_server_get(&req->rq_pill, &RMF_GETINFO_VAL);
memcpy(val, tmp, vallen);
if (ptlrpc_rep_need_swab(req)) {
if (KEY_IS(KEY_FID2PATH))
lustre_swab_fid2path(val);
}
}
ptlrpc_req_finished(req);
return rc;
}
static void lustre_swab_hai(struct hsm_action_item *h)
{
__swab32s(&h->hai_len);
__swab32s(&h->hai_action);
lustre_swab_lu_fid(&h->hai_fid);
lustre_swab_lu_fid(&h->hai_dfid);
__swab64s(&h->hai_cookie);
__swab64s(&h->hai_extent.offset);
__swab64s(&h->hai_extent.length);
__swab64s(&h->hai_gid);
}
static void lustre_swab_hal(struct hsm_action_list *h)
{
struct hsm_action_item *hai;
u32 i;
__swab32s(&h->hal_version);
__swab32s(&h->hal_count);
__swab32s(&h->hal_archive_id);
__swab64s(&h->hal_flags);
hai = hai_first(h);
for (i = 0; i < h->hal_count; i++, hai = hai_next(hai))
lustre_swab_hai(hai);
}
static void lustre_swab_kuch(struct kuc_hdr *l)
{
__swab16s(&l->kuc_magic);
/* __u8 l->kuc_transport */
__swab16s(&l->kuc_msgtype);
__swab16s(&l->kuc_msglen);
}
static int mdc_ioc_hsm_ct_start(struct obd_export *exp,
struct lustre_kernelcomm *lk)
{
struct obd_import *imp = class_exp2cliimp(exp);
__u32 archive = lk->lk_data;
int rc = 0;
if (lk->lk_group != KUC_GRP_HSM) {
CERROR("Bad copytool group %d\n", lk->lk_group);
return -EINVAL;
}
CDEBUG(D_HSM, "CT start r%d w%d u%d g%d f%#x\n", lk->lk_rfd, lk->lk_wfd,
lk->lk_uid, lk->lk_group, lk->lk_flags);
if (lk->lk_flags & LK_FLG_STOP) {
/* Unregister with the coordinator */
rc = mdc_ioc_hsm_ct_unregister(imp);
} else {
rc = mdc_ioc_hsm_ct_register(imp, archive);
}
return rc;
}
/**
* Send a message to any listening copytools
* @param val KUC message (kuc_hdr + hsm_action_list)
* @param len total length of message
*/
static int mdc_hsm_copytool_send(size_t len, void *val)
{
struct kuc_hdr *lh = (struct kuc_hdr *)val;
struct hsm_action_list *hal = (struct hsm_action_list *)(lh + 1);
if (len < sizeof(*lh) + sizeof(*hal)) {
CERROR("Short HSM message %zu < %zu\n", len,
sizeof(*lh) + sizeof(*hal));
return -EPROTO;
}
if (lh->kuc_magic == __swab16(KUC_MAGIC)) {
lustre_swab_kuch(lh);
lustre_swab_hal(hal);
} else if (lh->kuc_magic != KUC_MAGIC) {
CERROR("Bad magic %x!=%x\n", lh->kuc_magic, KUC_MAGIC);
return -EPROTO;
}
CDEBUG(D_HSM,
"Received message mg=%x t=%d m=%d l=%d actions=%d on %s\n",
lh->kuc_magic, lh->kuc_transport, lh->kuc_msgtype,
lh->kuc_msglen, hal->hal_count, hal->hal_fsname);
/* Broadcast to HSM listeners */
return libcfs_kkuc_group_put(KUC_GRP_HSM, lh);
}
/**
* callback function passed to kuc for re-registering each HSM copytool
* running on MDC, after MDT shutdown/recovery.
