blob: 8c51d51a678b2d41ff661b0a369de144c3f63b13 [file] [log] [blame]
/*
* GPL HEADER START
*
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License version 2 only,
* as published by the Free Software Foundation.
*
* This program is distributed in the hope that it will be useful, but
* WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* General Public License version 2 for more details (a copy is included
* in the LICENSE file that accompanied this code).
*
* You should have received a copy of the GNU General Public License
* version 2 along with this program; If not, see
* http://www.gnu.org/licenses/gpl-2.0.html
*
* GPL HEADER END
*/
/*
* Copyright (c) 2002, 2010, Oracle and/or its affiliates. All rights reserved.
* Use is subject to license terms.
*
* Copyright (c) 2011, 2015, Intel Corporation.
*/
/*
* This file is part of Lustre, http://www.lustre.org/
* Lustre is a trademark of Sun Microsystems, Inc.
*/
/** Implementation of client-side PortalRPC interfaces */
#define DEBUG_SUBSYSTEM S_RPC
#include "../include/obd_support.h"
#include "../include/obd_class.h"
#include "../include/lustre_lib.h"
#include "../include/lustre_ha.h"
#include "../include/lustre_import.h"
#include "../include/lustre_req_layout.h"
#include "ptlrpc_internal.h"
static int ptlrpc_send_new_req(struct ptlrpc_request *req);
static int ptlrpcd_check_work(struct ptlrpc_request *req);
static int ptlrpc_unregister_reply(struct ptlrpc_request *request, int async);
/**
* Initialize passed in client structure \a cl.
*/
void ptlrpc_init_client(int req_portal, int rep_portal, char *name,
struct ptlrpc_client *cl)
{
cl->cli_request_portal = req_portal;
cl->cli_reply_portal = rep_portal;
cl->cli_name = name;
}
EXPORT_SYMBOL(ptlrpc_init_client);
/**
* Return PortalRPC connection for remote uud \a uuid
*/
struct ptlrpc_connection *ptlrpc_uuid_to_connection(struct obd_uuid *uuid)
{
struct ptlrpc_connection *c;
lnet_nid_t self;
lnet_process_id_t peer;
int err;
/*
* ptlrpc_uuid_to_peer() initializes its 2nd parameter
* before accessing its values.
* coverity[uninit_use_in_call]
*/
err = ptlrpc_uuid_to_peer(uuid, &peer, &self);
if (err != 0) {
CNETERR("cannot find peer %s!\n", uuid->uuid);
return NULL;
}
c = ptlrpc_connection_get(peer, self, uuid);
if (c) {
memcpy(c->c_remote_uuid.uuid,
uuid->uuid, sizeof(c->c_remote_uuid.uuid));
}
CDEBUG(D_INFO, "%s -> %p\n", uuid->uuid, c);
return c;
}
/**
* Allocate and initialize new bulk descriptor on the sender.
* Returns pointer to the descriptor or NULL on error.
*/
struct ptlrpc_bulk_desc *ptlrpc_new_bulk(unsigned npages, unsigned max_brw,
unsigned type, unsigned portal)
{
struct ptlrpc_bulk_desc *desc;
int i;
desc = kzalloc(offsetof(struct ptlrpc_bulk_desc, bd_iov[npages]),
GFP_NOFS);
if (!desc)
return NULL;
spin_lock_init(&desc->bd_lock);
init_waitqueue_head(&desc->bd_waitq);
desc->bd_max_iov = npages;
desc->bd_iov_count = 0;
desc->bd_portal = portal;
desc->bd_type = type;
desc->bd_md_count = 0;
LASSERT(max_brw > 0);
desc->bd_md_max_brw = min(max_brw, PTLRPC_BULK_OPS_COUNT);
/*
* PTLRPC_BULK_OPS_COUNT is the compile-time transfer limit for this
* node. Negotiated ocd_brw_size will always be <= this number.
*/
for (i = 0; i < PTLRPC_BULK_OPS_COUNT; i++)
LNetInvalidateHandle(&desc->bd_mds[i]);
return desc;
}
/**
* Prepare bulk descriptor for specified outgoing request \a req that
* can fit \a npages * pages. \a type is bulk type. \a portal is where
* the bulk to be sent. Used on client-side.
* Returns pointer to newly allocated initialized bulk descriptor or NULL on
* error.
*/
struct ptlrpc_bulk_desc *ptlrpc_prep_bulk_imp(struct ptlrpc_request *req,
unsigned npages, unsigned max_brw,
unsigned type, unsigned portal)
{
struct obd_import *imp = req->rq_import;
struct ptlrpc_bulk_desc *desc;
LASSERT(type == BULK_PUT_SINK || type == BULK_GET_SOURCE);
desc = ptlrpc_new_bulk(npages, max_brw, type, portal);
if (!desc)
return NULL;
desc->bd_import_generation = req->rq_import_generation;
desc->bd_import = class_import_get(imp);
desc->bd_req = req;
desc->bd_cbid.cbid_fn = client_bulk_callback;
desc->bd_cbid.cbid_arg = desc;
/* This makes req own desc, and free it when she frees herself */
req->rq_bulk = desc;
return desc;
}
EXPORT_SYMBOL(ptlrpc_prep_bulk_imp);
/**
* Add a page \a page to the bulk descriptor \a desc.
* Data to transfer in the page starts at offset \a pageoffset and
* amount of data to transfer from the page is \a len
*/
void __ptlrpc_prep_bulk_page(struct ptlrpc_bulk_desc *desc,
struct page *page, int pageoffset, int len, int pin)
{
LASSERT(desc->bd_iov_count < desc->bd_max_iov);
LASSERT(page);
LASSERT(pageoffset >= 0);
LASSERT(len > 0);
LASSERT(pageoffset + len <= PAGE_SIZE);
desc->bd_nob += len;
if (pin)
get_page(page);
ptlrpc_add_bulk_page(desc, page, pageoffset, len);
}
EXPORT_SYMBOL(__ptlrpc_prep_bulk_page);
/**
* Uninitialize and free bulk descriptor \a desc.
* Works on bulk descriptors both from server and client side.
*/
void __ptlrpc_free_bulk(struct ptlrpc_bulk_desc *desc, int unpin)
{
int i;
LASSERT(desc->bd_iov_count != LI_POISON); /* not freed already */
LASSERT(desc->bd_md_count == 0); /* network hands off */
LASSERT((desc->bd_export != NULL) ^ (desc->bd_import != NULL));
sptlrpc_enc_pool_put_pages(desc);
if (desc->bd_export)
class_export_put(desc->bd_export);
else
class_import_put(desc->bd_import);
if (unpin) {
for (i = 0; i < desc->bd_iov_count; i++)
put_page(desc->bd_iov[i].bv_page);
}
kfree(desc);
}
EXPORT_SYMBOL(__ptlrpc_free_bulk);
/**
* Set server timelimit for this req, i.e. how long are we willing to wait
* for reply before timing out this request.
*/
void ptlrpc_at_set_req_timeout(struct ptlrpc_request *req)
{
__u32 serv_est;
int idx;
struct imp_at *at;
LASSERT(req->rq_import);
if (AT_OFF) {
/*
* non-AT settings
*
* \a imp_server_timeout means this is reverse import and
* we send (currently only) ASTs to the client and cannot afford
* to wait too long for the reply, otherwise the other client
* (because of which we are sending this request) would
* timeout waiting for us
*/
req->rq_timeout = req->rq_import->imp_server_timeout ?
obd_timeout / 2 : obd_timeout;
} else {
at = &req->rq_import->imp_at;
idx = import_at_get_index(req->rq_import,
req->rq_request_portal);
serv_est = at_get(&at->iat_service_estimate[idx]);
req->rq_timeout = at_est2timeout(serv_est);
}
/*
* We could get even fancier here, using history to predict increased
* loading...
*/
/*
* Let the server know what this RPC timeout is by putting it in the
* reqmsg
*/
lustre_msg_set_timeout(req->rq_reqmsg, req->rq_timeout);
}
EXPORT_SYMBOL(ptlrpc_at_set_req_timeout);
/* Adjust max service estimate based on server value */
static void ptlrpc_at_adj_service(struct ptlrpc_request *req,
unsigned int serv_est)
{
int idx;
unsigned int oldse;
struct imp_at *at;
LASSERT(req->rq_import);
at = &req->rq_import->imp_at;
idx = import_at_get_index(req->rq_import, req->rq_request_portal);
/*
* max service estimates are tracked on the server side,
* so just keep minimal history here
*/
oldse = at_measured(&at->iat_service_estimate[idx], serv_est);
if (oldse != 0)
CDEBUG(D_ADAPTTO, "The RPC service estimate for %s ptl %d has changed from %d to %d\n",
req->rq_import->imp_obd->obd_name, req->rq_request_portal,
oldse, at_get(&at->iat_service_estimate[idx]));
}
/* Expected network latency per remote node (secs) */
int ptlrpc_at_get_net_latency(struct ptlrpc_request *req)
{
return AT_OFF ? 0 : at_get(&req->rq_import->imp_at.iat_net_latency);
}
/* Adjust expected network latency */
void ptlrpc_at_adj_net_latency(struct ptlrpc_request *req,
unsigned int service_time)
{
unsigned int nl, oldnl;
struct imp_at *at;
time64_t now = ktime_get_real_seconds();
LASSERT(req->rq_import);
if (service_time > now - req->rq_sent + 3) {
/*
* bz16408, however, this can also happen if early reply
* is lost and client RPC is expired and resent, early reply
* or reply of original RPC can still be fit in reply buffer
* of resent RPC, now client is measuring time from the
* resent time, but server sent back service time of original
* RPC.
*/
CDEBUG((lustre_msg_get_flags(req->rq_reqmsg) & MSG_RESENT) ?
D_ADAPTTO : D_WARNING,
"Reported service time %u > total measured time "
CFS_DURATION_T"\n", service_time,
(long)(now - req->rq_sent));
return;
}
/* Network latency is total time less server processing time */
nl = max_t(int, now - req->rq_sent -
service_time, 0) + 1; /* st rounding */
at = &req->rq_import->imp_at;
oldnl = at_measured(&at->iat_net_latency, nl);
if (oldnl != 0)
CDEBUG(D_ADAPTTO, "The network latency for %s (nid %s) has changed from %d to %d\n",
req->rq_import->imp_obd->obd_name,
obd_uuid2str(
&req->rq_import->imp_connection->c_remote_uuid),
oldnl, at_get(&at->iat_net_latency));
}
static int unpack_reply(struct ptlrpc_request *req)
{
int rc;
if (SPTLRPC_FLVR_POLICY(req->rq_flvr.sf_rpc) != SPTLRPC_POLICY_NULL) {
rc = ptlrpc_unpack_rep_msg(req, req->rq_replen);
if (rc) {
DEBUG_REQ(D_ERROR, req, "unpack_rep failed: %d", rc);
return -EPROTO;
}
}
rc = lustre_unpack_rep_ptlrpc_body(req, MSG_PTLRPC_BODY_OFF);
if (rc) {
DEBUG_REQ(D_ERROR, req, "unpack ptlrpc body failed: %d", rc);
return -EPROTO;
}
return 0;
}
/**
* Handle an early reply message, called with the rq_lock held.
* If anything goes wrong just ignore it - same as if it never happened
*/
static int ptlrpc_at_recv_early_reply(struct ptlrpc_request *req)
__must_hold(&req->rq_lock)
{
struct ptlrpc_request *early_req;
time64_t olddl;
int rc;
req->rq_early = 0;
spin_unlock(&req->rq_lock);
rc = sptlrpc_cli_unwrap_early_reply(req, &early_req);
if (rc) {
spin_lock(&req->rq_lock);
return rc;
}
rc = unpack_reply(early_req);
if (rc) {
sptlrpc_cli_finish_early_reply(early_req);
spin_lock(&req->rq_lock);
return rc;
}
/*
* Use new timeout value just to adjust the local value for this
* request, don't include it into at_history. It is unclear yet why
* service time increased and should it be counted or skipped, e.g.
* that can be recovery case or some error or server, the real reply
* will add all new data if it is worth to add.
*/
req->rq_timeout = lustre_msg_get_timeout(early_req->rq_repmsg);
lustre_msg_set_timeout(req->rq_reqmsg, req->rq_timeout);
/* Network latency can be adjusted, it is pure network delays */
ptlrpc_at_adj_net_latency(req,
lustre_msg_get_service_time(early_req->rq_repmsg));
sptlrpc_cli_finish_early_reply(early_req);
spin_lock(&req->rq_lock);
olddl = req->rq_deadline;
/*
* server assumes it now has rq_timeout from when the request
* arrived, so the client should give it at least that long.
