blob: 537d41984adf01a1045cdcbc11fdda9c79bc8aea [file] [log] [blame]
/*
* Copyright 2015-2017 Google, Inc
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* USB Type-C Port Controller Interface.
*/
#include <linux/delay.h>
#include <linux/kernel.h>
#include <linux/module.h>
#include <linux/i2c.h>
#include <linux/interrupt.h>
#include <linux/regmap.h>
#include <linux/usb/typec.h>
#include <linux/of_gpio.h>
#include <linux/extcon.h>
#include "pd.h"
#include "tcpci.h"
#include "tcpm.h"
#define PD_RETRY_COUNT 3
struct tcpci {
struct device *dev;
struct i2c_client *client;
struct extcon_dev *edev;
struct tcpm_port *port;
struct regmap *regmap;
bool controls_vbus;
bool drive_vbus;
bool sink_disable;
struct gpio_desc *ss_sel_gpio;
struct tcpc_dev tcpc;
unsigned int irq_mask;
};
static const unsigned int tcpci_extcon_cable[] = {
EXTCON_USB_HOST,
EXTCON_USB,
EXTCON_NONE,
};
static inline struct tcpci *tcpc_to_tcpci(struct tcpc_dev *tcpc)
{
return container_of(tcpc, struct tcpci, tcpc);
}
static int tcpci_read16(struct tcpci *tcpci, unsigned int reg,
unsigned int *val)
{
return regmap_raw_read(tcpci->regmap, reg, val, sizeof(u16));
}
static int tcpci_write16(struct tcpci *tcpci, unsigned int reg, u16 val)
{
return regmap_raw_write(tcpci->regmap, reg, &val, sizeof(u16));
}
static int tcpci_vbus_force_discharge(struct tcpc_dev *tcpc, bool enable)
{
struct tcpci *tcpci = tcpc_to_tcpci(tcpc);
unsigned int reg;
int ret;
if (enable)
regmap_write(tcpci->regmap,
TCPC_VBUS_VOLTAGE_ALARM_LO_CFG, 0x1c);
else
regmap_write(tcpci->regmap,
TCPC_VBUS_VOLTAGE_ALARM_LO_CFG, 0);
regmap_read(tcpci->regmap, TCPC_POWER_CTRL, &reg);
if (enable)
reg |= TCPC_POWER_CTRL_FORCEDISCH;
else
reg &= ~TCPC_POWER_CTRL_FORCEDISCH;
ret = regmap_write(tcpci->regmap, TCPC_POWER_CTRL, reg);
if (ret < 0)
return ret;
return 0;
}
static int tcpci_set_cc(struct tcpc_dev *tcpc, enum typec_cc_status cc)
{
struct tcpci *tcpci = tcpc_to_tcpci(tcpc);
unsigned int reg;
int ret;
switch (cc) {
case TYPEC_CC_RA:
reg = (TCPC_ROLE_CTRL_CC_RA << TCPC_ROLE_CTRL_CC1_SHIFT) |
(TCPC_ROLE_CTRL_CC_RA << TCPC_ROLE_CTRL_CC2_SHIFT);
break;
case TYPEC_CC_RD:
reg = (TCPC_ROLE_CTRL_CC_RD << TCPC_ROLE_CTRL_CC1_SHIFT) |
(TCPC_ROLE_CTRL_CC_RD << TCPC_ROLE_CTRL_CC2_SHIFT);
break;
case TYPEC_CC_RP_DEF:
reg = (TCPC_ROLE_CTRL_CC_RP << TCPC_ROLE_CTRL_CC1_SHIFT) |
(TCPC_ROLE_CTRL_CC_RP << TCPC_ROLE_CTRL_CC2_SHIFT) |
(TCPC_ROLE_CTRL_RP_VAL_DEF <<
TCPC_ROLE_CTRL_RP_VAL_SHIFT);
break;