* @param data copytool registration data
* @param cb_arg callback argument (obd_import)
*/
static int mdc_hsm_ct_reregister(void *data, void *cb_arg)
{
struct kkuc_ct_data *kcd = data;
struct obd_import *imp = (struct obd_import *)cb_arg;
int rc;
if (!kcd || kcd->kcd_magic != KKUC_CT_DATA_MAGIC)
return -EPROTO;
if (!obd_uuid_equals(&kcd->kcd_uuid, &imp->imp_obd->obd_uuid))
return 0;
CDEBUG(D_HA, "%s: recover copytool registration to MDT (archive=%#x)\n",
imp->imp_obd->obd_name, kcd->kcd_archive);
rc = mdc_ioc_hsm_ct_register(imp, kcd->kcd_archive);
/* ignore error if the copytool is already registered */
return (rc == -EEXIST) ? 0 : rc;
}
static int mdc_set_info_async(const struct lu_env *env,
struct obd_export *exp,
u32 keylen, void *key,
u32 vallen, void *val,
struct ptlrpc_request_set *set)
{
struct obd_import *imp = class_exp2cliimp(exp);
int rc;
if (KEY_IS(KEY_READ_ONLY)) {
if (vallen != sizeof(int))
return -EINVAL;
spin_lock(&imp->imp_lock);
if (*((int *)val)) {
imp->imp_connect_flags_orig |= OBD_CONNECT_RDONLY;
imp->imp_connect_data.ocd_connect_flags |=
OBD_CONNECT_RDONLY;
} else {
imp->imp_connect_flags_orig &= ~OBD_CONNECT_RDONLY;
imp->imp_connect_data.ocd_connect_flags &=
~OBD_CONNECT_RDONLY;
}
spin_unlock(&imp->imp_lock);
return do_set_info_async(imp, MDS_SET_INFO, LUSTRE_MDS_VERSION,
keylen, key, vallen, val, set);
}
if (KEY_IS(KEY_SPTLRPC_CONF)) {
sptlrpc_conf_client_adapt(exp->exp_obd);
return 0;
}
if (KEY_IS(KEY_FLUSH_CTX)) {
sptlrpc_import_flush_my_ctx(imp);
return 0;
}
if (KEY_IS(KEY_CHANGELOG_CLEAR)) {
rc = do_set_info_async(imp, MDS_SET_INFO, LUSTRE_MDS_VERSION,
keylen, key, vallen, val, set);
return rc;
}
if (KEY_IS(KEY_HSM_COPYTOOL_SEND)) {
rc = mdc_hsm_copytool_send(vallen, val);
return rc;
}
if (KEY_IS(KEY_DEFAULT_EASIZE)) {
u32 *default_easize = val;
exp->exp_obd->u.cli.cl_default_mds_easize = *default_easize;
return 0;
}
CERROR("Unknown key %s\n", (char *)key);
return -EINVAL;
}
static int mdc_get_info(const struct lu_env *env, struct obd_export *exp,
__u32 keylen, void *key, __u32 *vallen, void *val,
struct lov_stripe_md *lsm)
{
int rc = -EINVAL;
if (KEY_IS(KEY_MAX_EASIZE)) {
u32 mdsize, *max_easize;
if (*vallen != sizeof(int))
return -EINVAL;
mdsize = *(u32 *)val;
if (mdsize > exp->exp_obd->u.cli.cl_max_mds_easize)
exp->exp_obd->u.cli.cl_max_mds_easize = mdsize;
max_easize = val;
*max_easize = exp->exp_obd->u.cli.cl_max_mds_easize;
return 0;
} else if (KEY_IS(KEY_DEFAULT_EASIZE)) {
u32 *default_easize;
if (*vallen != sizeof(int))
return -EINVAL;
default_easize = val;
*default_easize = exp->exp_obd->u.cli.cl_default_mds_easize;
return 0;
} else if (KEY_IS(KEY_CONN_DATA)) {
struct obd_import *imp = class_exp2cliimp(exp);