* since we don't know the arrival time we'll use the original
* sent time
*/
req->rq_deadline = req->rq_sent + req->rq_timeout +
ptlrpc_at_get_net_latency(req);
DEBUG_REQ(D_ADAPTTO, req,
"Early reply #%d, new deadline in %lds (%lds)",
req->rq_early_count,
(long)(req->rq_deadline - ktime_get_real_seconds()),
(long)(req->rq_deadline - olddl));
return rc;
}
static struct kmem_cache *request_cache;
int ptlrpc_request_cache_init(void)
{
request_cache = kmem_cache_create("ptlrpc_cache",
sizeof(struct ptlrpc_request),
0, SLAB_HWCACHE_ALIGN, NULL);
return !request_cache ? -ENOMEM : 0;
}
void ptlrpc_request_cache_fini(void)
{
kmem_cache_destroy(request_cache);
}
struct ptlrpc_request *ptlrpc_request_cache_alloc(gfp_t flags)
{
struct ptlrpc_request *req;
req = kmem_cache_zalloc(request_cache, flags);
return req;
}
void ptlrpc_request_cache_free(struct ptlrpc_request *req)
{
kmem_cache_free(request_cache, req);
}
/**
* Wind down request pool \a pool.
* Frees all requests from the pool too
*/
void ptlrpc_free_rq_pool(struct ptlrpc_request_pool *pool)
{
struct list_head *l, *tmp;
struct ptlrpc_request *req;
spin_lock(&pool->prp_lock);
list_for_each_safe(l, tmp, &pool->prp_req_list) {
req = list_entry(l, struct ptlrpc_request, rq_list);
list_del(&req->rq_list);
LASSERT(req->rq_reqbuf);
LASSERT(req->rq_reqbuf_len == pool->prp_rq_size);
kvfree(req->rq_reqbuf);
ptlrpc_request_cache_free(req);
}
spin_unlock(&pool->prp_lock);
kfree(pool);
}
EXPORT_SYMBOL(ptlrpc_free_rq_pool);
/**
* Allocates, initializes and adds \a num_rq requests to the pool \a pool
*/
int ptlrpc_add_rqs_to_pool(struct ptlrpc_request_pool *pool, int num_rq)
{
int i;
int size = 1;
while (size < pool->prp_rq_size)
size <<= 1;
LASSERTF(list_empty(&pool->prp_req_list) ||
size == pool->prp_rq_size,
"Trying to change pool size with nonempty pool from %d to %d bytes\n",
pool->prp_rq_size, size);
spin_lock(&pool->prp_lock);
pool->prp_rq_size = size;
for (i = 0; i < num_rq; i++) {
struct ptlrpc_request *req;
struct lustre_msg *msg;
spin_unlock(&pool->prp_lock);
req = ptlrpc_request_cache_alloc(GFP_NOFS);
if (!req)
return i;
msg = libcfs_kvzalloc(size, GFP_NOFS);
if (!msg) {
ptlrpc_request_cache_free(req);
return i;
}
req->rq_reqbuf = msg;
req->rq_reqbuf_len = size;
req->rq_pool = pool;
spin_lock(&pool->prp_lock);
list_add_tail(&req->rq_list, &pool->prp_req_list);
}
spin_unlock(&pool->prp_lock);
return num_rq;
}
EXPORT_SYMBOL(ptlrpc_add_rqs_to_pool);
/**
* Create and initialize new request pool with given attributes:
* \a num_rq - initial number of requests to create for the pool
* \a msgsize - maximum message size possible for requests in thid pool
* \a populate_pool - function to be called when more requests need to be added
* to the pool
* Returns pointer to newly created pool or NULL on error.
*/
struct ptlrpc_request_pool *
ptlrpc_init_rq_pool(int num_rq, int msgsize,
int (*populate_pool)(struct ptlrpc_request_pool *, int))
{
struct ptlrpc_request_pool *pool;
pool = kzalloc(sizeof(struct ptlrpc_request_pool), GFP_NOFS);
if (!pool)
return NULL;
/*
* Request next power of two for the allocation, because internally
* kernel would do exactly this
*/
spin_lock_init(&pool->prp_lock);
INIT_LIST_HEAD(&pool->prp_req_list);
pool->prp_rq_size = msgsize + SPTLRPC_MAX_PAYLOAD;
pool->prp_populate = populate_pool;
populate_pool(pool, num_rq);
return pool;
}
EXPORT_SYMBOL(ptlrpc_init_rq_pool);
/**
* Fetches one request from pool \a pool
*/
static struct ptlrpc_request *
ptlrpc_prep_req_from_pool(struct ptlrpc_request_pool *pool)
{
struct ptlrpc_request *request;
struct lustre_msg *reqbuf;
if (!pool)
return NULL;
spin_lock(&pool->prp_lock);
/*
* See if we have anything in a pool, and bail out if nothing,
* in writeout path, where this matters, this is safe to do, because
* nothing is lost in this case, and when some in-flight requests
* complete, this code will be called again.
*/
if (unlikely(list_empty(&pool->prp_req_list))) {
spin_unlock(&pool->prp_lock);
return NULL;
}
request = list_entry(pool->prp_req_list.next, struct ptlrpc_request,
rq_list);
list_del_init(&request->rq_list);
spin_unlock(&pool->prp_lock);
LASSERT(request->rq_reqbuf);
LASSERT(request->rq_pool);
reqbuf = request->rq_reqbuf;
memset(request, 0, sizeof(*request));
request->rq_reqbuf = reqbuf;
request->rq_reqbuf_len = pool->prp_rq_size;
request->rq_pool = pool;
return request;
}
/**
* Returns freed \a request to pool.
*/
static void __ptlrpc_free_req_to_pool(struct ptlrpc_request *request)
{
struct ptlrpc_request_pool *pool = request->rq_pool;
spin_lock(&pool->prp_lock);
LASSERT(list_empty(&request->rq_list));
LASSERT(!request->rq_receiving_reply);
list_add_tail(&request->rq_list, &pool->prp_req_list);
spin_unlock(&pool->prp_lock);
}
int ptlrpc_request_bufs_pack(struct ptlrpc_request *request,
__u32 version, int opcode, char **bufs,
struct ptlrpc_cli_ctx *ctx)
{
int count;
struct obd_import *imp;
__u32 *lengths;
int rc;
count = req_capsule_filled_sizes(&request->rq_pill, RCL_CLIENT);
imp = request->rq_import;
lengths = request->rq_pill.rc_area[RCL_CLIENT];
if (unlikely(ctx)) {
request->rq_cli_ctx = sptlrpc_cli_ctx_get(ctx);
} else {
rc = sptlrpc_req_get_ctx(request);
if (rc)
goto out_free;
}
sptlrpc_req_set_flavor(request, opcode);
rc = lustre_pack_request(request, imp->imp_msg_magic, count,
lengths, bufs);
if (rc)
goto out_ctx;
lustre_msg_add_version(request->rq_reqmsg, version);
request->rq_send_state = LUSTRE_IMP_FULL;
request->rq_type = PTL_RPC_MSG_REQUEST;
request->rq_req_cbid.cbid_fn = request_out_callback;
request->rq_req_cbid.cbid_arg = request;
request->rq_reply_cbid.cbid_fn = reply_in_callback;
request->rq_reply_cbid.cbid_arg = request;
request->rq_reply_deadline = 0;
request->rq_bulk_deadline = 0;
request->rq_req_deadline = 0;
request->rq_phase = RQ_PHASE_NEW;
request->rq_next_phase = RQ_PHASE_UNDEFINED;
request->rq_request_portal = imp->imp_client->cli_request_portal;
request->rq_reply_portal = imp->imp_client->cli_reply_portal;
ptlrpc_at_set_req_timeout(request);
request->rq_xid = ptlrpc_next_xid();
lustre_msg_set_opc(request->rq_reqmsg, opcode);
/* Let's setup deadline for req/reply/bulk unlink for opcode. */
if (cfs_fail_val == opcode) {
time_t *fail_t = NULL, *fail2_t = NULL;
if (CFS_FAIL_CHECK(OBD_FAIL_PTLRPC_LONG_BULK_UNLINK)) {
fail_t = &request->rq_bulk_deadline;
} else if (CFS_FAIL_CHECK(OBD_FAIL_PTLRPC_LONG_REPL_UNLINK)) {
fail_t = &request->rq_reply_deadline;
} else if (CFS_FAIL_CHECK(OBD_FAIL_PTLRPC_LONG_REQ_UNLINK)) {
fail_t = &request->rq_req_deadline;
} else if (CFS_FAIL_CHECK(OBD_FAIL_PTLRPC_LONG_BOTH_UNLINK)) {
fail_t = &request->rq_reply_deadline;
fail2_t = &request->rq_bulk_deadline;
}
if (fail_t) {
*fail_t = ktime_get_real_seconds() + LONG_UNLINK;
if (fail2_t)
*fail2_t = ktime_get_real_seconds() +
LONG_UNLINK;
/* The RPC is infected, let the test change the
* fail_loc
*/
set_current_state(TASK_UNINTERRUPTIBLE);
schedule_timeout(cfs_time_seconds(2));
set_current_state(TASK_RUNNING);
}
}
return 0;
out_ctx:
LASSERT(!request->rq_pool);
sptlrpc_cli_ctx_put(request->rq_cli_ctx, 1);
out_free:
class_import_put(imp);
return rc;
}
EXPORT_SYMBOL(ptlrpc_request_bufs_pack);
/**
* Pack request buffers for network transfer, performing necessary encryption
* steps if necessary.
*/
int ptlrpc_request_pack(struct ptlrpc_request *request,
__u32 version, int opcode)
{
int rc;
rc = ptlrpc_request_bufs_pack(request, version, opcode, NULL, NULL);
if (rc)
return rc;
/*
* For some old 1.8 clients (< 1.8.7), they will LASSERT the size of
* ptlrpc_body sent from server equal to local ptlrpc_body size, so we
* have to send old ptlrpc_body to keep interoperability with these
* clients.
*
* Only three kinds of server->client RPCs so far:
* - LDLM_BL_CALLBACK
* - LDLM_CP_CALLBACK
* - LDLM_GL_CALLBACK
*
* XXX This should be removed whenever we drop the interoperability with
* the these old clients.
*/
if (opcode == LDLM_BL_CALLBACK || opcode == LDLM_CP_CALLBACK ||
opcode == LDLM_GL_CALLBACK)
req_capsule_shrink(&request->rq_pill, &RMF_PTLRPC_BODY,
sizeof(struct ptlrpc_body_v2), RCL_CLIENT);
return rc;
}
EXPORT_SYMBOL(ptlrpc_request_pack);
/**
* Helper function to allocate new request on import \a imp
* and possibly using existing request from pool \a pool if provided.
* Returns allocated request structure with import field filled or
* NULL on error.
*/
static inline
struct ptlrpc_request *__ptlrpc_request_alloc(struct obd_import *imp,
struct ptlrpc_request_pool *pool)
{
struct ptlrpc_request *request;
request = ptlrpc_request_cache_alloc(GFP_NOFS);
if (!request && pool)
request = ptlrpc_prep_req_from_pool(pool);
if (request) {
ptlrpc_cli_req_init(request);
LASSERTF((unsigned long)imp > 0x1000, "%p", imp);
LASSERT(imp != LP_POISON);
LASSERTF((unsigned long)imp->imp_client > 0x1000, "%p\n",
imp->imp_client);
LASSERT(imp->imp_client != LP_POISON);
request->rq_import = class_import_get(imp);
} else {
CERROR("request allocation out of memory\n");
}
return request;
}
/**
* Helper function for creating a request.
* Calls __ptlrpc_request_alloc to allocate new request structure and inits
* buffer structures according to capsule template \a format.
* Returns allocated request structure pointer or NULL on error.
*/
static struct ptlrpc_request *
ptlrpc_request_alloc_internal(struct obd_import *imp,
struct ptlrpc_request_pool *pool,
const struct req_format *format)
{
struct ptlrpc_request *request;
request = __ptlrpc_request_alloc(imp, pool);
if (!request)
return NULL;
req_capsule_init(&request->rq_pill, request, RCL_CLIENT);
req_capsule_set(&request->rq_pill, format);
return request;
}
/**
* Allocate new request structure for import \a imp and initialize its
* buffer structure according to capsule template \a format.
