blob: 4f326e97ad75e9180b9013c0916fe2a2ad1747ab [file] [log] [blame]
/*
* LIRC SIR driver, (C) 2000 Milan Pikula <www@fornax.sk>
*
* lirc_sir - Device driver for use with SIR (serial infra red)
* mode of IrDA on many notebooks.
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
*
*
* 2000/09/16 Frank Przybylski <mail@frankprzybylski.de> :
* added timeout and relaxed pulse detection, removed gap bug
*
* 2000/12/15 Christoph Bartelmus <lirc@bartelmus.de> :
* added support for Tekram Irmate 210 (sending does not work yet,
* kind of disappointing that nobody was able to implement that
* before),
* major clean-up
*
* 2001/02/27 Christoph Bartelmus <lirc@bartelmus.de> :
* added support for StrongARM SA1100 embedded microprocessor
* parts cut'n'pasted from sa1100_ir.c (C) 2000 Russell King
*/
#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
#include <linux/module.h>
#include <linux/sched.h>
#include <linux/errno.h>
#include <linux/signal.h>
#include <linux/fs.h>
#include <linux/interrupt.h>
#include <linux/ioport.h>
#include <linux/kernel.h>
#include <linux/serial_reg.h>
#include <linux/ktime.h>
#include <linux/string.h>
#include <linux/types.h>
#include <linux/wait.h>
#include <linux/mm.h>
#include <linux/delay.h>
#include <linux/poll.h>
#include <linux/io.h>
#include <asm/irq.h>
#include <linux/fcntl.h>
#include <linux/platform_device.h>
#include <linux/timer.h>
#include <media/lirc.h>
#include <media/lirc_dev.h>
/* SECTION: Definitions */
/*** Tekram dongle ***/
#ifdef LIRC_SIR_TEKRAM
/* stolen from kernel source */
/* definitions for Tekram dongle */
#define TEKRAM_115200 0x00
#define TEKRAM_57600 0x01
#define TEKRAM_38400 0x02
#define TEKRAM_19200 0x03
#define TEKRAM_9600 0x04
#define TEKRAM_2400 0x08
#define TEKRAM_PW 0x10 /* Pulse select bit */
/* 10bit * 1s/115200bit in milliseconds = 87ms*/
#define TIME_CONST (10000000ul/115200ul)
#endif
#ifdef LIRC_SIR_ACTISYS_ACT200L
static void init_act200(void);
#elif defined(LIRC_SIR_ACTISYS_ACT220L)
static void init_act220(void);
#endif
#define RBUF_LEN 1024
#define WBUF_LEN 1024
#define LIRC_DRIVER_NAME "lirc_sir"
#define PULSE '['
#ifndef LIRC_SIR_TEKRAM
/* 9bit * 1s/115200bit in milli seconds = 78.125ms*/
#define TIME_CONST (9000000ul/115200ul)
#endif
/* timeout for sequences in jiffies (=5/100s), must be longer than TIME_CONST */
#define SIR_TIMEOUT (HZ*5/100)
#ifndef LIRC_ON_SA1100
#ifndef LIRC_IRQ
#define LIRC_IRQ 4
#endif
#ifndef LIRC_PORT
/* for external dongles, default to com1 */
#if defined(LIRC_SIR_ACTISYS_ACT200L) || \
defined(LIRC_SIR_ACTISYS_ACT220L) || \
defined(LIRC_SIR_TEKRAM)
#define LIRC_PORT 0x3f8
#else
/* onboard sir ports are typically com3 */
#define LIRC_PORT 0x3e8
#endif
#endif
static int io = LIRC_PORT;
static int irq = LIRC_IRQ;
static int threshold = 3;
#endif
static DEFINE_SPINLOCK(timer_lock);
static struct timer_list timerlist;
/* time of last signal change detected */