case TYPEC_CC_RP_1_5:
reg = (TCPC_ROLE_CTRL_CC_RP << TCPC_ROLE_CTRL_CC1_SHIFT) |
(TCPC_ROLE_CTRL_CC_RP << TCPC_ROLE_CTRL_CC2_SHIFT) |
(TCPC_ROLE_CTRL_RP_VAL_1_5 <<
TCPC_ROLE_CTRL_RP_VAL_SHIFT);
break;
case TYPEC_CC_RP_3_0:
reg = (TCPC_ROLE_CTRL_CC_RP << TCPC_ROLE_CTRL_CC1_SHIFT) |
(TCPC_ROLE_CTRL_CC_RP << TCPC_ROLE_CTRL_CC2_SHIFT) |
(TCPC_ROLE_CTRL_RP_VAL_3_0 <<
TCPC_ROLE_CTRL_RP_VAL_SHIFT);
break;
case TYPEC_CC_OPEN:
default:
reg = (TCPC_ROLE_CTRL_CC_OPEN << TCPC_ROLE_CTRL_CC1_SHIFT) |
(TCPC_ROLE_CTRL_CC_OPEN << TCPC_ROLE_CTRL_CC2_SHIFT);
break;
}
ret = regmap_write(tcpci->regmap, TCPC_ROLE_CTRL, reg);
if (ret < 0)
return ret;
return 0;
}
static int tcpci_start_drp_toggling(struct tcpc_dev *tcpc,
enum typec_cc_status cc, int attach)
{
struct tcpci *tcpci = tcpc_to_tcpci(tcpc);
unsigned int reg = 0;
/* Only set DRP bit for auto toggle when unattached */
if (attach) {
switch (cc) {
case TYPEC_CC_RP_DEF:
if (attach >> TYPEC_POLARITY_CC2)
reg |= TCPC_ROLE_CTRL_CC_RP <<
TCPC_ROLE_CTRL_CC2_SHIFT;
else if (attach >> TYPEC_POLARITY_CC1)
reg |= TCPC_ROLE_CTRL_CC_RP <<
TCPC_ROLE_CTRL_CC1_SHIFT;
reg |= (TCPC_ROLE_CTRL_RP_VAL_DEF <<
TCPC_ROLE_CTRL_RP_VAL_SHIFT);
break;
case TYPEC_CC_RP_1_5:
if (attach >> TYPEC_POLARITY_CC2)
reg |= TCPC_ROLE_CTRL_CC_RP <<
TCPC_ROLE_CTRL_CC2_SHIFT;
else if (attach >> TYPEC_POLARITY_CC1)
reg |= TCPC_ROLE_CTRL_CC_RP <<
TCPC_ROLE_CTRL_CC1_SHIFT;
reg |= (TCPC_ROLE_CTRL_RP_VAL_1_5 <<
TCPC_ROLE_CTRL_RP_VAL_SHIFT);
break;
case TYPEC_CC_RP_3_0:
if (attach >> TYPEC_POLARITY_CC2)
reg |= TCPC_ROLE_CTRL_CC_RP <<
TCPC_ROLE_CTRL_CC2_SHIFT;
else if (attach >> TYPEC_POLARITY_CC1)
reg |= TCPC_ROLE_CTRL_CC_RP <<
TCPC_ROLE_CTRL_CC1_SHIFT;
reg |= (TCPC_ROLE_CTRL_RP_VAL_3_0 <<
TCPC_ROLE_CTRL_RP_VAL_SHIFT);
break;
case TYPEC_CC_RD:
if (attach >> TYPEC_POLARITY_CC2)
reg |= TCPC_ROLE_CTRL_CC_RD <<
TCPC_ROLE_CTRL_CC2_SHIFT;
else if (attach >> TYPEC_POLARITY_CC1)
reg |= TCPC_ROLE_CTRL_CC_RD <<
TCPC_ROLE_CTRL_CC1_SHIFT;
break;
default:
break;
}
/* keep the un-touched cc line to be open */
if (attach >> TYPEC_POLARITY_CC2)
reg |= TCPC_ROLE_CTRL_CC_OPEN <<
TCPC_ROLE_CTRL_CC1_SHIFT;
else if (attach >> TYPEC_POLARITY_CC1)
reg |= TCPC_ROLE_CTRL_CC_OPEN <<
TCPC_ROLE_CTRL_CC2_SHIFT;
} else { /* Not attached */
if (cc == TYPEC_CC_RD)
reg = TCPC_ROLE_CTRL_DRP | 0xa; /* Rd */
else
reg = TCPC_ROLE_CTRL_DRP | 0x5; /* Rp */
}
regmap_write(tcpci->regmap, TCPC_ROLE_CTRL, reg);
if (!attach)
regmap_write(tcpci->regmap, TCPC_COMMAND,