*/
struct ptlrpc_request *ptlrpc_request_alloc(struct obd_import *imp,
const struct req_format *format)
{
return ptlrpc_request_alloc_internal(imp, NULL, format);
}
EXPORT_SYMBOL(ptlrpc_request_alloc);
/**
* Allocate new request structure for import \a imp from pool \a pool and
* initialize its buffer structure according to capsule template \a format.
*/
struct ptlrpc_request *ptlrpc_request_alloc_pool(struct obd_import *imp,
struct ptlrpc_request_pool *pool,
const struct req_format *format)
{
return ptlrpc_request_alloc_internal(imp, pool, format);
}
EXPORT_SYMBOL(ptlrpc_request_alloc_pool);
/**
* For requests not from pool, free memory of the request structure.
* For requests obtained from a pool earlier, return request back to pool.
*/
void ptlrpc_request_free(struct ptlrpc_request *request)
{
if (request->rq_pool)
__ptlrpc_free_req_to_pool(request);
else
ptlrpc_request_cache_free(request);
}
EXPORT_SYMBOL(ptlrpc_request_free);
/**
* Allocate new request for operation \a opcode and immediately pack it for
* network transfer.
* Only used for simple requests like OBD_PING where the only important
* part of the request is operation itself.
* Returns allocated request or NULL on error.
*/
struct ptlrpc_request *ptlrpc_request_alloc_pack(struct obd_import *imp,
const struct req_format *format,
__u32 version, int opcode)
{
struct ptlrpc_request *req = ptlrpc_request_alloc(imp, format);
int rc;
if (req) {
rc = ptlrpc_request_pack(req, version, opcode);
if (rc) {
ptlrpc_request_free(req);
req = NULL;
}
}
return req;
}
EXPORT_SYMBOL(ptlrpc_request_alloc_pack);
/**
* Allocate and initialize new request set structure on the current CPT.
* Returns a pointer to the newly allocated set structure or NULL on error.
*/
struct ptlrpc_request_set *ptlrpc_prep_set(void)
{
struct ptlrpc_request_set *set;
int cpt;
cpt = cfs_cpt_current(cfs_cpt_table, 0);
set = kzalloc_node(sizeof(*set), GFP_NOFS,
cfs_cpt_spread_node(cfs_cpt_table, cpt));
if (!set)
return NULL;
atomic_set(&set->set_refcount, 1);
INIT_LIST_HEAD(&set->set_requests);
init_waitqueue_head(&set->set_waitq);
atomic_set(&set->set_new_count, 0);
atomic_set(&set->set_remaining, 0);
spin_lock_init(&set->set_new_req_lock);
INIT_LIST_HEAD(&set->set_new_requests);
INIT_LIST_HEAD(&set->set_cblist);
set->set_max_inflight = UINT_MAX;
set->set_producer = NULL;
set->set_producer_arg = NULL;
set->set_rc = 0;
return set;
}
EXPORT_SYMBOL(ptlrpc_prep_set);
/**
* Allocate and initialize new request set structure with flow control
* extension. This extension allows to control the number of requests in-flight
* for the whole set. A callback function to generate requests must be provided
* and the request set will keep the number of requests sent over the wire to
* @max_inflight.
* Returns a pointer to the newly allocated set structure or NULL on error.
*/
struct ptlrpc_request_set *ptlrpc_prep_fcset(int max, set_producer_func func,
void *arg)
{
struct ptlrpc_request_set *set;
set = ptlrpc_prep_set();
if (!set)
return NULL;
set->set_max_inflight = max;
set->set_producer = func;
set->set_producer_arg = arg;
return set;
}
/**
* Wind down and free request set structure previously allocated with
* ptlrpc_prep_set.
* Ensures that all requests on the set have completed and removes
* all requests from the request list in a set.
* If any unsent request happen to be on the list, pretends that they got
* an error in flight and calls their completion handler.
*/
void ptlrpc_set_destroy(struct ptlrpc_request_set *set)
{
struct list_head *tmp;
struct list_head *next;
int expected_phase;
int n = 0;
/* Requests on the set should either all be completed, or all be new */
expected_phase = (atomic_read(&set->set_remaining) == 0) ?
RQ_PHASE_COMPLETE : RQ_PHASE_NEW;
list_for_each(tmp, &set->set_requests) {
struct ptlrpc_request *req =
list_entry(tmp, struct ptlrpc_request, rq_set_chain);
LASSERT(req->rq_phase == expected_phase);
n++;
}
LASSERTF(atomic_read(&set->set_remaining) == 0 ||
atomic_read(&set->set_remaining) == n, "%d / %d\n",
atomic_read(&set->set_remaining), n);
list_for_each_safe(tmp, next, &set->set_requests) {
struct ptlrpc_request *req =
list_entry(tmp, struct ptlrpc_request, rq_set_chain);
list_del_init(&req->rq_set_chain);
LASSERT(req->rq_phase == expected_phase);
if (req->rq_phase == RQ_PHASE_NEW) {
ptlrpc_req_interpret(NULL, req, -EBADR);
atomic_dec(&set->set_remaining);
}
spin_lock(&req->rq_lock);
req->rq_set = NULL;
req->rq_invalid_rqset = 0;
spin_unlock(&req->rq_lock);
ptlrpc_req_finished(req);
}
LASSERT(atomic_read(&set->set_remaining) == 0);
ptlrpc_reqset_put(set);
}
EXPORT_SYMBOL(ptlrpc_set_destroy);
/**
* Add a new request to the general purpose request set.
* Assumes request reference from the caller.
*/
void ptlrpc_set_add_req(struct ptlrpc_request_set *set,
struct ptlrpc_request *req)
{
LASSERT(list_empty(&req->rq_set_chain));
/* The set takes over the caller's request reference */
list_add_tail(&req->rq_set_chain, &set->set_requests);
req->rq_set = set;
atomic_inc(&set->set_remaining);
req->rq_queued_time = cfs_time_current();
if (req->rq_reqmsg)
lustre_msg_set_jobid(req->rq_reqmsg, NULL);
if (set->set_producer)
/*
* If the request set has a producer callback, the RPC must be
* sent straight away
*/
ptlrpc_send_new_req(req);
}
EXPORT_SYMBOL(ptlrpc_set_add_req);
/**
* Add a request to a request with dedicated server thread
* and wake the thread to make any necessary processing.
* Currently only used for ptlrpcd.
*/
void ptlrpc_set_add_new_req(struct ptlrpcd_ctl *pc,
struct ptlrpc_request *req)
{
struct ptlrpc_request_set *set = pc->pc_set;
int count, i;
LASSERT(!req->rq_set);
LASSERT(test_bit(LIOD_STOP, &pc->pc_flags) == 0);
spin_lock(&set->set_new_req_lock);
/* The set takes over the caller's request reference. */
req->rq_set = set;
req->rq_queued_time = cfs_time_current();
list_add_tail(&req->rq_set_chain, &set->set_new_requests);
count = atomic_inc_return(&set->set_new_count);
spin_unlock(&set->set_new_req_lock);
/* Only need to call wakeup once for the first entry. */
if (count == 1) {
wake_up(&set->set_waitq);
/*
* XXX: It maybe unnecessary to wakeup all the partners. But to
* guarantee the async RPC can be processed ASAP, we have
* no other better choice. It maybe fixed in future.
*/
for (i = 0; i < pc->pc_npartners; i++)
wake_up(&pc->pc_partners[i]->pc_set->set_waitq);
}
}
/**
* Based on the current state of the import, determine if the request
* can be sent, is an error, or should be delayed.
*
* Returns true if this request should be delayed. If false, and
* *status is set, then the request can not be sent and *status is the
* error code. If false and status is 0, then request can be sent.
*
* The imp->imp_lock must be held.
*/
static int ptlrpc_import_delay_req(struct obd_import *imp,
struct ptlrpc_request *req, int *status)
{
int delay = 0;
*status = 0;
if (req->rq_ctx_init || req->rq_ctx_fini) {
/* always allow ctx init/fini rpc go through */
} else if (imp->imp_state == LUSTRE_IMP_NEW) {
DEBUG_REQ(D_ERROR, req, "Uninitialized import.");
*status = -EIO;
} else if (imp->imp_state == LUSTRE_IMP_CLOSED) {
/* pings may safely race with umount */
DEBUG_REQ(lustre_msg_get_opc(req->rq_reqmsg) == OBD_PING ?
D_HA : D_ERROR, req, "IMP_CLOSED ");
*status = -EIO;
} else if (ptlrpc_send_limit_expired(req)) {
/* probably doesn't need to be a D_ERROR after initial testing */
DEBUG_REQ(D_HA, req, "send limit expired ");
*status = -ETIMEDOUT;
} else if (req->rq_send_state == LUSTRE_IMP_CONNECTING &&
imp->imp_state == LUSTRE_IMP_CONNECTING) {
/* allow CONNECT even if import is invalid */
if (atomic_read(&imp->imp_inval_count) != 0) {
DEBUG_REQ(D_ERROR, req, "invalidate in flight");
*status = -EIO;
}
} else if (imp->imp_invalid || imp->imp_obd->obd_no_recov) {
if (!imp->imp_deactive)
DEBUG_REQ(D_NET, req, "IMP_INVALID");
*status = -ESHUTDOWN; /* bz 12940 */
} else if (req->rq_import_generation != imp->imp_generation) {
DEBUG_REQ(D_ERROR, req, "req wrong generation:");
*status = -EIO;
} else if (req->rq_send_state != imp->imp_state) {
/* invalidate in progress - any requests should be drop */
if (atomic_read(&imp->imp_inval_count) != 0) {
DEBUG_REQ(D_ERROR, req, "invalidate in flight");
*status = -EIO;
} else if (imp->imp_dlm_fake || req->rq_no_delay) {
*status = -EWOULDBLOCK;
} else if (req->rq_allow_replay &&
(imp->imp_state == LUSTRE_IMP_REPLAY ||
imp->imp_state == LUSTRE_IMP_REPLAY_LOCKS ||
imp->imp_state == LUSTRE_IMP_REPLAY_WAIT ||
imp->imp_state == LUSTRE_IMP_RECOVER)) {
DEBUG_REQ(D_HA, req, "allow during recovery.\n");
} else {
delay = 1;
}
}
return delay;
}
/**
* Decide if the error message should be printed to the console or not.
* Makes its decision based on request type, status, and failure frequency.
*
* \param[in] req request that failed and may need a console message
*
* \retval false if no message should be printed
* \retval true if console message should be printed
*/
static bool ptlrpc_console_allow(struct ptlrpc_request *req)
{
__u32 opc;
LASSERT(req->rq_reqmsg);
opc = lustre_msg_get_opc(req->rq_reqmsg);
/* Suppress particular reconnect errors which are to be expected. */
if (opc == OST_CONNECT || opc == MDS_CONNECT || opc == MGS_CONNECT) {
int err;
/* Suppress timed out reconnect requests */
if (lustre_handle_is_used(&req->rq_import->imp_remote_handle) ||
req->rq_timedout)
return false;
/*
* Suppress most unavailable/again reconnect requests, but
* print occasionally so it is clear client is trying to
* connect to a server where no target is running.
*/
err = lustre_msg_get_status(req->rq_repmsg);
if ((err == -ENODEV || err == -EAGAIN) &&
req->rq_import->imp_conn_cnt % 30 != 20)
return false;
}
return true;
}
/**
* Check request processing status.
* Returns the status.
*/
static int ptlrpc_check_status(struct ptlrpc_request *req)
{
int err;
err = lustre_msg_get_status(req->rq_repmsg);
if (lustre_msg_get_type(req->rq_repmsg) == PTL_RPC_MSG_ERR) {
struct obd_import *imp = req->rq_import;
lnet_nid_t nid = imp->imp_connection->c_peer.nid;
__u32 opc = lustre_msg_get_opc(req->rq_reqmsg);
if (ptlrpc_console_allow(req))
LCONSOLE_ERROR_MSG(0x011, "%s: operation %s to node %s failed: rc = %d\n",
imp->imp_obd->obd_name,
ll_opcode2str(opc),
libcfs_nid2str(nid), err);
return err < 0 ? err : -EINVAL;
}
if (err < 0)
DEBUG_REQ(D_INFO, req, "status is %d", err);
else if (err > 0)
/* XXX: translate this error from net to host */
DEBUG_REQ(D_INFO, req, "status is %d", err);
return err;
}
/**
* save pre-versions of objects into request for replay.
* Versions are obtained from server reply.
* used for VBR.