struct obd_connect_data *data = val;
if (*vallen != sizeof(*data))
return -EINVAL;
*data = imp->imp_connect_data;
return 0;
} else if (KEY_IS(KEY_TGT_COUNT)) {
*((u32 *)val) = 1;
return 0;
}
rc = mdc_get_info_rpc(exp, keylen, key, *vallen, val);
return rc;
}
static int mdc_sync(struct obd_export *exp, const struct lu_fid *fid,
struct ptlrpc_request **request)
{
struct ptlrpc_request *req;
int rc;
*request = NULL;
req = ptlrpc_request_alloc(class_exp2cliimp(exp), &RQF_MDS_SYNC);
if (!req)
return -ENOMEM;
rc = ptlrpc_request_pack(req, LUSTRE_MDS_VERSION, MDS_SYNC);
if (rc) {
ptlrpc_request_free(req);
return rc;
}
mdc_pack_body(req, fid, 0, 0, -1, 0);
ptlrpc_request_set_replen(req);
rc = ptlrpc_queue_wait(req);
if (rc)
ptlrpc_req_finished(req);
else
*request = req;
return rc;
}
static int mdc_import_event(struct obd_device *obd, struct obd_import *imp,
enum obd_import_event event)
{
int rc = 0;
LASSERT(imp->imp_obd == obd);
switch (event) {
case IMP_EVENT_DISCON: {
#if 0
/* XXX Pass event up to OBDs stack. used only for FLD now */
rc = obd_notify_observer(obd, obd, OBD_NOTIFY_DISCON, NULL);
#endif
break;
}
case IMP_EVENT_INACTIVE: {
struct client_obd *cli = &obd->u.cli;
/*
* Flush current sequence to make client obtain new one
* from server in case of disconnect/reconnect.
*/
if (cli->cl_seq)
seq_client_flush(cli->cl_seq);
rc = obd_notify_observer(obd, obd, OBD_NOTIFY_INACTIVE, NULL);
break;
}
case IMP_EVENT_INVALIDATE: {
struct ldlm_namespace *ns = obd->obd_namespace;
ldlm_namespace_cleanup(ns, LDLM_FL_LOCAL_ONLY);
break;
}
case IMP_EVENT_ACTIVE:
rc = obd_notify_observer(obd, obd, OBD_NOTIFY_ACTIVE, NULL);
/* redo the kuc registration after reconnecting */
if (rc == 0)
/* re-register HSM agents */
rc = libcfs_kkuc_group_foreach(KUC_GRP_HSM,
mdc_hsm_ct_reregister,
(void *)imp);
break;
case IMP_EVENT_OCD:
rc = obd_notify_observer(obd, obd, OBD_NOTIFY_OCD, NULL);
break;
case IMP_EVENT_DEACTIVATE:
case IMP_EVENT_ACTIVATE:
break;
default:
CERROR("Unknown import event %x\n", event);
LBUG();
}
return rc;
}
int mdc_fid_alloc(const struct lu_env *env, struct obd_export *exp,
struct lu_fid *fid, struct md_op_data *op_data)
{
struct client_obd *cli = &exp->exp_obd->u.cli;
struct lu_client_seq *seq = cli->cl_seq;
return seq_client_alloc_fid(env, seq, fid);
}
static struct obd_uuid *mdc_get_uuid(struct obd_export *exp)
{
struct client_obd *cli = &exp->exp_obd->u.cli;
return &cli->cl_target_uuid;
}
/**
* Determine whether the lock can be canceled before replaying it during
* recovery, non zero value will be return if the lock can be canceled,
* or zero returned for not
*/
static int mdc_cancel_weight(struct ldlm_lock *lock)