TCPC_CMD_LOOK4CONNECTION);
return 0;
}
static enum typec_cc_status tcpci_to_typec_cc(unsigned int cc, bool sink)
{
switch (cc) {
case 0x1:
return sink ? TYPEC_CC_RP_DEF : TYPEC_CC_RA;
case 0x2:
return sink ? TYPEC_CC_RP_1_5 : TYPEC_CC_RD;
case 0x3:
if (sink)
return TYPEC_CC_RP_3_0;
case 0x0:
default:
return TYPEC_CC_OPEN;
}
}
static int tcpci_get_cc(struct tcpc_dev *tcpc,
enum typec_cc_status *cc1, enum typec_cc_status *cc2)
{
struct tcpci *tcpci = tcpc_to_tcpci(tcpc);
unsigned int reg;
int ret;
ret = regmap_read(tcpci->regmap, TCPC_CC_STATUS, &reg);
if (ret < 0)
return ret;
*cc1 = tcpci_to_typec_cc((reg >> TCPC_CC_STATUS_CC1_SHIFT) &
TCPC_CC_STATUS_CC1_MASK,
reg & TCPC_CC_STATUS_TERM);
*cc2 = tcpci_to_typec_cc((reg >> TCPC_CC_STATUS_CC2_SHIFT) &
TCPC_CC_STATUS_CC2_MASK,
reg & TCPC_CC_STATUS_TERM);
return 0;
}
static int tcpci_set_polarity(struct tcpc_dev *tcpc,
enum typec_cc_polarity polarity)
{
struct tcpci *tcpci = tcpc_to_tcpci(tcpc);
int ret;
ret = regmap_write(tcpci->regmap, TCPC_TCPC_CTRL,
(polarity == TYPEC_POLARITY_CC2) ?
TCPC_TCPC_CTRL_ORIENTATION : 0);
if (ret < 0)
return ret;
return 0;
}
static int tcpci_set_ss_mux(struct tcpc_dev *tcpc,
enum typec_cc_polarity polarity)
{
struct tcpci *tcpci = tcpc_to_tcpci(tcpc);
if (!tcpci->ss_sel_gpio)
return 0;
if (polarity == TYPEC_POLARITY_CC1)
gpiod_set_value_cansleep(tcpci->ss_sel_gpio, 1);
else
gpiod_set_value_cansleep(tcpci->ss_sel_gpio, 0);
return 0;
}
static int tcpci_set_vconn(struct tcpc_dev *tcpc, bool enable)
{
struct tcpci *tcpci = tcpc_to_tcpci(tcpc);
int ret;
ret = regmap_update_bits(tcpci->regmap, TCPC_POWER_CTRL,
TCPC_POWER_CTRL_VCONN_ENABLE,
enable ? TCPC_POWER_CTRL_VCONN_ENABLE : 0);
return ret;
}
static int tcpci_set_roles(struct tcpc_dev *tcpc, bool attached,
enum typec_role role, enum typec_data_role data)
{
struct tcpci *tcpci = tcpc_to_tcpci(tcpc);
unsigned int reg;
int ret;
reg = PD_REV20 << TCPC_MSG_HDR_INFO_REV_SHIFT;
if (role == TYPEC_SOURCE)
reg |= TCPC_MSG_HDR_INFO_PWR_ROLE;
if (data == TYPEC_HOST)
reg |= TCPC_MSG_HDR_INFO_DATA_ROLE;
ret = regmap_write(tcpci->regmap, TCPC_MSG_HDR_INFO, reg);
if (ret < 0)
return ret;
if (data == TYPEC_HOST)
extcon_set_state_sync(tcpci->edev, EXTCON_USB_HOST, true);
else
extcon_set_state_sync(tcpci->edev, EXTCON_USB_HOST, false);
return 0;
}
static int tcpci_set_pd_rx(struct tcpc_dev *tcpc, bool enable)
{
struct tcpci *tcpci = tcpc_to_tcpci(tcpc);
unsigned int reg = 0;
int ret;
if (enable)