*/
static void ptlrpc_save_versions(struct ptlrpc_request *req)
{
struct lustre_msg *repmsg = req->rq_repmsg;
struct lustre_msg *reqmsg = req->rq_reqmsg;
__u64 *versions = lustre_msg_get_versions(repmsg);
if (lustre_msg_get_flags(req->rq_reqmsg) & MSG_REPLAY)
return;
LASSERT(versions);
lustre_msg_set_versions(reqmsg, versions);
CDEBUG(D_INFO, "Client save versions [%#llx/%#llx]\n",
versions[0], versions[1]);
}
/**
* Callback function called when client receives RPC reply for \a req.
* Returns 0 on success or error code.
* The return value would be assigned to req->rq_status by the caller
* as request processing status.
* This function also decides if the request needs to be saved for later replay.
*/
static int after_reply(struct ptlrpc_request *req)
{
struct obd_import *imp = req->rq_import;
struct obd_device *obd = req->rq_import->imp_obd;
int rc;
struct timespec64 work_start;
long timediff;
LASSERT(obd);
/* repbuf must be unlinked */
LASSERT(!req->rq_receiving_reply && req->rq_reply_unlinked);
if (req->rq_reply_truncated) {
if (ptlrpc_no_resend(req)) {
DEBUG_REQ(D_ERROR, req, "reply buffer overflow, expected: %d, actual size: %d",
req->rq_nob_received, req->rq_repbuf_len);
return -EOVERFLOW;
}
sptlrpc_cli_free_repbuf(req);
/*
* Pass the required reply buffer size (include space for early
* reply). NB: no need to round up because alloc_repbuf will
* round it up
*/
req->rq_replen = req->rq_nob_received;
req->rq_nob_received = 0;
spin_lock(&req->rq_lock);
req->rq_resend = 1;
spin_unlock(&req->rq_lock);
return 0;
}
/*
* NB Until this point, the whole of the incoming message,
* including buflens, status etc is in the sender's byte order.
*/
rc = sptlrpc_cli_unwrap_reply(req);
if (rc) {
DEBUG_REQ(D_ERROR, req, "unwrap reply failed (%d):", rc);
return rc;
}
/* Security layer unwrap might ask resend this request. */
if (req->rq_resend)
return 0;
rc = unpack_reply(req);
if (rc)
return rc;
/* retry indefinitely on EINPROGRESS */
if (lustre_msg_get_status(req->rq_repmsg) == -EINPROGRESS &&
ptlrpc_no_resend(req) == 0 && !req->rq_no_retry_einprogress) {
time64_t now = ktime_get_real_seconds();
DEBUG_REQ(D_RPCTRACE, req, "Resending request on EINPROGRESS");
spin_lock(&req->rq_lock);
req->rq_resend = 1;
spin_unlock(&req->rq_lock);
req->rq_nr_resend++;
/* allocate new xid to avoid reply reconstruction */
if (!req->rq_bulk) {
/* new xid is already allocated for bulk in ptlrpc_check_set() */
req->rq_xid = ptlrpc_next_xid();
DEBUG_REQ(D_RPCTRACE, req, "Allocating new xid for resend on EINPROGRESS");
}
/* Readjust the timeout for current conditions */
ptlrpc_at_set_req_timeout(req);
/*
* delay resend to give a chance to the server to get ready.
* The delay is increased by 1s on every resend and is capped to
* the current request timeout (i.e. obd_timeout if AT is off,
* or AT service time x 125% + 5s, see at_est2timeout)
*/
if (req->rq_nr_resend > req->rq_timeout)
req->rq_sent = now + req->rq_timeout;
else
req->rq_sent = now + req->rq_nr_resend;
return 0;
}
ktime_get_real_ts64(&work_start);
timediff = (work_start.tv_sec - req->rq_sent_tv.tv_sec) * USEC_PER_SEC +
(work_start.tv_nsec - req->rq_sent_tv.tv_nsec) /
NSEC_PER_USEC;
if (obd->obd_svc_stats) {
lprocfs_counter_add(obd->obd_svc_stats, PTLRPC_REQWAIT_CNTR,
timediff);
ptlrpc_lprocfs_rpc_sent(req, timediff);
}
if (lustre_msg_get_type(req->rq_repmsg) != PTL_RPC_MSG_REPLY &&
lustre_msg_get_type(req->rq_repmsg) != PTL_RPC_MSG_ERR) {
DEBUG_REQ(D_ERROR, req, "invalid packet received (type=%u)",
lustre_msg_get_type(req->rq_repmsg));
return -EPROTO;
}
if (lustre_msg_get_opc(req->rq_reqmsg) != OBD_PING)
CFS_FAIL_TIMEOUT(OBD_FAIL_PTLRPC_PAUSE_REP, cfs_fail_val);
ptlrpc_at_adj_service(req, lustre_msg_get_timeout(req->rq_repmsg));
ptlrpc_at_adj_net_latency(req,
lustre_msg_get_service_time(req->rq_repmsg));
rc = ptlrpc_check_status(req);
imp->imp_connect_error = rc;
if (rc) {
/*
* Either we've been evicted, or the server has failed for
* some reason. Try to reconnect, and if that fails, punt to
* the upcall.
*/
if (ptlrpc_recoverable_error(rc)) {
if (req->rq_send_state != LUSTRE_IMP_FULL ||
imp->imp_obd->obd_no_recov || imp->imp_dlm_fake) {
return rc;
}
ptlrpc_request_handle_notconn(req);
return rc;
}
} else {
/*
* Let's look if server sent slv. Do it only for RPC with
* rc == 0.
*/
ldlm_cli_update_pool(req);
}
/* Store transno in reqmsg for replay. */
if (!(lustre_msg_get_flags(req->rq_reqmsg) & MSG_REPLAY)) {
req->rq_transno = lustre_msg_get_transno(req->rq_repmsg);
lustre_msg_set_transno(req->rq_reqmsg, req->rq_transno);
}
if (imp->imp_replayable) {
spin_lock(&imp->imp_lock);
/*
* No point in adding already-committed requests to the replay
* list, we will just remove them immediately. b=9829
*/
if (req->rq_transno != 0 &&
(req->rq_transno >
lustre_msg_get_last_committed(req->rq_repmsg) ||
req->rq_replay)) {
/* version recovery */
ptlrpc_save_versions(req);
ptlrpc_retain_replayable_request(req, imp);
} else if (req->rq_commit_cb &&
list_empty(&req->rq_replay_list)) {
/*
* NB: don't call rq_commit_cb if it's already on
* rq_replay_list, ptlrpc_free_committed() will call
* it later, see LU-3618 for details
*/
spin_unlock(&imp->imp_lock);
req->rq_commit_cb(req);
spin_lock(&imp->imp_lock);
}
/* Replay-enabled imports return commit-status information. */
if (lustre_msg_get_last_committed(req->rq_repmsg)) {
imp->imp_peer_committed_transno =
lustre_msg_get_last_committed(req->rq_repmsg);
}
ptlrpc_free_committed(imp);
if (!list_empty(&imp->imp_replay_list)) {
struct ptlrpc_request *last;
last = list_entry(imp->imp_replay_list.prev,
struct ptlrpc_request,
rq_replay_list);
/*
* Requests with rq_replay stay on the list even if no
* commit is expected.
*/
if (last->rq_transno > imp->imp_peer_committed_transno)
ptlrpc_pinger_commit_expected(imp);
}
spin_unlock(&imp->imp_lock);
}
return rc;
}
/**
* Helper function to send request \a req over the network for the first time
* Also adjusts request phase.
* Returns 0 on success or error code.
*/
static int ptlrpc_send_new_req(struct ptlrpc_request *req)
{
struct obd_import *imp = req->rq_import;
int rc;
LASSERT(req->rq_phase == RQ_PHASE_NEW);
if (req->rq_sent && (req->rq_sent > ktime_get_real_seconds()) &&
(!req->rq_generation_set ||
req->rq_import_generation == imp->imp_generation))
return 0;
ptlrpc_rqphase_move(req, RQ_PHASE_RPC);
spin_lock(&imp->imp_lock);
if (!req->rq_generation_set)
req->rq_import_generation = imp->imp_generation;
if (ptlrpc_import_delay_req(imp, req, &rc)) {
spin_lock(&req->rq_lock);
req->rq_waiting = 1;
spin_unlock(&req->rq_lock);
DEBUG_REQ(D_HA, req, "req from PID %d waiting for recovery: (%s != %s)",
lustre_msg_get_status(req->rq_reqmsg),
ptlrpc_import_state_name(req->rq_send_state),
ptlrpc_import_state_name(imp->imp_state));
LASSERT(list_empty(&req->rq_list));
list_add_tail(&req->rq_list, &imp->imp_delayed_list);
atomic_inc(&req->rq_import->imp_inflight);
spin_unlock(&imp->imp_lock);
return 0;
}
if (rc != 0) {
spin_unlock(&imp->imp_lock);
req->rq_status = rc;
ptlrpc_rqphase_move(req, RQ_PHASE_INTERPRET);
return rc;
}
LASSERT(list_empty(&req->rq_list));
list_add_tail(&req->rq_list, &imp->imp_sending_list);
atomic_inc(&req->rq_import->imp_inflight);
spin_unlock(&imp->imp_lock);
lustre_msg_set_status(req->rq_reqmsg, current_pid());
rc = sptlrpc_req_refresh_ctx(req, -1);
if (rc) {
if (req->rq_err) {
req->rq_status = rc;
return 1;
}
spin_lock(&req->rq_lock);
req->rq_wait_ctx = 1;
spin_unlock(&req->rq_lock);
return 0;
}
CDEBUG(D_RPCTRACE, "Sending RPC pname:cluuid:pid:xid:nid:opc %s:%s:%d:%llu:%s:%d\n",
current_comm(),
imp->imp_obd->obd_uuid.uuid,
lustre_msg_get_status(req->rq_reqmsg), req->rq_xid,
libcfs_nid2str(imp->imp_connection->c_peer.nid),
lustre_msg_get_opc(req->rq_reqmsg));
rc = ptl_send_rpc(req, 0);
if (rc) {
DEBUG_REQ(D_HA, req, "send failed (%d); expect timeout", rc);
spin_lock(&req->rq_lock);
req->rq_net_err = 1;
spin_unlock(&req->rq_lock);
return rc;
}
return 0;
}
static inline int ptlrpc_set_producer(struct ptlrpc_request_set *set)
{
int remaining, rc;
LASSERT(set->set_producer);
remaining = atomic_read(&set->set_remaining);
/*
* populate the ->set_requests list with requests until we
* reach the maximum number of RPCs in flight for this set
*/
while (atomic_read(&set->set_remaining) < set->set_max_inflight) {
rc = set->set_producer(set, set->set_producer_arg);
if (rc == -ENOENT) {
/* no more RPC to produce */
set->set_producer = NULL;
set->set_producer_arg = NULL;
return 0;
}
}
return (atomic_read(&set->set_remaining) - remaining);
}
/**
* this sends any unsent RPCs in \a set and returns 1 if all are sent
* and no more replies are expected.
* (it is possible to get less replies than requests sent e.g. due to timed out
* requests or requests that we had trouble to send out)
*
* NOTE: This function contains a potential schedule point (cond_resched()).
*/
int ptlrpc_check_set(const struct lu_env *env, struct ptlrpc_request_set *set)
{
struct list_head *tmp, *next;
struct list_head comp_reqs;
int force_timer_recalc = 0;
if (atomic_read(&set->set_remaining) == 0)
return 1;
INIT_LIST_HEAD(&comp_reqs);
list_for_each_safe(tmp, next, &set->set_requests) {
struct ptlrpc_request *req =
list_entry(tmp, struct ptlrpc_request, rq_set_chain);
struct obd_import *imp = req->rq_import;
int unregistered = 0;
int rc = 0;
/*
* This schedule point is mainly for the ptlrpcd caller of this
* function. Most ptlrpc sets are not long-lived and unbounded
* in length, but at the least the set used by the ptlrpcd is.
* Since the processing time is unbounded, we need to insert an
* explicit schedule point to make the thread well-behaved.