static ktime_t last;
/* time of last UART data ready interrupt */
static ktime_t last_intr_time;
static int last_value;
static DECLARE_WAIT_QUEUE_HEAD(lirc_read_queue);
static DEFINE_SPINLOCK(hardware_lock);
static int rx_buf[RBUF_LEN];
static unsigned int rx_tail, rx_head;
static bool debug;
/* SECTION: Prototypes */
/* Communication with user-space */
static unsigned int lirc_poll(struct file *file, poll_table *wait);
static ssize_t lirc_read(struct file *file, char __user *buf, size_t count,
loff_t *ppos);
static ssize_t lirc_write(struct file *file, const char __user *buf, size_t n,
loff_t *pos);
static long lirc_ioctl(struct file *filep, unsigned int cmd, unsigned long arg);
static void add_read_queue(int flag, unsigned long val);
static int init_chrdev(void);
static void drop_chrdev(void);
/* Hardware */
static irqreturn_t sir_interrupt(int irq, void *dev_id);
static void send_space(unsigned long len);
static void send_pulse(unsigned long len);
static int init_hardware(void);
static void drop_hardware(void);
/* Initialisation */
static int init_port(void);
static void drop_port(void);
static inline unsigned int sinp(int offset)
{
return inb(io + offset);
}
static inline void soutp(int offset, int value)
{
outb(value, io + offset);
}
#ifndef MAX_UDELAY_MS
#define MAX_UDELAY_US 5000
#else
#define MAX_UDELAY_US (MAX_UDELAY_MS*1000)
#endif
static void safe_udelay(unsigned long usecs)
{
while (usecs > MAX_UDELAY_US) {
udelay(MAX_UDELAY_US);
usecs -= MAX_UDELAY_US;
}
udelay(usecs);
}
/* SECTION: Communication with user-space */
static unsigned int lirc_poll(struct file *file, poll_table *wait)
{
poll_wait(file, &lirc_read_queue, wait);
if (rx_head != rx_tail)
return POLLIN | POLLRDNORM;
return 0;
}
static ssize_t lirc_read(struct file *file, char __user *buf, size_t count,
loff_t *ppos)
{
int n = 0;
int retval = 0;
DECLARE_WAITQUEUE(wait, current);
if (count % sizeof(int))
return -EINVAL;
add_wait_queue(&lirc_read_queue, &wait);
set_current_state(TASK_INTERRUPTIBLE);
while (n < count) {
if (rx_head != rx_tail) {
if (copy_to_user(buf + n,
rx_buf + rx_head,
sizeof(int))) {
retval = -EFAULT;
break;
}
rx_head = (rx_head + 1) & (RBUF_LEN - 1);
n += sizeof(int);
} else {
if (file->f_flags & O_NONBLOCK) {
retval = -EAGAIN;
break;
}
if (signal_pending(current)) {
retval = -ERESTARTSYS;
break;
}
schedule();
set_current_state(TASK_INTERRUPTIBLE);
}
}
remove_wait_queue(&lirc_read_queue, &wait);
set_current_state(TASK_RUNNING);
return n ? n : retval;
}
static ssize_t lirc_write(struct file *file, const char __user *buf, size_t n,
loff_t *pos)
{
unsigned long flags;
int i, count;
int *tx_buf;
count = n / sizeof(int);
if (n % sizeof(int) || count % 2 == 0)
return -EINVAL;
tx_buf = memdup_user(buf, n);
if (IS_ERR(tx_buf))
return PTR_ERR(tx_buf);
i = 0;
local_irq_save(flags);
while (1) {
if (i >= count)
break;
if (tx_buf[i])
send_pulse(tx_buf[i]);