reg = TCPC_RX_DETECT_SOP | TCPC_RX_DETECT_HARD_RESET;
ret = regmap_write(tcpci->regmap, TCPC_RX_DETECT, reg);
if (ret < 0)
return ret;
return 0;
}
static int tcpci_get_vbus(struct tcpc_dev *tcpc)
{
struct tcpci *tcpci = tcpc_to_tcpci(tcpc);
unsigned int reg;
int ret;
ret = regmap_read(tcpci->regmap, TCPC_POWER_STATUS, &reg);
if (ret < 0)
return ret;
ret = !!(reg & TCPC_POWER_STATUS_VBUS_PRES);
/*
* If the vbus is not from itself for source, we
* assume the vbus is from the port partner, this
* is to work around the case of connect to legacy
* Host like PC via a fixed Rp pull up cable, so
* we notify the possible EXTCON_USB connection.
*/
if (!tcpci->drive_vbus)
extcon_set_state_sync(tcpci->edev, EXTCON_USB, ret);
return ret;
}
static unsigned int tcpci_get_vbus_vol(struct tcpc_dev *tcpc)
{
struct tcpci *tcpci = tcpc_to_tcpci(tcpc);
unsigned int reg, ret = 0;
ret = regmap_read(tcpci->regmap, TCPC_VBUS_VOLTAGE, &reg);
/* Convert it to be the vol number(mv) */
ret = ((reg & TCPC_VBUS_VOL_MASK) <<
((reg & TCPC_VBUS_VOL_SCALE_FACTOR_MASK) >>
TCPC_VBUS_VOL_SCALE_FACTOR_SHIFT)) * TCPC_VBUS_VOL_MV_UNIT;
return ret;
}
static int tcpci_set_vbus(struct tcpc_dev *tcpc, bool source, bool sink)
{
struct tcpci *tcpci = tcpc_to_tcpci(tcpc);
int ret;
/* Disable both source and sink first before enabling anything */
if (!source) {
ret = regmap_write(tcpci->regmap, TCPC_COMMAND,
TCPC_CMD_DISABLE_SRC_VBUS);
if (ret < 0)
return ret;
tcpci->drive_vbus = false;
}
if (!sink) {
ret = regmap_write(tcpci->regmap, TCPC_COMMAND,
TCPC_CMD_DISABLE_SINK_VBUS);
if (ret < 0)
return ret;
}
/* Enable force discharge */
if (!source && !sink)
tcpci_vbus_force_discharge(tcpc, true);
if (source) {
ret = regmap_write(tcpci->regmap, TCPC_COMMAND,
TCPC_CMD_SRC_VBUS_DEFAULT);
if (ret < 0)
return ret;
tcpci->drive_vbus = true;
}
if (sink && !tcpci->sink_disable) {
ret = regmap_write(tcpci->regmap, TCPC_COMMAND,
TCPC_CMD_SINK_VBUS);
if (ret < 0)
return ret;
}
return 0;
}
static int tcpci_pd_transmit(struct tcpc_dev *tcpc,
enum tcpm_transmit_type type,
const struct pd_message *msg)
{
struct tcpci *tcpci = tcpc_to_tcpci(tcpc);
unsigned int reg, cnt, header;
int ret;
cnt = msg ? pd_header_cnt(msg->header) * 4 : 0;
ret = regmap_write(tcpci->regmap, TCPC_TX_BYTE_CNT, cnt + 2);
if (ret < 0)
return ret;
header = msg ? msg->header : 0;
ret = tcpci_write16(tcpci, TCPC_TX_HDR, header);
if (ret < 0)
return ret;
if (cnt > 0) {
ret = regmap_raw_write(tcpci->regmap, TCPC_TX_DATA,