*/
cond_resched();
if (req->rq_phase == RQ_PHASE_NEW &&
ptlrpc_send_new_req(req)) {
force_timer_recalc = 1;
}
/* delayed send - skip */
if (req->rq_phase == RQ_PHASE_NEW && req->rq_sent)
continue;
/* delayed resend - skip */
if (req->rq_phase == RQ_PHASE_RPC && req->rq_resend &&
req->rq_sent > ktime_get_real_seconds())
continue;
if (!(req->rq_phase == RQ_PHASE_RPC ||
req->rq_phase == RQ_PHASE_BULK ||
req->rq_phase == RQ_PHASE_INTERPRET ||
req->rq_phase == RQ_PHASE_UNREG_RPC ||
req->rq_phase == RQ_PHASE_UNREG_BULK ||
req->rq_phase == RQ_PHASE_COMPLETE)) {
DEBUG_REQ(D_ERROR, req, "bad phase %x", req->rq_phase);
LBUG();
}
if (req->rq_phase == RQ_PHASE_UNREG_RPC ||
req->rq_phase == RQ_PHASE_UNREG_BULK) {
LASSERT(req->rq_next_phase != req->rq_phase);
LASSERT(req->rq_next_phase != RQ_PHASE_UNDEFINED);
if (req->rq_req_deadline &&
!OBD_FAIL_CHECK(OBD_FAIL_PTLRPC_LONG_REQ_UNLINK))
req->rq_req_deadline = 0;
if (req->rq_reply_deadline &&
!OBD_FAIL_CHECK(OBD_FAIL_PTLRPC_LONG_REPL_UNLINK))
req->rq_reply_deadline = 0;
if (req->rq_bulk_deadline &&
!OBD_FAIL_CHECK(OBD_FAIL_PTLRPC_LONG_BULK_UNLINK))
req->rq_bulk_deadline = 0;
/*
* Skip processing until reply is unlinked. We
* can't return to pool before that and we can't
* call interpret before that. We need to make
* sure that all rdma transfers finished and will
* not corrupt any data.
*/
if (req->rq_phase == RQ_PHASE_UNREG_RPC &&
ptlrpc_client_recv_or_unlink(req))
continue;
if (req->rq_phase == RQ_PHASE_UNREG_BULK &&
ptlrpc_client_bulk_active(req))
continue;
/*
* Turn fail_loc off to prevent it from looping
* forever.
*/
if (OBD_FAIL_CHECK(OBD_FAIL_PTLRPC_LONG_REPL_UNLINK)) {
OBD_FAIL_CHECK_ORSET(OBD_FAIL_PTLRPC_LONG_REPL_UNLINK,
OBD_FAIL_ONCE);
}
if (OBD_FAIL_CHECK(OBD_FAIL_PTLRPC_LONG_BULK_UNLINK)) {
OBD_FAIL_CHECK_ORSET(OBD_FAIL_PTLRPC_LONG_BULK_UNLINK,
OBD_FAIL_ONCE);
}
/* Move to next phase if reply was successfully
* unlinked.
*/
ptlrpc_rqphase_move(req, req->rq_next_phase);
}
if (req->rq_phase == RQ_PHASE_COMPLETE) {
list_move_tail(&req->rq_set_chain, &comp_reqs);
continue;
}
if (req->rq_phase == RQ_PHASE_INTERPRET)
goto interpret;
/* Note that this also will start async reply unlink. */
if (req->rq_net_err && !req->rq_timedout) {
ptlrpc_expire_one_request(req, 1);
/* Check if we still need to wait for unlink. */
if (ptlrpc_client_recv_or_unlink(req) ||
ptlrpc_client_bulk_active(req))
continue;
/* If there is no need to resend, fail it now. */
if (req->rq_no_resend) {
if (req->rq_status == 0)
req->rq_status = -EIO;
ptlrpc_rqphase_move(req, RQ_PHASE_INTERPRET);
goto interpret;
} else {
continue;
}
}
if (req->rq_err) {
spin_lock(&req->rq_lock);
req->rq_replied = 0;
spin_unlock(&req->rq_lock);
if (req->rq_status == 0)
req->rq_status = -EIO;
ptlrpc_rqphase_move(req, RQ_PHASE_INTERPRET);
goto interpret;
}
/*
* ptlrpc_set_wait->l_wait_event sets lwi_allow_intr
* so it sets rq_intr regardless of individual rpc
* timeouts. The synchronous IO waiting path sets
* rq_intr irrespective of whether ptlrpcd
* has seen a timeout. Our policy is to only interpret
* interrupted rpcs after they have timed out, so we
* need to enforce that here.
*/
if (req->rq_intr && (req->rq_timedout || req->rq_waiting ||
req->rq_wait_ctx)) {
req->rq_status = -EINTR;
ptlrpc_rqphase_move(req, RQ_PHASE_INTERPRET);
goto interpret;
}
if (req->rq_phase == RQ_PHASE_RPC) {
if (req->rq_timedout || req->rq_resend ||
req->rq_waiting || req->rq_wait_ctx) {
int status;
if (!ptlrpc_unregister_reply(req, 1)) {
ptlrpc_unregister_bulk(req, 1);
continue;
}
spin_lock(&imp->imp_lock);
if (ptlrpc_import_delay_req(imp, req,
&status)) {
/*
* put on delay list - only if we wait
* recovery finished - before send
*/
list_del_init(&req->rq_list);
list_add_tail(&req->rq_list,
&imp->imp_delayed_list);
spin_unlock(&imp->imp_lock);
continue;
}
if (status != 0) {
req->rq_status = status;
ptlrpc_rqphase_move(req,
RQ_PHASE_INTERPRET);
spin_unlock(&imp->imp_lock);
goto interpret;
}
if (ptlrpc_no_resend(req) &&
!req->rq_wait_ctx) {
req->rq_status = -ENOTCONN;
ptlrpc_rqphase_move(req,
RQ_PHASE_INTERPRET);
spin_unlock(&imp->imp_lock);
goto interpret;
}
list_del_init(&req->rq_list);
list_add_tail(&req->rq_list,
&imp->imp_sending_list);
spin_unlock(&imp->imp_lock);
spin_lock(&req->rq_lock);
req->rq_waiting = 0;
spin_unlock(&req->rq_lock);
if (req->rq_timedout || req->rq_resend) {
/* This is re-sending anyway, let's mark req as resend. */
spin_lock(&req->rq_lock);
req->rq_resend = 1;
spin_unlock(&req->rq_lock);
if (req->rq_bulk) {
__u64 old_xid;
if (!ptlrpc_unregister_bulk(req, 1))
continue;
/* ensure previous bulk fails */
old_xid = req->rq_xid;
req->rq_xid = ptlrpc_next_xid();
CDEBUG(D_HA, "resend bulk old x%llu new x%llu\n",
old_xid, req->rq_xid);
}
}
/*
* rq_wait_ctx is only touched by ptlrpcd,
* so no lock is needed here.
*/
status = sptlrpc_req_refresh_ctx(req, -1);
if (status) {
if (req->rq_err) {
req->rq_status = status;
spin_lock(&req->rq_lock);
req->rq_wait_ctx = 0;
spin_unlock(&req->rq_lock);
force_timer_recalc = 1;
} else {
spin_lock(&req->rq_lock);
req->rq_wait_ctx = 1;
spin_unlock(&req->rq_lock);
}
continue;
} else {
spin_lock(&req->rq_lock);
req->rq_wait_ctx = 0;
spin_unlock(&req->rq_lock);
}
rc = ptl_send_rpc(req, 0);
if (rc) {
DEBUG_REQ(D_HA, req,
"send failed: rc = %d", rc);
force_timer_recalc = 1;
spin_lock(&req->rq_lock);
req->rq_net_err = 1;
spin_unlock(&req->rq_lock);
continue;
}
/* need to reset the timeout */
force_timer_recalc = 1;
}
spin_lock(&req->rq_lock);
if (ptlrpc_client_early(req)) {
ptlrpc_at_recv_early_reply(req);
spin_unlock(&req->rq_lock);
continue;
}
/* Still waiting for a reply? */
if (ptlrpc_client_recv(req)) {
spin_unlock(&req->rq_lock);
continue;
}
/* Did we actually receive a reply? */
if (!ptlrpc_client_replied(req)) {
spin_unlock(&req->rq_lock);
continue;
}
spin_unlock(&req->rq_lock);
/*
* unlink from net because we are going to
* swab in-place of reply buffer
*/
unregistered = ptlrpc_unregister_reply(req, 1);
if (!unregistered)
continue;
req->rq_status = after_reply(req);
if (req->rq_resend)
continue;
/*
* If there is no bulk associated with this request,
* then we're done and should let the interpreter
* process the reply. Similarly if the RPC returned
* an error, and therefore the bulk will never arrive.
*/
if (!req->rq_bulk || req->rq_status < 0) {
ptlrpc_rqphase_move(req, RQ_PHASE_INTERPRET);
goto interpret;
}
ptlrpc_rqphase_move(req, RQ_PHASE_BULK);
}
LASSERT(req->rq_phase == RQ_PHASE_BULK);
if (ptlrpc_client_bulk_active(req))
continue;
if (req->rq_bulk->bd_failure) {
/*
* The RPC reply arrived OK, but the bulk screwed
* up! Dead weird since the server told us the RPC
* was good after getting the REPLY for her GET or
* the ACK for her PUT.
*/
DEBUG_REQ(D_ERROR, req, "bulk transfer failed");
req->rq_status = -EIO;
}
ptlrpc_rqphase_move(req, RQ_PHASE_INTERPRET);
interpret:
LASSERT(req->rq_phase == RQ_PHASE_INTERPRET);
/*
* This moves to "unregistering" phase we need to wait for
* reply unlink.
*/
if (!unregistered && !ptlrpc_unregister_reply(req, 1)) {
/* start async bulk unlink too */
ptlrpc_unregister_bulk(req, 1);
continue;
}
if (!ptlrpc_unregister_bulk(req, 1))
continue;
/* When calling interpret receive should already be finished. */
LASSERT(!req->rq_receiving_reply);
ptlrpc_req_interpret(env, req, req->rq_status);
if (ptlrpcd_check_work(req)) {
atomic_dec(&set->set_remaining);
continue;
}
ptlrpc_rqphase_move(req, RQ_PHASE_COMPLETE);
CDEBUG(req->rq_reqmsg ? D_RPCTRACE : 0,
"Completed RPC pname:cluuid:pid:xid:nid:opc %s:%s:%d:%llu:%s:%d\n",
current_comm(), imp->imp_obd->obd_uuid.uuid,
lustre_msg_get_status(req->rq_reqmsg), req->rq_xid,
libcfs_nid2str(imp->imp_connection->c_peer.nid),
lustre_msg_get_opc(req->rq_reqmsg));
spin_lock(&imp->imp_lock);
/*
* Request already may be not on sending or delaying list. This
* may happen in the case of marking it erroneous for the case
* ptlrpc_import_delay_req(req, status) find it impossible to
* allow sending this rpc and returns *status != 0.
*/
if (!list_empty(&req->rq_list)) {
list_del_init(&req->rq_list);
atomic_dec(&imp->imp_inflight);
}
spin_unlock(&imp->imp_lock);
atomic_dec(&set->set_remaining);
wake_up_all(&imp->imp_recovery_waitq);
if (set->set_producer) {
/* produce a new request if possible */
if (ptlrpc_set_producer(set) > 0)
force_timer_recalc = 1;
/*
* free the request that has just been completed
* in order not to pollute set->set_requests
*/
list_del_init(&req->rq_set_chain);
spin_lock(&req->rq_lock);
req->rq_set = NULL;
req->rq_invalid_rqset = 0;
spin_unlock(&req->rq_lock);
/* record rq_status to compute the final status later */
if (req->rq_status != 0)
set->set_rc = req->rq_status;
ptlrpc_req_finished(req);
} else {
list_move_tail(&req->rq_set_chain, &comp_reqs);
}
}
/*
* move completed request at the head of list so it's easier for
* caller to find them
*/
list_splice(&comp_reqs, &set->set_requests);
/* If we hit an error, we want to recover promptly. */
return atomic_read(&set->set_remaining) == 0 || force_timer_recalc;
}
EXPORT_SYMBOL(ptlrpc_check_set);
/**
* Time out request \a req. is \a async_unlink is set, that means do not wait
* until LNet actually confirms network buffer unlinking.
* Return 1 if we should give up further retrying attempts or 0 otherwise.
*/
int ptlrpc_expire_one_request(struct ptlrpc_request *req, int async_unlink)
{
struct obd_import *imp = req->rq_import;
int rc = 0;
spin_lock(&req->rq_lock);
req->rq_timedout = 1;
spin_unlock(&req->rq_lock);
DEBUG_REQ(D_WARNING, req, "Request sent has %s: [sent %lld/real %lld]",
req->rq_net_err ? "failed due to network error" :
((req->rq_real_sent == 0 ||
req->rq_real_sent < req->rq_sent ||
req->rq_real_sent >= req->rq_deadline) ?