i++;
if (i >= count)
break;
if (tx_buf[i])
send_space(tx_buf[i]);
i++;
}
local_irq_restore(flags);
kfree(tx_buf);
return count;
}
static long lirc_ioctl(struct file *filep, unsigned int cmd, unsigned long arg)
{
u32 __user *uptr = (u32 __user *)arg;
int retval = 0;
u32 value = 0;
if (cmd == LIRC_GET_FEATURES)
value = LIRC_CAN_SEND_PULSE | LIRC_CAN_REC_MODE2;
else if (cmd == LIRC_GET_SEND_MODE)
value = LIRC_MODE_PULSE;
else if (cmd == LIRC_GET_REC_MODE)
value = LIRC_MODE_MODE2;
switch (cmd) {
case LIRC_GET_FEATURES:
case LIRC_GET_SEND_MODE:
case LIRC_GET_REC_MODE:
retval = put_user(value, uptr);
break;
case LIRC_SET_SEND_MODE:
case LIRC_SET_REC_MODE:
retval = get_user(value, uptr);
break;
default:
retval = -ENOIOCTLCMD;
}
if (retval)
return retval;
if (cmd == LIRC_SET_REC_MODE) {
if (value != LIRC_MODE_MODE2)
retval = -ENOSYS;
} else if (cmd == LIRC_SET_SEND_MODE) {
if (value != LIRC_MODE_PULSE)
retval = -ENOSYS;
}
return retval;
}
static void add_read_queue(int flag, unsigned long val)
{
unsigned int new_rx_tail;
int newval;
pr_debug("add flag %d with val %lu\n", flag, val);
newval = val & PULSE_MASK;
/*
* statistically, pulses are ~TIME_CONST/2 too long. we could
* maybe make this more exact, but this is good enough
*/
if (flag) {
/* pulse */
if (newval > TIME_CONST/2)
newval -= TIME_CONST/2;
else /* should not ever happen */
newval = 1;
newval |= PULSE_BIT;
} else {
newval += TIME_CONST/2;
}
new_rx_tail = (rx_tail + 1) & (RBUF_LEN - 1);
if (new_rx_tail == rx_head) {
pr_debug("Buffer overrun.\n");
return;
}
rx_buf[rx_tail] = newval;
rx_tail = new_rx_tail;
wake_up_interruptible(&lirc_read_queue);
}
static const struct file_operations lirc_fops = {
.owner = THIS_MODULE,
.read = lirc_read,
.write = lirc_write,
.poll = lirc_poll,
.unlocked_ioctl = lirc_ioctl,
#ifdef CONFIG_COMPAT
.compat_ioctl = lirc_ioctl,
#endif
.open = lirc_dev_fop_open,
.release = lirc_dev_fop_close,
.llseek = no_llseek,
};
static int set_use_inc(void *data)
{
return 0;
}
static void set_use_dec(void *data)
{
}
static struct lirc_driver driver = {
.name = LIRC_DRIVER_NAME,
.minor = -1,
.code_length = 1,
.sample_rate = 0,
.data = NULL,
.add_to_buf = NULL,
.set_use_inc = set_use_inc,
.set_use_dec = set_use_dec,
.fops = &lirc_fops,
.dev = NULL,
.owner = THIS_MODULE,
};
static struct platform_device *lirc_sir_dev;
static int init_chrdev(void)
{
driver.dev = &lirc_sir_dev->dev;
driver.minor = lirc_register_driver(&driver);
if (driver.minor < 0) {
pr_err("init_chrdev() failed.\n");
return -EIO;
}
return 0;
}
static void drop_chrdev(void)
{
lirc_unregister_driver(driver.minor);
}
/* SECTION: Hardware */
static void sir_timeout(unsigned long data)
{
/*
* if last received signal was a pulse, but receiving stopped
* within the 9 bit frame, we need to finish this pulse and
* simulate a signal change to from pulse to space. Otherwise
* upper layers will receive two sequences next time.