&msg->payload, cnt);
if (ret < 0)
return ret;
}
reg = (PD_RETRY_COUNT << TCPC_TRANSMIT_RETRY_SHIFT) |
(type << TCPC_TRANSMIT_TYPE_SHIFT);
ret = regmap_write(tcpci->regmap, TCPC_TRANSMIT, reg);
if (ret < 0)
return ret;
return 0;
}
static int tcpci_vbus_detect(struct tcpc_dev *tcpc, bool enable)
{
struct tcpci *tcpci = tcpc_to_tcpci(tcpc);
int ret;
if (enable) {
ret = regmap_write(tcpci->regmap, TCPC_COMMAND,
TCPC_CMD_ENABLE_VBUS_DETECT);
if (ret < 0)
return ret;
} else {
ret = regmap_write(tcpci->regmap, TCPC_COMMAND,
TCPC_CMD_DISABLE_VBUS_DETECT);
if (ret < 0)
return ret;
}
return 0;
}
static void tcpci_bist_mode(struct tcpc_dev *tcpc, bool enable)
{
struct tcpci *tcpci = tcpc_to_tcpci(tcpc);
regmap_update_bits(tcpci->regmap, TCPC_TCPC_CTRL,
TCPC_TCPC_CTRL_BIST_MODE,
enable ? TCPC_TCPC_CTRL_BIST_MODE : 0);
}
static int tcpci_init(struct tcpc_dev *tcpc)
{
struct tcpci *tcpci = tcpc_to_tcpci(tcpc);
unsigned long timeout = jiffies + msecs_to_jiffies(2000); /* XXX */
unsigned int reg;
int ret;
while (time_before_eq(jiffies, timeout)) {
ret = regmap_read(tcpci->regmap, TCPC_POWER_STATUS, &reg);
if (ret < 0)
return ret;
if (!(reg & TCPC_POWER_STATUS_UNINIT))
break;
usleep_range(10000, 20000);
}
if (time_after(jiffies, timeout))
return -ETIMEDOUT;
/* Clear all events */
ret = tcpci_write16(tcpci, TCPC_ALERT, 0xffff);
if (ret < 0)
return ret;
/* Clear fault condition */
regmap_write(tcpci->regmap, TCPC_FAULT_STATUS, 0x80);
if (tcpci->controls_vbus)
reg = TCPC_POWER_STATUS_VBUS_PRES;
else
reg = 0;
ret = regmap_write(tcpci->regmap, TCPC_POWER_STATUS_MASK, reg);
if (ret < 0)
return ret;
/* Enable Voltage Alarms Power status reporting */
regmap_read(tcpci->regmap, TCPC_POWER_CTRL, &reg);
reg &= ~TCPC_POWER_CTRL_DIS_VOL_ALARM;
ret = regmap_write(tcpci->regmap, TCPC_POWER_CTRL, reg);
reg = TCPC_ALERT_TX_SUCCESS | TCPC_ALERT_TX_FAILED |
TCPC_ALERT_TX_DISCARDED | TCPC_ALERT_RX_STATUS |
TCPC_ALERT_RX_HARD_RST | TCPC_ALERT_CC_STATUS |
TCPC_ALERT_RX_BUF_OVF | TCPC_ALERT_FAULT |
TCPC_ALERT_V_ALARM_LO;
if (tcpci->controls_vbus)
reg |= TCPC_ALERT_POWER_STATUS;
tcpci->irq_mask = reg;
return tcpci_write16(tcpci, TCPC_ALERT_MASK, reg);
}
static irqreturn_t tcpci_irq(int irq, void *dev_id)
{
struct tcpci *tcpci = dev_id;
unsigned int status, reg;
tcpci_read16(tcpci, TCPC_ALERT, &status);
/*
* Clear alert status for enabled irq except RX_STATUS, which shouldn't
* be cleared until we have successfully retrieved message.