"timed out for sent delay" : "timed out for slow reply"),
(s64)req->rq_sent, (s64)req->rq_real_sent);
if (imp && obd_debug_peer_on_timeout)
LNetDebugPeer(imp->imp_connection->c_peer);
ptlrpc_unregister_reply(req, async_unlink);
ptlrpc_unregister_bulk(req, async_unlink);
if (obd_dump_on_timeout)
libcfs_debug_dumplog();
if (!imp) {
DEBUG_REQ(D_HA, req, "NULL import: already cleaned up?");
return 1;
}
atomic_inc(&imp->imp_timeouts);
/* The DLM server doesn't want recovery run on its imports. */
if (imp->imp_dlm_fake)
return 1;
/*
* If this request is for recovery or other primordial tasks,
* then error it out here.
*/
if (req->rq_ctx_init || req->rq_ctx_fini ||
req->rq_send_state != LUSTRE_IMP_FULL ||
imp->imp_obd->obd_no_recov) {
DEBUG_REQ(D_RPCTRACE, req, "err -110, sent_state=%s (now=%s)",
ptlrpc_import_state_name(req->rq_send_state),
ptlrpc_import_state_name(imp->imp_state));
spin_lock(&req->rq_lock);
req->rq_status = -ETIMEDOUT;
req->rq_err = 1;
spin_unlock(&req->rq_lock);
return 1;
}
/*
* if a request can't be resent we can't wait for an answer after
* the timeout
*/
if (ptlrpc_no_resend(req)) {
DEBUG_REQ(D_RPCTRACE, req, "TIMEOUT-NORESEND:");
rc = 1;
}
ptlrpc_fail_import(imp, lustre_msg_get_conn_cnt(req->rq_reqmsg));
return rc;
}
/**
* Time out all uncompleted requests in request set pointed by \a data
* Callback used when waiting on sets with l_wait_event.
* Always returns 1.
*/
int ptlrpc_expired_set(void *data)
{
struct ptlrpc_request_set *set = data;
struct list_head *tmp;
time64_t now = ktime_get_real_seconds();
/* A timeout expired. See which reqs it applies to... */
list_for_each(tmp, &set->set_requests) {
struct ptlrpc_request *req =
list_entry(tmp, struct ptlrpc_request, rq_set_chain);
/* don't expire request waiting for context */
if (req->rq_wait_ctx)
continue;
/* Request in-flight? */
if (!((req->rq_phase == RQ_PHASE_RPC &&
!req->rq_waiting && !req->rq_resend) ||
(req->rq_phase == RQ_PHASE_BULK)))
continue;
if (req->rq_timedout || /* already dealt with */
req->rq_deadline > now) /* not expired */
continue;
/*
* Deal with this guy. Do it asynchronously to not block
* ptlrpcd thread.
*/
ptlrpc_expire_one_request(req, 1);
}
/*
* When waiting for a whole set, we always break out of the
* sleep so we can recalculate the timeout, or enable interrupts
* if everyone's timed out.
*/
return 1;
}
/**
* Sets rq_intr flag in \a req under spinlock.
*/
void ptlrpc_mark_interrupted(struct ptlrpc_request *req)
{
spin_lock(&req->rq_lock);
req->rq_intr = 1;
spin_unlock(&req->rq_lock);
}
EXPORT_SYMBOL(ptlrpc_mark_interrupted);
/**
* Interrupts (sets interrupted flag) all uncompleted requests in
* a set \a data. Callback for l_wait_event for interruptible waits.
*/
static void ptlrpc_interrupted_set(void *data)
{
struct ptlrpc_request_set *set = data;
struct list_head *tmp;
CDEBUG(D_RPCTRACE, "INTERRUPTED SET %p\n", set);
list_for_each(tmp, &set->set_requests) {
struct ptlrpc_request *req =
list_entry(tmp, struct ptlrpc_request, rq_set_chain);
if (req->rq_phase != RQ_PHASE_RPC &&
req->rq_phase != RQ_PHASE_UNREG_RPC)
continue;
ptlrpc_mark_interrupted(req);
}
}
/**
* Get the smallest timeout in the set; this does NOT set a timeout.
*/
int ptlrpc_set_next_timeout(struct ptlrpc_request_set *set)
{
struct list_head *tmp;
time64_t now = ktime_get_real_seconds();
int timeout = 0;
struct ptlrpc_request *req;
time64_t deadline;
list_for_each(tmp, &set->set_requests) {
req = list_entry(tmp, struct ptlrpc_request, rq_set_chain);
/* Request in-flight? */
if (!(((req->rq_phase == RQ_PHASE_RPC) && !req->rq_waiting) ||
(req->rq_phase == RQ_PHASE_BULK) ||
(req->rq_phase == RQ_PHASE_NEW)))
continue;
/* Already timed out. */
if (req->rq_timedout)
continue;
/* Waiting for ctx. */
if (req->rq_wait_ctx)
continue;
if (req->rq_phase == RQ_PHASE_NEW)
deadline = req->rq_sent;
else if (req->rq_phase == RQ_PHASE_RPC && req->rq_resend)
deadline = req->rq_sent;
else
deadline = req->rq_sent + req->rq_timeout;
if (deadline <= now) /* actually expired already */
timeout = 1; /* ASAP */
else if (timeout == 0 || timeout > deadline - now)
timeout = deadline - now;
}
return timeout;
}
/**
* Send all unset request from the set and then wait until all
* requests in the set complete (either get a reply, timeout, get an
* error or otherwise be interrupted).
* Returns 0 on success or error code otherwise.
*/
int ptlrpc_set_wait(struct ptlrpc_request_set *set)
{
struct list_head *tmp;
struct ptlrpc_request *req;
struct l_wait_info lwi;
int rc, timeout;
if (set->set_producer)
(void)ptlrpc_set_producer(set);
else
list_for_each(tmp, &set->set_requests) {
req = list_entry(tmp, struct ptlrpc_request,
rq_set_chain);
if (req->rq_phase == RQ_PHASE_NEW)
(void)ptlrpc_send_new_req(req);
}
if (list_empty(&set->set_requests))
return 0;
do {
timeout = ptlrpc_set_next_timeout(set);
/*
* wait until all complete, interrupted, or an in-flight
* req times out
*/
CDEBUG(D_RPCTRACE, "set %p going to sleep for %d seconds\n",
set, timeout);
if (timeout == 0 && !signal_pending(current))
/*
* No requests are in-flight (ether timed out
* or delayed), so we can allow interrupts.
* We still want to block for a limited time,
* so we allow interrupts during the timeout.
*/
lwi = LWI_TIMEOUT_INTR_ALL(cfs_time_seconds(1),
ptlrpc_expired_set,
ptlrpc_interrupted_set, set);
else
/*
* At least one request is in flight, so no
* interrupts are allowed. Wait until all
* complete, or an in-flight req times out.
*/
lwi = LWI_TIMEOUT(cfs_time_seconds(timeout ? timeout : 1),
ptlrpc_expired_set, set);
rc = l_wait_event(set->set_waitq, ptlrpc_check_set(NULL, set), &lwi);
/*
* LU-769 - if we ignored the signal because it was already
* pending when we started, we need to handle it now or we risk
* it being ignored forever
*/
if (rc == -ETIMEDOUT && !lwi.lwi_allow_intr &&
signal_pending(current)) {
sigset_t blocked_sigs =
cfs_block_sigsinv(LUSTRE_FATAL_SIGS);
/*
* In fact we only interrupt for the "fatal" signals
* like SIGINT or SIGKILL. We still ignore less
* important signals since ptlrpc set is not easily
* reentrant from userspace again
*/
if (signal_pending(current))
ptlrpc_interrupted_set(set);
cfs_restore_sigs(blocked_sigs);
}
LASSERT(rc == 0 || rc == -EINTR || rc == -ETIMEDOUT);
/*
* -EINTR => all requests have been flagged rq_intr so next
* check completes.
* -ETIMEDOUT => someone timed out. When all reqs have
* timed out, signals are enabled allowing completion with
* EINTR.
* I don't really care if we go once more round the loop in
* the error cases -eeb.
*/
if (rc == 0 && atomic_read(&set->set_remaining) == 0) {
list_for_each(tmp, &set->set_requests) {
req = list_entry(tmp, struct ptlrpc_request,
rq_set_chain);
spin_lock(&req->rq_lock);
req->rq_invalid_rqset = 1;
spin_unlock(&req->rq_lock);
}
}
} while (rc != 0 || atomic_read(&set->set_remaining) != 0);
LASSERT(atomic_read(&set->set_remaining) == 0);
rc = set->set_rc; /* rq_status of already freed requests if any */
list_for_each(tmp, &set->set_requests) {
req = list_entry(tmp, struct ptlrpc_request, rq_set_chain);
LASSERT(req->rq_phase == RQ_PHASE_COMPLETE);
if (req->rq_status != 0)
rc = req->rq_status;
}
if (set->set_interpret) {
int (*interpreter)(struct ptlrpc_request_set *set, void *, int) =
set->set_interpret;
rc = interpreter(set, set->set_arg, rc);
} else {
struct ptlrpc_set_cbdata *cbdata, *n;
int err;
list_for_each_entry_safe(cbdata, n,
&set->set_cblist, psc_item) {
list_del_init(&cbdata->psc_item);
err = cbdata->psc_interpret(set, cbdata->psc_data, rc);
if (err && !rc)
rc = err;
kfree(cbdata);
}
}
return rc;
}
EXPORT_SYMBOL(ptlrpc_set_wait);
/**
* Helper function for request freeing.
* Called when request count reached zero and request needs to be freed.
* Removes request from all sorts of sending/replay lists it might be on,
* frees network buffers if any are present.
* If \a locked is set, that means caller is already holding import imp_lock
* and so we no longer need to reobtain it (for certain lists manipulations)
*/
static void __ptlrpc_free_req(struct ptlrpc_request *request, int locked)
{
if (!request)
return;
LASSERT(!request->rq_srv_req);
LASSERT(!request->rq_export);
LASSERTF(!request->rq_receiving_reply, "req %p\n", request);
LASSERTF(list_empty(&request->rq_list), "req %p\n", request);
LASSERTF(list_empty(&request->rq_set_chain), "req %p\n", request);
LASSERTF(!request->rq_replay, "req %p\n", request);
req_capsule_fini(&request->rq_pill);
/*
* We must take it off the imp_replay_list first. Otherwise, we'll set
* request->rq_reqmsg to NULL while osc_close is dereferencing it.
*/
if (request->rq_import) {
if (!locked)
spin_lock(&request->rq_import->imp_lock);
list_del_init(&request->rq_replay_list);
if (!locked)
spin_unlock(&request->rq_import->imp_lock);
}
LASSERTF(list_empty(&request->rq_replay_list), "req %p\n", request);
if (atomic_read(&request->rq_refcount) != 0) {
DEBUG_REQ(D_ERROR, request,
"freeing request with nonzero refcount");
LBUG();
}
if (request->rq_repbuf)
sptlrpc_cli_free_repbuf(request);
if (request->rq_import) {
class_import_put(request->rq_import);
request->rq_import = NULL;
}
if (request->rq_bulk)
ptlrpc_free_bulk_pin(request->rq_bulk);
if (request->rq_reqbuf || request->rq_clrbuf)
sptlrpc_cli_free_reqbuf(request);
if (request->rq_cli_ctx)
sptlrpc_req_put_ctx(request, !locked);
if (request->rq_pool)
__ptlrpc_free_req_to_pool(request);
else
ptlrpc_request_cache_free(request);
}
/**
* Helper function
* Drops one reference count for request \a request.
* \a locked set indicates that caller holds import imp_lock.
* Frees the request when reference count reaches zero.
*/
static int __ptlrpc_req_finished(struct ptlrpc_request *request, int locked)
{
if (!request)
return 1;
if (request == LP_POISON ||
request->rq_reqmsg == LP_POISON) {
CERROR("dereferencing freed request (bug 575)\n");
LBUG();
return 1;
}
DEBUG_REQ(D_INFO, request, "refcount now %u",
atomic_read(&request->rq_refcount) - 1);
if (atomic_dec_and_test(&request->rq_refcount)) {
__ptlrpc_free_req(request, locked);
return 1;
}
return 0;
}
/**
* Drops one reference count for a request.
*/
void ptlrpc_req_finished(struct ptlrpc_request *request)
{
__ptlrpc_req_finished(request, 0);
}
EXPORT_SYMBOL(ptlrpc_req_finished);
/**
* Returns xid of a \a request
*/
__u64 ptlrpc_req_xid(struct ptlrpc_request *request)
{
return request->rq_xid;
}
EXPORT_SYMBOL(ptlrpc_req_xid);
/**
* Disengage the client's reply buffer from the network
* NB does _NOT_ unregister any client-side bulk.