*/
unsigned long flags;
unsigned long pulse_end;
/* avoid interference with interrupt */
spin_lock_irqsave(&timer_lock, flags);
if (last_value) {
/* clear unread bits in UART and restart */
outb(UART_FCR_CLEAR_RCVR, io + UART_FCR);
/* determine 'virtual' pulse end: */
pulse_end = min_t(unsigned long,
ktime_us_delta(last, last_intr_time),
PULSE_MASK);
dev_dbg(driver.dev, "timeout add %d for %lu usec\n",
last_value, pulse_end);
add_read_queue(last_value, pulse_end);
last_value = 0;
last = last_intr_time;
}
spin_unlock_irqrestore(&timer_lock, flags);
}
static irqreturn_t sir_interrupt(int irq, void *dev_id)
{
unsigned char data;
ktime_t curr_time;
static unsigned long delt;
unsigned long deltintr;
unsigned long flags;
int iir, lsr;
while ((iir = inb(io + UART_IIR) & UART_IIR_ID)) {
switch (iir&UART_IIR_ID) { /* FIXME toto treba preriedit */
case UART_IIR_MSI:
(void) inb(io + UART_MSR);
break;
case UART_IIR_RLSI:
(void) inb(io + UART_LSR);
break;
case UART_IIR_THRI:
#if 0
if (lsr & UART_LSR_THRE) /* FIFO is empty */
outb(data, io + UART_TX)
#endif
break;
case UART_IIR_RDI:
/* avoid interference with timer */
spin_lock_irqsave(&timer_lock, flags);
do {
del_timer(&timerlist);
data = inb(io + UART_RX);
curr_time = ktime_get();
delt = min_t(unsigned long,
ktime_us_delta(last, curr_time),
PULSE_MASK);
deltintr = min_t(unsigned long,
ktime_us_delta(last_intr_time,
curr_time),
PULSE_MASK);
dev_dbg(driver.dev, "t %lu, d %d\n",
deltintr, (int)data);
/*
* if nothing came in last X cycles,
* it was gap
*/
if (deltintr > TIME_CONST * threshold) {
if (last_value) {
dev_dbg(driver.dev, "GAP\n");
/* simulate signal change */
add_read_queue(last_value,
delt -
deltintr);
last_value = 0;
last = last_intr_time;
delt = deltintr;
}
}
data = 1;
if (data ^ last_value) {
/*
* deltintr > 2*TIME_CONST, remember?
* the other case is timeout
*/
add_read_queue(last_value,
delt-TIME_CONST);
last_value = data;
last = curr_time;
last = ktime_sub_us(last,
TIME_CONST);
}
last_intr_time = curr_time;
if (data) {
/*
* start timer for end of
* sequence detection
*/
timerlist.expires = jiffies +
SIR_TIMEOUT;
add_timer(&timerlist);
}
lsr = inb(io + UART_LSR);
} while (lsr & UART_LSR_DR); /* data ready */
spin_unlock_irqrestore(&timer_lock, flags);
break;
default:
break;
}
}
return IRQ_RETVAL(IRQ_HANDLED);
}
static void send_space(unsigned long len)
{
safe_udelay(len);
}
static void send_pulse(unsigned long len)
{
long bytes_out = len / TIME_CONST;
if (bytes_out == 0)
bytes_out++;
while (bytes_out--) {
outb(PULSE, io + UART_TX);
/* FIXME treba seriozne cakanie z char/serial.c */
while (!(inb(io + UART_LSR) & UART_LSR_THRE))
;
}
}
static int init_hardware(void)
{
unsigned long flags;