*/
if ((status & ~TCPC_ALERT_RX_STATUS) & tcpci->irq_mask)
tcpci_write16(tcpci, TCPC_ALERT,
status & ~TCPC_ALERT_RX_STATUS);
if (status & TCPC_ALERT_CC_STATUS)
tcpm_cc_change(tcpci->port);
if (status & TCPC_ALERT_POWER_STATUS) {
/* Read power status to clear the event */
regmap_read(tcpci->regmap, TCPC_POWER_STATUS, &reg);
regmap_read(tcpci->regmap, TCPC_POWER_STATUS_MASK, &reg);
/*
* If power status mask has been reset, then the TCPC
* has reset.
*/
if (reg == 0xff)
tcpm_tcpc_reset(tcpci->port);
else
tcpm_vbus_change(tcpci->port);
}
if (status & TCPC_ALERT_V_ALARM_LO)
tcpm_vbus_low_alarm(tcpci->port);
if (status & TCPC_ALERT_RX_STATUS) {
struct pd_message msg;
unsigned int cnt;
regmap_read(tcpci->regmap, TCPC_RX_BYTE_CNT, &cnt);
tcpci_read16(tcpci, TCPC_RX_HDR, &reg);
msg.header = reg;
/*
* TCPC_RX_BYTE_CNT is the number of bytes in the
* RX_BUFFER_DATA_OBJECTS plus three (for the RX_BUF_FRAME_TYPE
* and RX_BUF_HEADER).
*/
cnt -= 3;
if (WARN_ON(cnt > sizeof(msg.payload)))
cnt = sizeof(msg.payload);
if (cnt > 0)
regmap_raw_read(tcpci->regmap, TCPC_RX_DATA,
&msg.payload, cnt);
/* Read complete, clear RX status alert bit */
tcpci_write16(tcpci, TCPC_ALERT, TCPC_ALERT_RX_STATUS);
tcpm_pd_receive(tcpci->port, &msg);
}
if (status & TCPC_ALERT_RX_BUF_OVF)
tcpci_write16(tcpci, TCPC_ALERT,
TCPC_ALERT_RX_BUF_OVF | TCPC_ALERT_RX_STATUS);
/* Clear the fault status anyway */
if (status & TCPC_ALERT_FAULT) {
regmap_read(tcpci->regmap, TCPC_FAULT_STATUS, &reg);
regmap_write(tcpci->regmap, TCPC_FAULT_STATUS,
reg | TCPC_FAULT_STATUS_CLEAR);
}
if (status & TCPC_ALERT_RX_HARD_RST)
tcpm_pd_hard_reset(tcpci->port);
if (status & TCPC_ALERT_TX_SUCCESS)
tcpm_pd_transmit_complete(tcpci->port, TCPC_TX_SUCCESS);
else if (status & TCPC_ALERT_TX_DISCARDED)
tcpm_pd_transmit_complete(tcpci->port, TCPC_TX_DISCARDED);
else if (status & TCPC_ALERT_TX_FAILED)
tcpm_pd_transmit_complete(tcpci->port, TCPC_TX_FAILED);
return IRQ_HANDLED;
}
static const struct regmap_config tcpci_regmap_config = {
.reg_bits = 8,
.val_bits = 8,
.max_register = 0x7F, /* 0x80 .. 0xFF are vendor defined */
};
const struct tcpc_config tcpci_tcpc_config = {
.type = TYPEC_PORT_DFP,
.default_role = TYPEC_SINK,
};
/* Populate struct tcpc_config from ACPI/device-tree */
static int tcpci_parse_config(struct tcpci *tcpci)
{
struct tcpc_config *tcfg;
int ret = -EINVAL;
tcpci->controls_vbus = true; /* XXX */
/* Alloc tcpc_config struct */
tcpci->tcpc.config = devm_kzalloc(tcpci->dev, sizeof(*tcfg),
GFP_KERNEL);
if (!tcpci->tcpc.config)
return -ENOMEM;
tcfg = tcpci->tcpc.config;
/* Get the port-type */
tcfg->type = typec_get_port_type(tcpci->dev);
if (tcfg->type == TYPEC_PORT_TYPE_UNKNOWN) {
dev_err(tcpci->dev, "typec port type is NOT correct!\n");