* IDEMPOTENT, but _not_ safe against concurrent callers.
* The request owner (i.e. the thread doing the I/O) must call...
* Returns 0 on success or 1 if unregistering cannot be made.
*/
static int ptlrpc_unregister_reply(struct ptlrpc_request *request, int async)
{
int rc;
wait_queue_head_t *wq;
struct l_wait_info lwi;
/* Might sleep. */
LASSERT(!in_interrupt());
/* Let's setup deadline for reply unlink. */
if (OBD_FAIL_CHECK(OBD_FAIL_PTLRPC_LONG_REPL_UNLINK) &&
async && request->rq_reply_deadline == 0 && cfs_fail_val == 0)
request->rq_reply_deadline =
ktime_get_real_seconds() + LONG_UNLINK;
/* Nothing left to do. */
if (!ptlrpc_client_recv_or_unlink(request))
return 1;
LNetMDUnlink(request->rq_reply_md_h);
/* Let's check it once again. */
if (!ptlrpc_client_recv_or_unlink(request))
return 1;
/* Move to "Unregistering" phase as reply was not unlinked yet. */
ptlrpc_rqphase_move(request, RQ_PHASE_UNREG_RPC);
/* Do not wait for unlink to finish. */
if (async)
return 0;
/*
* We have to l_wait_event() whatever the result, to give liblustre
* a chance to run reply_in_callback(), and to make sure we've
* unlinked before returning a req to the pool.
*/
if (request->rq_set)
wq = &request->rq_set->set_waitq;
else
wq = &request->rq_reply_waitq;
for (;;) {
/*
* Network access will complete in finite time but the HUGE
* timeout lets us CWARN for visibility of sluggish NALs
*/
lwi = LWI_TIMEOUT_INTERVAL(cfs_time_seconds(LONG_UNLINK),
cfs_time_seconds(1), NULL, NULL);
rc = l_wait_event(*wq, !ptlrpc_client_recv_or_unlink(request),
&lwi);
if (rc == 0) {
ptlrpc_rqphase_move(request, request->rq_next_phase);
return 1;
}
LASSERT(rc == -ETIMEDOUT);
DEBUG_REQ(D_WARNING, request,
"Unexpectedly long timeout receiving_reply=%d req_ulinked=%d reply_unlinked=%d",
request->rq_receiving_reply,
request->rq_req_unlinked,
request->rq_reply_unlinked);
}
return 0;
}
static void ptlrpc_free_request(struct ptlrpc_request *req)
{
spin_lock(&req->rq_lock);
req->rq_replay = 0;
spin_unlock(&req->rq_lock);
if (req->rq_commit_cb)
req->rq_commit_cb(req);
list_del_init(&req->rq_replay_list);
__ptlrpc_req_finished(req, 1);
}
/**
* the request is committed and dropped from the replay list of its import
*/
void ptlrpc_request_committed(struct ptlrpc_request *req, int force)
{
struct obd_import *imp = req->rq_import;
spin_lock(&imp->imp_lock);
if (list_empty(&req->rq_replay_list)) {
spin_unlock(&imp->imp_lock);
return;
}
if (force || req->rq_transno <= imp->imp_peer_committed_transno)
ptlrpc_free_request(req);
spin_unlock(&imp->imp_lock);
}
EXPORT_SYMBOL(ptlrpc_request_committed);
/**
* Iterates through replay_list on import and prunes
* all requests have transno smaller than last_committed for the
* import and don't have rq_replay set.
* Since requests are sorted in transno order, stops when meeting first
* transno bigger than last_committed.
* caller must hold imp->imp_lock
*/
void ptlrpc_free_committed(struct obd_import *imp)
{
struct ptlrpc_request *req, *saved;
struct ptlrpc_request *last_req = NULL; /* temporary fire escape */
bool skip_committed_list = true;
assert_spin_locked(&imp->imp_lock);
if (imp->imp_peer_committed_transno == imp->imp_last_transno_checked &&
imp->imp_generation == imp->imp_last_generation_checked) {
CDEBUG(D_INFO, "%s: skip recheck: last_committed %llu\n",
imp->imp_obd->obd_name, imp->imp_peer_committed_transno);
return;
}
CDEBUG(D_RPCTRACE, "%s: committing for last_committed %llu gen %d\n",
imp->imp_obd->obd_name, imp->imp_peer_committed_transno,
imp->imp_generation);
if (imp->imp_generation != imp->imp_last_generation_checked ||
!imp->imp_last_transno_checked)
skip_committed_list = false;
imp->imp_last_transno_checked = imp->imp_peer_committed_transno;
imp->imp_last_generation_checked = imp->imp_generation;
list_for_each_entry_safe(req, saved, &imp->imp_replay_list,
rq_replay_list) {
/* XXX ok to remove when 1357 resolved - rread 05/29/03 */
LASSERT(req != last_req);
last_req = req;
if (req->rq_transno == 0) {
DEBUG_REQ(D_EMERG, req, "zero transno during replay");
LBUG();
}
if (req->rq_import_generation < imp->imp_generation) {
DEBUG_REQ(D_RPCTRACE, req, "free request with old gen");
goto free_req;
}
/* not yet committed */
if (req->rq_transno > imp->imp_peer_committed_transno) {
DEBUG_REQ(D_RPCTRACE, req, "stopping search");
break;
}
if (req->rq_replay) {
DEBUG_REQ(D_RPCTRACE, req, "keeping (FL_REPLAY)");
list_move_tail(&req->rq_replay_list,
&imp->imp_committed_list);
continue;
}
DEBUG_REQ(D_INFO, req, "commit (last_committed %llu)",
imp->imp_peer_committed_transno);
free_req:
ptlrpc_free_request(req);
}
if (skip_committed_list)
return;
list_for_each_entry_safe(req, saved, &imp->imp_committed_list,
rq_replay_list) {
LASSERT(req->rq_transno != 0);
if (req->rq_import_generation < imp->imp_generation) {
DEBUG_REQ(D_RPCTRACE, req, "free stale open request");
ptlrpc_free_request(req);
} else if (!req->rq_replay) {
DEBUG_REQ(D_RPCTRACE, req, "free closed open request");
ptlrpc_free_request(req);
}
}
}
/**
* Schedule previously sent request for resend.
* For bulk requests we assign new xid (to avoid problems with
* lost replies and therefore several transfers landing into same buffer
* from different sending attempts).
*/
void ptlrpc_resend_req(struct ptlrpc_request *req)
{
DEBUG_REQ(D_HA, req, "going to resend");
spin_lock(&req->rq_lock);
/*
* Request got reply but linked to the import list still.
* Let ptlrpc_check_set() to process it.
*/
if (ptlrpc_client_replied(req)) {
spin_unlock(&req->rq_lock);
DEBUG_REQ(D_HA, req, "it has reply, so skip it");
return;
}
lustre_msg_set_handle(req->rq_reqmsg, &(struct lustre_handle){ 0 });
req->rq_status = -EAGAIN;
req->rq_resend = 1;
req->rq_net_err = 0;
req->rq_timedout = 0;
if (req->rq_bulk) {
__u64 old_xid = req->rq_xid;
/* ensure previous bulk fails */
req->rq_xid = ptlrpc_next_xid();
CDEBUG(D_HA, "resend bulk old x%llu new x%llu\n",
old_xid, req->rq_xid);
}
ptlrpc_client_wake_req(req);
spin_unlock(&req->rq_lock);
}
/**
* Grab additional reference on a request \a req
*/
struct ptlrpc_request *ptlrpc_request_addref(struct ptlrpc_request *req)
{
atomic_inc(&req->rq_refcount);
return req;
}
EXPORT_SYMBOL(ptlrpc_request_addref);
/**
* Add a request to import replay_list.
* Must be called under imp_lock
*/
void ptlrpc_retain_replayable_request(struct ptlrpc_request *req,
struct obd_import *imp)
{
struct list_head *tmp;
assert_spin_locked(&imp->imp_lock);
if (req->rq_transno == 0) {
DEBUG_REQ(D_EMERG, req, "saving request with zero transno");
LBUG();
}
/*
* clear this for new requests that were resent as well
* as resent replayed requests.
*/
lustre_msg_clear_flags(req->rq_reqmsg, MSG_RESENT);
/* don't re-add requests that have been replayed */
if (!list_empty(&req->rq_replay_list))
return;
lustre_msg_add_flags(req->rq_reqmsg, MSG_REPLAY);
LASSERT(imp->imp_replayable);
/* Balanced in ptlrpc_free_committed, usually. */
ptlrpc_request_addref(req);
list_for_each_prev(tmp, &imp->imp_replay_list) {
struct ptlrpc_request *iter =
list_entry(tmp, struct ptlrpc_request, rq_replay_list);
/*
* We may have duplicate transnos if we create and then
* open a file, or for closes retained if to match creating
* opens, so use req->rq_xid as a secondary key.
* (See bugs 684, 685, and 428.)
* XXX no longer needed, but all opens need transnos!
*/
if (iter->rq_transno > req->rq_transno)
continue;
if (iter->rq_transno == req->rq_transno) {
LASSERT(iter->rq_xid != req->rq_xid);
if (iter->rq_xid > req->rq_xid)
continue;
}
list_add(&req->rq_replay_list, &iter->rq_replay_list);
return;
}
list_add(&req->rq_replay_list, &imp->imp_replay_list);
}
/**
* Send request and wait until it completes.
* Returns request processing status.
*/
int ptlrpc_queue_wait(struct ptlrpc_request *req)
{
struct ptlrpc_request_set *set;
int rc;
LASSERT(!req->rq_set);
LASSERT(!req->rq_receiving_reply);
set = ptlrpc_prep_set();
if (!set) {
CERROR("cannot allocate ptlrpc set: rc = %d\n", -ENOMEM);
return -ENOMEM;
}
/* for distributed debugging */
lustre_msg_set_status(req->rq_reqmsg, current_pid());
/* add a ref for the set (see comment in ptlrpc_set_add_req) */
ptlrpc_request_addref(req);
ptlrpc_set_add_req(set, req);
rc = ptlrpc_set_wait(set);
ptlrpc_set_destroy(set);
return rc;
}
EXPORT_SYMBOL(ptlrpc_queue_wait);
/**
* Callback used for replayed requests reply processing.
* In case of successful reply calls registered request replay callback.
* In case of error restart replay process.
*/
static int ptlrpc_replay_interpret(const struct lu_env *env,
struct ptlrpc_request *req,
void *data, int rc)
{
struct ptlrpc_replay_async_args *aa = data;
struct obd_import *imp = req->rq_import;
atomic_dec(&imp->imp_replay_inflight);
if (!ptlrpc_client_replied(req)) {
CERROR("request replay timed out, restarting recovery\n");
rc = -ETIMEDOUT;
goto out;
}
if (lustre_msg_get_type(req->rq_repmsg) == PTL_RPC_MSG_ERR &&
(lustre_msg_get_status(req->rq_repmsg) == -ENOTCONN ||
lustre_msg_get_status(req->rq_repmsg) == -ENODEV)) {
rc = lustre_msg_get_status(req->rq_repmsg);
goto out;
}
/** VBR: check version failure */
if (lustre_msg_get_status(req->rq_repmsg) == -EOVERFLOW) {
/** replay was failed due to version mismatch */
DEBUG_REQ(D_WARNING, req, "Version mismatch during replay\n");
spin_lock(&imp->imp_lock);
imp->imp_vbr_failed = 1;
imp->imp_no_lock_replay = 1;
spin_unlock(&imp->imp_lock);
lustre_msg_set_status(req->rq_repmsg, aa->praa_old_status);
} else {
/** The transno had better not change over replay. */
LASSERTF(lustre_msg_get_transno(req->rq_reqmsg) ==
lustre_msg_get_transno(req->rq_repmsg) ||
lustre_msg_get_transno(req->rq_repmsg) == 0,
"%#llx/%#llx\n",
lustre_msg_get_transno(req->rq_reqmsg),
lustre_msg_get_transno(req->rq_repmsg));
}
spin_lock(&imp->imp_lock);
/** if replays by version then gap occur on server, no trust to locks */
if (lustre_msg_get_flags(req->rq_repmsg) & MSG_VERSION_REPLAY)
imp->imp_no_lock_replay = 1;
imp->imp_last_replay_transno = lustre_msg_get_transno(req->rq_reqmsg);
spin_unlock(&imp->imp_lock);
LASSERT(imp->imp_last_replay_transno);
/* transaction number shouldn't be bigger than the latest replayed */
if (req->rq_transno > lustre_msg_get_transno(req->rq_reqmsg)) {
DEBUG_REQ(D_ERROR, req,
"Reported transno %llu is bigger than the replayed one: %llu",
req->rq_transno,
lustre_msg_get_transno(req->rq_reqmsg));
rc = -EINVAL;
goto out;
}
DEBUG_REQ(D_HA, req, "got rep");
/* let the callback do fixups, possibly including in the request */
if (req->rq_replay_cb)
req->rq_replay_cb(req);
if (ptlrpc_client_replied(req) &&
lustre_msg_get_status(req->rq_repmsg) != aa->praa_old_status) {
DEBUG_REQ(D_ERROR, req, "status %d, old was %d",
lustre_msg_get_status(req->rq_repmsg),
aa->praa_old_status);
} else {
/* Put it back for re-replay. */
lustre_msg_set_status(req->rq_repmsg, aa->praa_old_status);
}
/*
* Errors while replay can set transno to 0, but
* imp_last_replay_transno shouldn't be set to 0 anyway
*/
if (req->rq_transno == 0)
CERROR("Transno is 0 during replay!\n");
/* continue with recovery */
rc = ptlrpc_import_recovery_state_machine(imp);
out:
req->rq_send_state = aa->praa_old_state;
if (rc != 0)
/* this replay failed, so restart recovery */
ptlrpc_connect_import(imp);
return rc;
}
/**
* Prepares and queues request for replay.