spin_lock_irqsave(&hardware_lock, flags);
/* reset UART */
#if defined(LIRC_SIR_TEKRAM)
/* disable FIFO */
soutp(UART_FCR,
UART_FCR_CLEAR_RCVR|
UART_FCR_CLEAR_XMIT|
UART_FCR_TRIGGER_1);
/* Set DLAB 0. */
soutp(UART_LCR, sinp(UART_LCR) & (~UART_LCR_DLAB));
/* First of all, disable all interrupts */
soutp(UART_IER, sinp(UART_IER) &
(~(UART_IER_MSI|UART_IER_RLSI|UART_IER_THRI|UART_IER_RDI)));
/* Set DLAB 1. */
soutp(UART_LCR, sinp(UART_LCR) | UART_LCR_DLAB);
/* Set divisor to 12 => 9600 Baud */
soutp(UART_DLM, 0);
soutp(UART_DLL, 12);
/* Set DLAB 0. */
soutp(UART_LCR, sinp(UART_LCR) & (~UART_LCR_DLAB));
/* power supply */
soutp(UART_MCR, UART_MCR_RTS|UART_MCR_DTR|UART_MCR_OUT2);
safe_udelay(50*1000);
/* -DTR low -> reset PIC */
soutp(UART_MCR, UART_MCR_RTS|UART_MCR_OUT2);
udelay(1*1000);
soutp(UART_MCR, UART_MCR_RTS|UART_MCR_DTR|UART_MCR_OUT2);
udelay(100);
/* -RTS low -> send control byte */
soutp(UART_MCR, UART_MCR_DTR|UART_MCR_OUT2);
udelay(7);
soutp(UART_TX, TEKRAM_115200|TEKRAM_PW);
/* one byte takes ~1042 usec to transmit at 9600,8N1 */
udelay(1500);
/* back to normal operation */
soutp(UART_MCR, UART_MCR_RTS|UART_MCR_DTR|UART_MCR_OUT2);
udelay(50);
udelay(1500);
/* read previous control byte */
pr_info("0x%02x\n", sinp(UART_RX));
/* Set DLAB 1. */
soutp(UART_LCR, sinp(UART_LCR) | UART_LCR_DLAB);
/* Set divisor to 1 => 115200 Baud */
soutp(UART_DLM, 0);
soutp(UART_DLL, 1);
/* Set DLAB 0, 8 Bit */
soutp(UART_LCR, UART_LCR_WLEN8);
/* enable interrupts */
soutp(UART_IER, sinp(UART_IER)|UART_IER_RDI);
#else
outb(0, io + UART_MCR);
outb(0, io + UART_IER);
/* init UART */
/* set DLAB, speed = 115200 */
outb(UART_LCR_DLAB | UART_LCR_WLEN7, io + UART_LCR);
outb(1, io + UART_DLL); outb(0, io + UART_DLM);
/* 7N1+start = 9 bits at 115200 ~ 3 bits at 44000 */
outb(UART_LCR_WLEN7, io + UART_LCR);
/* FIFO operation */
outb(UART_FCR_ENABLE_FIFO, io + UART_FCR);
/* interrupts */
/* outb(UART_IER_RLSI|UART_IER_RDI|UART_IER_THRI, io + UART_IER); */
outb(UART_IER_RDI, io + UART_IER);
/* turn on UART */
outb(UART_MCR_DTR|UART_MCR_RTS|UART_MCR_OUT2, io + UART_MCR);
#ifdef LIRC_SIR_ACTISYS_ACT200L
init_act200();
#elif defined(LIRC_SIR_ACTISYS_ACT220L)
init_act220();
#endif
#endif
spin_unlock_irqrestore(&hardware_lock, flags);
return 0;
}
static void drop_hardware(void)
{
unsigned long flags;
spin_lock_irqsave(&hardware_lock, flags);
/* turn off interrupts */
outb(0, io + UART_IER);
spin_unlock_irqrestore(&hardware_lock, flags);
}
/* SECTION: Initialisation */
static int init_port(void)
{
int retval;
/* get I/O port access and IRQ line */
if (request_region(io, 8, LIRC_DRIVER_NAME) == NULL) {
pr_err("i/o port 0x%.4x already in use.\n", io);
return -EBUSY;
}
retval = request_irq(irq, sir_interrupt, 0,