{
if (lock->l_resource->lr_type != LDLM_IBITS)
return 0;
/* FIXME: if we ever get into a situation where there are too many
* opened files with open locks on a single node, then we really
* should replay these open locks to reget it
*/
if (lock->l_policy_data.l_inodebits.bits & MDS_INODELOCK_OPEN)
return 0;
return 1;
}
static int mdc_resource_inode_free(struct ldlm_resource *res)
{
if (res->lr_lvb_inode)
res->lr_lvb_inode = NULL;
return 0;
}
static struct ldlm_valblock_ops inode_lvbo = {
.lvbo_free = mdc_resource_inode_free,
};
static int mdc_llog_init(struct obd_device *obd)
{
struct obd_llog_group *olg = &obd->obd_olg;
struct llog_ctxt *ctxt;
int rc;
rc = llog_setup(NULL, obd, olg, LLOG_CHANGELOG_REPL_CTXT, obd,
&llog_client_ops);
if (rc)
return rc;
ctxt = llog_group_get_ctxt(olg, LLOG_CHANGELOG_REPL_CTXT);
llog_initiator_connect(ctxt);
llog_ctxt_put(ctxt);
return 0;
}
static void mdc_llog_finish(struct obd_device *obd)
{
struct llog_ctxt *ctxt;
ctxt = llog_get_context(obd, LLOG_CHANGELOG_REPL_CTXT);
if (ctxt)
llog_cleanup(NULL, ctxt);
}
static int mdc_setup(struct obd_device *obd, struct lustre_cfg *cfg)
{
struct client_obd *cli = &obd->u.cli;
struct lprocfs_static_vars lvars = { NULL };
int rc;
cli->cl_rpc_lock = kzalloc(sizeof(*cli->cl_rpc_lock), GFP_NOFS);
if (!cli->cl_rpc_lock)
return -ENOMEM;
mdc_init_rpc_lock(cli->cl_rpc_lock);
rc = ptlrpcd_addref();
if (rc < 0)
goto err_rpc_lock;
cli->cl_close_lock = kzalloc(sizeof(*cli->cl_close_lock), GFP_NOFS);
if (!cli->cl_close_lock) {
rc = -ENOMEM;
goto err_ptlrpcd_decref;
}
mdc_init_rpc_lock(cli->cl_close_lock);
rc = client_obd_setup(obd, cfg);
if (rc)
goto err_close_lock;
lprocfs_mdc_init_vars(&lvars);
lprocfs_obd_setup(obd, lvars.obd_vars, lvars.sysfs_vars);
sptlrpc_lprocfs_cliobd_attach(obd);
ptlrpc_lprocfs_register_obd(obd);
ns_register_cancel(obd->obd_namespace, mdc_cancel_weight);
obd->obd_namespace->ns_lvbo = &inode_lvbo;
rc = mdc_llog_init(obd);
if (rc) {
mdc_cleanup(obd);
CERROR("failed to setup llogging subsystems\n");
}
return rc;
err_close_lock:
kfree(cli->cl_close_lock);
err_ptlrpcd_decref:
ptlrpcd_decref();
err_rpc_lock:
kfree(cli->cl_rpc_lock);
return rc;
}
/* Initialize the default and maximum LOV EA and cookie sizes. This allows
* us to make MDS RPCs with large enough reply buffers to hold a default
* sized EA and cookie without having to calculate this (via a call into the
* LOV + OSCs) each time we make an RPC. The maximum size is also tracked
* but not used to avoid wastefully vmalloc()'ing large reply buffers when
* a large number of stripes is possible. If a larger reply buffer is
* required it will be reallocated in the ptlrpc layer due to overflow.