* Adds it to ptlrpcd queue for actual sending.
* Returns 0 on success.
*/
int ptlrpc_replay_req(struct ptlrpc_request *req)
{
struct ptlrpc_replay_async_args *aa;
LASSERT(req->rq_import->imp_state == LUSTRE_IMP_REPLAY);
LASSERT(sizeof(*aa) <= sizeof(req->rq_async_args));
aa = ptlrpc_req_async_args(req);
memset(aa, 0, sizeof(*aa));
/* Prepare request to be resent with ptlrpcd */
aa->praa_old_state = req->rq_send_state;
req->rq_send_state = LUSTRE_IMP_REPLAY;
req->rq_phase = RQ_PHASE_NEW;
req->rq_next_phase = RQ_PHASE_UNDEFINED;
if (req->rq_repmsg)
aa->praa_old_status = lustre_msg_get_status(req->rq_repmsg);
req->rq_status = 0;
req->rq_interpret_reply = ptlrpc_replay_interpret;
/* Readjust the timeout for current conditions */
ptlrpc_at_set_req_timeout(req);
/*
* Tell server the net_latency, so the server can calculate how long
* it should wait for next replay
*/
lustre_msg_set_service_time(req->rq_reqmsg,
ptlrpc_at_get_net_latency(req));
DEBUG_REQ(D_HA, req, "REPLAY");
atomic_inc(&req->rq_import->imp_replay_inflight);
ptlrpc_request_addref(req); /* ptlrpcd needs a ref */
ptlrpcd_add_req(req);
return 0;
}
/**
* Aborts all in-flight request on import \a imp sending and delayed lists
*/
void ptlrpc_abort_inflight(struct obd_import *imp)
{
struct list_head *tmp, *n;
/*
* Make sure that no new requests get processed for this import.
* ptlrpc_{queue,set}_wait must (and does) hold imp_lock while testing
* this flag and then putting requests on sending_list or delayed_list.
*/
spin_lock(&imp->imp_lock);
/*
* XXX locking? Maybe we should remove each request with the list
* locked? Also, how do we know if the requests on the list are
* being freed at this time?
*/
list_for_each_safe(tmp, n, &imp->imp_sending_list) {
struct ptlrpc_request *req =
list_entry(tmp, struct ptlrpc_request, rq_list);
DEBUG_REQ(D_RPCTRACE, req, "inflight");
spin_lock(&req->rq_lock);
if (req->rq_import_generation < imp->imp_generation) {
req->rq_err = 1;
req->rq_status = -EIO;
ptlrpc_client_wake_req(req);
}
spin_unlock(&req->rq_lock);
}
list_for_each_safe(tmp, n, &imp->imp_delayed_list) {
struct ptlrpc_request *req =
list_entry(tmp, struct ptlrpc_request, rq_list);
DEBUG_REQ(D_RPCTRACE, req, "aborting waiting req");
spin_lock(&req->rq_lock);
if (req->rq_import_generation < imp->imp_generation) {
req->rq_err = 1;
req->rq_status = -EIO;
ptlrpc_client_wake_req(req);
}
spin_unlock(&req->rq_lock);
}
/*
* Last chance to free reqs left on the replay list, but we
* will still leak reqs that haven't committed.
*/
if (imp->imp_replayable)
ptlrpc_free_committed(imp);
spin_unlock(&imp->imp_lock);
}
/**
* Abort all uncompleted requests in request set \a set
*/
void ptlrpc_abort_set(struct ptlrpc_request_set *set)
{
struct list_head *tmp, *pos;
list_for_each_safe(pos, tmp, &set->set_requests) {
struct ptlrpc_request *req =
list_entry(pos, struct ptlrpc_request, rq_set_chain);
spin_lock(&req->rq_lock);
if (req->rq_phase != RQ_PHASE_RPC) {
spin_unlock(&req->rq_lock);
continue;
}
req->rq_err = 1;
req->rq_status = -EINTR;
ptlrpc_client_wake_req(req);
spin_unlock(&req->rq_lock);
}
}
static __u64 ptlrpc_last_xid;
static spinlock_t ptlrpc_last_xid_lock;
/**
* Initialize the XID for the node. This is common among all requests on
* this node, and only requires the property that it is monotonically
* increasing. It does not need to be sequential. Since this is also used
* as the RDMA match bits, it is important that a single client NOT have
* the same match bits for two different in-flight requests, hence we do
* NOT want to have an XID per target or similar.
*
* To avoid an unlikely collision between match bits after a client reboot
* (which would deliver old data into the wrong RDMA buffer) initialize
* the XID based on the current time, assuming a maximum RPC rate of 1M RPC/s.
* If the time is clearly incorrect, we instead use a 62-bit random number.
* In the worst case the random number will overflow 1M RPCs per second in
* 9133 years, or permutations thereof.
*/
#define YEAR_2004 (1ULL << 30)
void ptlrpc_init_xid(void)
{
time64_t now = ktime_get_real_seconds();
spin_lock_init(&ptlrpc_last_xid_lock);
if (now < YEAR_2004) {
cfs_get_random_bytes(&ptlrpc_last_xid, sizeof(ptlrpc_last_xid));
ptlrpc_last_xid >>= 2;
ptlrpc_last_xid |= (1ULL << 61);
} else {
ptlrpc_last_xid = (__u64)now << 20;
}
/* Always need to be aligned to a power-of-two for multi-bulk BRW */
CLASSERT(((PTLRPC_BULK_OPS_COUNT - 1) & PTLRPC_BULK_OPS_COUNT) == 0);
ptlrpc_last_xid &= PTLRPC_BULK_OPS_MASK;
}
/**
* Increase xid and returns resulting new value to the caller.
*
* Multi-bulk BRW RPCs consume multiple XIDs for each bulk transfer, starting
* at the returned xid, up to xid + PTLRPC_BULK_OPS_COUNT - 1. The BRW RPC
* itself uses the last bulk xid needed, so the server can determine the
* the number of bulk transfers from the RPC XID and a bitmask. The starting
* xid must align to a power-of-two value.
*
* This is assumed to be true due to the initial ptlrpc_last_xid
* value also being initialized to a power-of-two value. LU-1431
*/
__u64 ptlrpc_next_xid(void)
{
__u64 next;
spin_lock(&ptlrpc_last_xid_lock);
next = ptlrpc_last_xid + PTLRPC_BULK_OPS_COUNT;
ptlrpc_last_xid = next;
spin_unlock(&ptlrpc_last_xid_lock);
return next;
}
/**
* Get a glimpse at what next xid value might have been.
* Returns possible next xid.
*/
__u64 ptlrpc_sample_next_xid(void)
{
#if BITS_PER_LONG == 32
/* need to avoid possible word tearing on 32-bit systems */
__u64 next;
spin_lock(&ptlrpc_last_xid_lock);
next = ptlrpc_last_xid + PTLRPC_BULK_OPS_COUNT;
spin_unlock(&ptlrpc_last_xid_lock);
return next;
#else
/* No need to lock, since returned value is racy anyways */
return ptlrpc_last_xid + PTLRPC_BULK_OPS_COUNT;
#endif
}
EXPORT_SYMBOL(ptlrpc_sample_next_xid);
/**
* Functions for operating ptlrpc workers.
*
* A ptlrpc work is a function which will be running inside ptlrpc context.
* The callback shouldn't sleep otherwise it will block that ptlrpcd thread.
*
* 1. after a work is created, it can be used many times, that is:
* handler = ptlrpcd_alloc_work();
* ptlrpcd_queue_work();
*
* queue it again when necessary:
* ptlrpcd_queue_work();
* ptlrpcd_destroy_work();
* 2. ptlrpcd_queue_work() can be called by multiple processes meanwhile, but
* it will only be queued once in any time. Also as its name implies, it may
* have delay before it really runs by ptlrpcd thread.
*/
struct ptlrpc_work_async_args {
int (*cb)(const struct lu_env *, void *);
void *cbdata;
};
static void ptlrpcd_add_work_req(struct ptlrpc_request *req)
{
/* re-initialize the req */
req->rq_timeout = obd_timeout;
req->rq_sent = ktime_get_real_seconds();
req->rq_deadline = req->rq_sent + req->rq_timeout;
req->rq_phase = RQ_PHASE_INTERPRET;
req->rq_next_phase = RQ_PHASE_COMPLETE;
req->rq_xid = ptlrpc_next_xid();
req->rq_import_generation = req->rq_import->imp_generation;
ptlrpcd_add_req(req);
}
static int work_interpreter(const struct lu_env *env,
struct ptlrpc_request *req, void *data, int rc)
{
struct ptlrpc_work_async_args *arg = data;
LASSERT(ptlrpcd_check_work(req));
rc = arg->cb(env, arg->cbdata);
list_del_init(&req->rq_set_chain);
req->rq_set = NULL;
if (atomic_dec_return(&req->rq_refcount) > 1) {
atomic_set(&req->rq_refcount, 2);
ptlrpcd_add_work_req(req);
}
return rc;
}
static int worker_format;
static int ptlrpcd_check_work(struct ptlrpc_request *req)
{
return req->rq_pill.rc_fmt == (void *)&worker_format;
}
/**
* Create a work for ptlrpc.
*/
void *ptlrpcd_alloc_work(struct obd_import *imp,
int (*cb)(const struct lu_env *, void *), void *cbdata)
{
struct ptlrpc_request *req = NULL;
struct ptlrpc_work_async_args *args;
might_sleep();
if (!cb)
return ERR_PTR(-EINVAL);
/* copy some code from deprecated fakereq. */
req = ptlrpc_request_cache_alloc(GFP_NOFS);
if (!req) {
CERROR("ptlrpc: run out of memory!\n");
return ERR_PTR(-ENOMEM);
}
ptlrpc_cli_req_init(req);
req->rq_send_state = LUSTRE_IMP_FULL;
req->rq_type = PTL_RPC_MSG_REQUEST;
req->rq_import = class_import_get(imp);
req->rq_interpret_reply = work_interpreter;
/* don't want reply */
req->rq_no_delay = 1;
req->rq_no_resend = 1;
req->rq_pill.rc_fmt = (void *)&worker_format;
CLASSERT(sizeof(*args) <= sizeof(req->rq_async_args));
args = ptlrpc_req_async_args(req);
args->cb = cb;
args->cbdata = cbdata;
return req;
}
EXPORT_SYMBOL(ptlrpcd_alloc_work);
void ptlrpcd_destroy_work(void *handler)
{
struct ptlrpc_request *req = handler;
if (req)
ptlrpc_req_finished(req);
}
EXPORT_SYMBOL(ptlrpcd_destroy_work);
int ptlrpcd_queue_work(void *handler)
{
struct ptlrpc_request *req = handler;
/*
* Check if the req is already being queued.
*
* Here comes a trick: it lacks a way of checking if a req is being
* processed reliably in ptlrpc. Here I have to use refcount of req
* for this purpose. This is okay because the caller should use this
* req as opaque data. - Jinshan
*/
LASSERT(atomic_read(&req->rq_refcount) > 0);
if (atomic_inc_return(&req->rq_refcount) == 2)
ptlrpcd_add_work_req(req);
return 0;
}
EXPORT_SYMBOL(ptlrpcd_queue_work);