LIRC_DRIVER_NAME, NULL);
if (retval < 0) {
release_region(io, 8);
pr_err("IRQ %d already in use.\n", irq);
return retval;
}
pr_info("I/O port 0x%.4x, IRQ %d.\n", io, irq);
setup_timer(&timerlist, sir_timeout, 0);
return 0;
}
static void drop_port(void)
{
free_irq(irq, NULL);
del_timer_sync(&timerlist);
release_region(io, 8);
}
#ifdef LIRC_SIR_ACTISYS_ACT200L
/* Crystal/Cirrus CS8130 IR transceiver, used in Actisys Act200L dongle */
/* some code borrowed from Linux IRDA driver */
/* Register 0: Control register #1 */
#define ACT200L_REG0 0x00
#define ACT200L_TXEN 0x01 /* Enable transmitter */
#define ACT200L_RXEN 0x02 /* Enable receiver */
#define ACT200L_ECHO 0x08 /* Echo control chars */
/* Register 1: Control register #2 */
#define ACT200L_REG1 0x10
#define ACT200L_LODB 0x01 /* Load new baud rate count value */
#define ACT200L_WIDE 0x04 /* Expand the maximum allowable pulse */
/* Register 3: Transmit mode register #2 */
#define ACT200L_REG3 0x30
#define ACT200L_B0 0x01 /* DataBits, 0=6, 1=7, 2=8, 3=9(8P) */
#define ACT200L_B1 0x02 /* DataBits, 0=6, 1=7, 2=8, 3=9(8P) */
#define ACT200L_CHSY 0x04 /* StartBit Synced 0=bittime, 1=startbit */
/* Register 4: Output Power register */
#define ACT200L_REG4 0x40
#define ACT200L_OP0 0x01 /* Enable LED1C output */
#define ACT200L_OP1 0x02 /* Enable LED2C output */
#define ACT200L_BLKR 0x04
/* Register 5: Receive Mode register */
#define ACT200L_REG5 0x50
#define ACT200L_RWIDL 0x01 /* fixed 1.6us pulse mode */
/*.. other various IRDA bit modes, and TV remote modes..*/
/* Register 6: Receive Sensitivity register #1 */
#define ACT200L_REG6 0x60
#define ACT200L_RS0 0x01 /* receive threshold bit 0 */
#define ACT200L_RS1 0x02 /* receive threshold bit 1 */
/* Register 7: Receive Sensitivity register #2 */
#define ACT200L_REG7 0x70
#define ACT200L_ENPOS 0x04 /* Ignore the falling edge */
/* Register 8,9: Baud Rate Divider register #1,#2 */
#define ACT200L_REG8 0x80
#define ACT200L_REG9 0x90
#define ACT200L_2400 0x5f
#define ACT200L_9600 0x17
#define ACT200L_19200 0x0b
#define ACT200L_38400 0x05
#define ACT200L_57600 0x03
#define ACT200L_115200 0x01
/* Register 13: Control register #3 */
#define ACT200L_REG13 0xd0
#define ACT200L_SHDW 0x01 /* Enable access to shadow registers */
/* Register 15: Status register */
#define ACT200L_REG15 0xf0
/* Register 21: Control register #4 */
#define ACT200L_REG21 0x50
#define ACT200L_EXCK 0x02 /* Disable clock output driver */
#define ACT200L_OSCL 0x04 /* oscillator in low power, medium accuracy mode */
static void init_act200(void)
{
int i;
__u8 control[] = {
ACT200L_REG15,
ACT200L_REG13 | ACT200L_SHDW,
ACT200L_REG21 | ACT200L_EXCK | ACT200L_OSCL,
ACT200L_REG13,
ACT200L_REG7 | ACT200L_ENPOS,