*/
static int mdc_init_ea_size(struct obd_export *exp, u32 easize, u32 def_easize,
u32 cookiesize, u32 def_cookiesize)
{
struct obd_device *obd = exp->exp_obd;
struct client_obd *cli = &obd->u.cli;
if (cli->cl_max_mds_easize < easize)
cli->cl_max_mds_easize = easize;
if (cli->cl_default_mds_easize < def_easize)
cli->cl_default_mds_easize = def_easize;
if (cli->cl_max_mds_cookiesize < cookiesize)
cli->cl_max_mds_cookiesize = cookiesize;
if (cli->cl_default_mds_cookiesize < def_cookiesize)
cli->cl_default_mds_cookiesize = def_cookiesize;
return 0;
}
static int mdc_precleanup(struct obd_device *obd, enum obd_cleanup_stage stage)
{
switch (stage) {
case OBD_CLEANUP_EARLY:
break;
case OBD_CLEANUP_EXPORTS:
/* Failsafe, ok if racy */
if (obd->obd_type->typ_refcnt <= 1)
libcfs_kkuc_group_rem(0, KUC_GRP_HSM);
obd_cleanup_client_import(obd);
ptlrpc_lprocfs_unregister_obd(obd);
lprocfs_obd_cleanup(obd);
mdc_llog_finish(obd);
break;
}
return 0;
}
static int mdc_cleanup(struct obd_device *obd)
{
struct client_obd *cli = &obd->u.cli;
kfree(cli->cl_rpc_lock);
kfree(cli->cl_close_lock);
ptlrpcd_decref();
return client_obd_cleanup(obd);
}
static int mdc_process_config(struct obd_device *obd, u32 len, void *buf)
{
struct lustre_cfg *lcfg = buf;
struct lprocfs_static_vars lvars = { NULL };
int rc = 0;
lprocfs_mdc_init_vars(&lvars);
switch (lcfg->lcfg_command) {
default:
rc = class_process_proc_param(PARAM_MDC, lvars.obd_vars,
lcfg, obd);
if (rc > 0)
rc = 0;
break;
}
return rc;
}
static struct obd_ops mdc_obd_ops = {
.owner = THIS_MODULE,
.setup = mdc_setup,
.precleanup = mdc_precleanup,
.cleanup = mdc_cleanup,
.add_conn = client_import_add_conn,
.del_conn = client_import_del_conn,
.connect = client_connect_import,
.disconnect = client_disconnect_export,
.iocontrol = mdc_iocontrol,
.set_info_async = mdc_set_info_async,
.statfs = mdc_statfs,
.fid_init = client_fid_init,
.fid_fini = client_fid_fini,
.fid_alloc = mdc_fid_alloc,
.import_event = mdc_import_event,
.get_info = mdc_get_info,
.process_config = mdc_process_config,
.get_uuid = mdc_get_uuid,
.quotactl = mdc_quotactl,
.quotacheck = mdc_quotacheck
};
static struct md_ops mdc_md_ops = {
.getstatus = mdc_getstatus,
.null_inode = mdc_null_inode,
.close = mdc_close,
.create = mdc_create,
.done_writing = mdc_done_writing,
.enqueue = mdc_enqueue,
.getattr = mdc_getattr,
.getattr_name = mdc_getattr_name,
.intent_lock = mdc_intent_lock,
.link = mdc_link,
.rename = mdc_rename,
.setattr = mdc_setattr,
.setxattr = mdc_setxattr,
.getxattr = mdc_getxattr,
.sync = mdc_sync,
.read_page = mdc_read_page,
.unlink = mdc_unlink,
.cancel_unused = mdc_cancel_unused,
.init_ea_size = mdc_init_ea_size,
.set_lock_data = mdc_set_lock_data,
.lock_match = mdc_lock_match,
.get_lustre_md = mdc_get_lustre_md,
.free_lustre_md = mdc_free_lustre_md,
.set_open_replay_data = mdc_set_open_replay_data,
.clear_open_replay_data = mdc_clear_open_replay_data,
.intent_getattr_async = mdc_intent_getattr_async,
.revalidate_lock = mdc_revalidate_lock
};
static int __init mdc_init(void)
{
struct lprocfs_static_vars lvars = { NULL };
lprocfs_mdc_init_vars(&lvars);
return class_register_type(&mdc_obd_ops, &mdc_md_ops,
LUSTRE_MDC_NAME, NULL);
}
static void /*__exit*/ mdc_exit(void)
{
class_unregister_type(LUSTRE_MDC_NAME);
}
MODULE_AUTHOR("OpenSFS, Inc. <http://www.lustre.org/>");
MODULE_DESCRIPTION("Lustre Metadata Client");
MODULE_VERSION(LUSTRE_VERSION_STRING);
MODULE_LICENSE("GPL");
module_init(mdc_init);
module_exit(mdc_exit);