ACT200L_REG6 | ACT200L_RS0 | ACT200L_RS1,
ACT200L_REG5 | ACT200L_RWIDL,
ACT200L_REG4 | ACT200L_OP0 | ACT200L_OP1 | ACT200L_BLKR,
ACT200L_REG3 | ACT200L_B0,
ACT200L_REG0 | ACT200L_TXEN | ACT200L_RXEN,
ACT200L_REG8 | (ACT200L_115200 & 0x0f),
ACT200L_REG9 | ((ACT200L_115200 >> 4) & 0x0f),
ACT200L_REG1 | ACT200L_LODB | ACT200L_WIDE
};
/* Set DLAB 1. */
soutp(UART_LCR, UART_LCR_DLAB | UART_LCR_WLEN8);
/* Set divisor to 12 => 9600 Baud */
soutp(UART_DLM, 0);
soutp(UART_DLL, 12);
/* Set DLAB 0. */
soutp(UART_LCR, UART_LCR_WLEN8);
/* Set divisor to 12 => 9600 Baud */
/* power supply */
soutp(UART_MCR, UART_MCR_RTS|UART_MCR_DTR|UART_MCR_OUT2);
for (i = 0; i < 50; i++)
safe_udelay(1000);
/* Reset the dongle : set RTS low for 25 ms */
soutp(UART_MCR, UART_MCR_DTR|UART_MCR_OUT2);
for (i = 0; i < 25; i++)
udelay(1000);
soutp(UART_MCR, UART_MCR_RTS|UART_MCR_DTR|UART_MCR_OUT2);
udelay(100);
/* Clear DTR and set RTS to enter command mode */
soutp(UART_MCR, UART_MCR_RTS|UART_MCR_OUT2);
udelay(7);
/* send out the control register settings for 115K 7N1 SIR operation */
for (i = 0; i < sizeof(control); i++) {
soutp(UART_TX, control[i]);
/* one byte takes ~1042 usec to transmit at 9600,8N1 */
udelay(1500);
}
/* back to normal operation */
soutp(UART_MCR, UART_MCR_RTS|UART_MCR_DTR|UART_MCR_OUT2);
udelay(50);
udelay(1500);
soutp(UART_LCR, sinp(UART_LCR) | UART_LCR_DLAB);
/* Set DLAB 1. */
soutp(UART_LCR, UART_LCR_DLAB | UART_LCR_WLEN7);
/* Set divisor to 1 => 115200 Baud */
soutp(UART_DLM, 0);
soutp(UART_DLL, 1);
/* Set DLAB 0. */
soutp(UART_LCR, sinp(UART_LCR) & (~UART_LCR_DLAB));
/* Set DLAB 0, 7 Bit */
soutp(UART_LCR, UART_LCR_WLEN7);
/* enable interrupts */
soutp(UART_IER, sinp(UART_IER)|UART_IER_RDI);
}
#endif
#ifdef LIRC_SIR_ACTISYS_ACT220L
/*
* Derived from linux IrDA driver (net/irda/actisys.c)
* Drop me a mail for any kind of comment: maxx@spaceboyz.net
*/
void init_act220(void)
{
int i;
/* DLAB 1 */
soutp(UART_LCR, UART_LCR_DLAB|UART_LCR_WLEN7);
/* 9600 baud */
soutp(UART_DLM, 0);
soutp(UART_DLL, 12);
/* DLAB 0 */
soutp(UART_LCR, UART_LCR_WLEN7);
/* reset the dongle, set DTR low for 10us */
soutp(UART_MCR, UART_MCR_RTS|UART_MCR_OUT2);
udelay(10);
/* back to normal (still 9600) */
soutp(UART_MCR, UART_MCR_DTR|UART_MCR_RTS|UART_MCR_OUT2);
/*
* send RTS pulses until we reach 115200
* i hope this is really the same for act220l/act220l+
*/
for (i = 0; i < 3; i++) {
udelay(10);
/* set RTS low for 10 us */
soutp(UART_MCR, UART_MCR_DTR|UART_MCR_OUT2);
udelay(10);
/* set RTS high for 10 us */
soutp(UART_MCR, UART_MCR_RTS|UART_MCR_DTR|UART_MCR_OUT2);
}
/* back to normal operation */
udelay(1500); /* better safe than sorry ;) */
/* Set DLAB 1. */
soutp(UART_LCR, UART_LCR_DLAB | UART_LCR_WLEN7);
/* Set divisor to 1 => 115200 Baud */
soutp(UART_DLM, 0);
soutp(UART_DLL, 1);
/* Set DLAB 0, 7 Bit */
/* The dongle doesn't seem to have any problems with operation at 7N1 */
soutp(UART_LCR, UART_LCR_WLEN7);
/* enable interrupts */
soutp(UART_IER, UART_IER_RDI);
}
#endif
static int init_lirc_sir(void)
{
int retval;
init_waitqueue_head(&lirc_read_queue);
retval = init_port();
if (retval < 0)
return retval;
init_hardware();
pr_info("Installed.\n");
return 0;
}
static int lirc_sir_probe(struct platform_device *dev)
{
return 0;
}
static int lirc_sir_remove(struct platform_device *dev)
{
return 0;
}
static struct platform_driver lirc_sir_driver = {
.probe = lirc_sir_probe,
.remove = lirc_sir_remove,
.driver = {
.name = "lirc_sir",
},
};
static int __init lirc_sir_init(void)
{
int retval;
retval = platform_driver_register(&lirc_sir_driver);
if (retval) {
pr_err("Platform driver register failed!\n");
return -ENODEV;
}
lirc_sir_dev = platform_device_alloc("lirc_dev", 0);
if (!lirc_sir_dev) {
pr_err("Platform device alloc failed!\n");
retval = -ENOMEM;
goto pdev_alloc_fail;
}
retval = platform_device_add(lirc_sir_dev);
if (retval) {
pr_err("Platform device add failed!\n");
retval = -ENODEV;
goto pdev_add_fail;
}
retval = init_chrdev();
if (retval < 0)
goto fail;
retval = init_lirc_sir();
if (retval) {
drop_chrdev();
goto fail;
}
return 0;
fail:
platform_device_del(lirc_sir_dev);
pdev_add_fail:
platform_device_put(lirc_sir_dev);
pdev_alloc_fail:
platform_driver_unregister(&lirc_sir_driver);
return retval;
}
static void __exit lirc_sir_exit(void)
{
drop_hardware();
drop_chrdev();
drop_port();
platform_device_unregister(lirc_sir_dev);
platform_driver_unregister(&lirc_sir_driver);
pr_info("Uninstalled.\n");
}
module_init(lirc_sir_init);
module_exit(lirc_sir_exit);
#ifdef LIRC_SIR_TEKRAM
MODULE_DESCRIPTION("Infrared receiver driver for Tekram Irmate 210");
MODULE_AUTHOR("Christoph Bartelmus");
#elif defined(LIRC_SIR_ACTISYS_ACT200L)
MODULE_DESCRIPTION("LIRC driver for Actisys Act200L");
MODULE_AUTHOR("Karl Bongers");
#elif defined(LIRC_SIR_ACTISYS_ACT220L)
MODULE_DESCRIPTION("LIRC driver for Actisys Act220L(+)");
MODULE_AUTHOR("Jan Roemisch");
#else
MODULE_DESCRIPTION("Infrared receiver driver for SIR type serial ports");
MODULE_AUTHOR("Milan Pikula");
#endif
MODULE_LICENSE("GPL");
module_param(io, int, S_IRUGO);
MODULE_PARM_DESC(io, "I/O address base (0x3f8 or 0x2f8)");
module_param(irq, int, S_IRUGO);
MODULE_PARM_DESC(irq, "Interrupt (4 or 3)");
module_param(threshold, int, S_IRUGO);
MODULE_PARM_DESC(threshold, "space detection threshold (3)");
module_param(debug, bool, S_IRUGO | S_IWUSR);
MODULE_PARM_DESC(debug, "Enable debugging messages");