return -EINVAL;
}
/* Get the default-role */
tcfg->default_role = typec_get_power_role(tcpci->dev);
if (tcfg->default_role == TYPEC_ROLE_UNKNOWN) {
dev_err(tcpci->dev, "typec power role is NOT correct!\n");
return -EINVAL;
}
/* Check source pdo array size */
tcfg->nr_src_pdo = device_property_read_u32_array(tcpci->dev,
"src-pdos", NULL, 0);
if (tcfg->nr_src_pdo <= 0 && (tcfg->type == TYPEC_PORT_DRP ||
tcfg->type == TYPEC_PORT_DFP)) {
dev_err(tcpci->dev, "typec source pdo is missing!\n");
return -EINVAL;
}
/* Alloc src_pdo based on the array size */
tcfg->src_pdo = devm_kzalloc(tcpci->dev,
sizeof(*tcfg->src_pdo) * tcfg->nr_src_pdo, GFP_KERNEL);
if (!tcfg->src_pdo)
return -ENOMEM;
/* Read out source pdo array */
ret = device_property_read_u32_array(tcpci->dev, "src-pdos",
tcfg->src_pdo, tcfg->nr_src_pdo);
if (ret) {
dev_err(tcpci->dev, "Failed to read src pdo!\n");
return -EINVAL;
}
/*
* In case DRP only for data role, power role is source only
* we can use this property to disable power sink.
*/
if (device_property_read_bool(tcpci->dev, "sink-disable")) {
tcpci->sink_disable = true;
/* Provide a sink PDO to setup a PD session */
tcfg->nr_snk_pdo = 1;
tcfg->snk_pdo = devm_kzalloc(tcpci->dev,
sizeof(*tcfg->snk_pdo), GFP_KERNEL);
if (!tcfg->snk_pdo)
return -ENOMEM;
/*
* Sink PDO setting:
* - Voltage in 50mV units: 5V
* - Operational Current in 10mA units: 100mA
*/
*tcfg->snk_pdo = PDO_FIXED(5000,
100,
PDO_FIXED_DUAL_ROLE |
PDO_FIXED_EXTPOWER |
PDO_FIXED_USB_COMM |
PDO_FIXED_DATA_SWAP);
tcfg->max_snk_mv = 5000;
tcfg->max_snk_ma = 2000;
tcfg->max_snk_mw = 10000;
tcfg->operating_snk_mw = 500;
return 0;
}
/* Check the num of snk pdo */
tcfg->nr_snk_pdo = device_property_read_u32_array(tcpci->dev,
"snk-pdos", NULL, 0);
if (tcfg->nr_snk_pdo <= 0 && (tcfg->type == TYPEC_PORT_DRP ||
tcfg->type == TYPEC_PORT_UFP)) {
dev_err(tcpci->dev, "typec sink pdo is missing!\n");
return -EINVAL;
}
/* alloc snk_pdo based on the array size */
tcfg->snk_pdo = devm_kzalloc(tcpci->dev,
sizeof(*tcfg->snk_pdo) * tcfg->nr_snk_pdo, GFP_KERNEL);
if (!tcfg->snk_pdo)
return -ENOMEM;
/* Read out sink pdo array */
ret = device_property_read_u32_array(tcpci->dev, "snk-pdos",
tcfg->snk_pdo, tcfg->nr_snk_pdo);
if (ret) {
dev_err(tcpci->dev, "Failed to read snk pdo!\n");
return -EINVAL;
}
/* Get the max-snk-mv max-snk-ma op-snk-mw */
if (device_property_read_u32(tcpci->dev, "max-snk-mv",
&tcfg->max_snk_mv) ||
device_property_read_u32(tcpci->dev, "max-snk-ma",
&tcfg->max_snk_ma) ||
device_property_read_u32(tcpci->dev, "max-snk-mw",
&tcfg->max_snk_mw) ||
device_property_read_u32(tcpci->dev, "op-snk-mw",
&tcfg->operating_snk_mw)) {
ret = -EINVAL;
goto snk_setting_wrong;
}
return 0;
snk_setting_wrong:
if (tcfg->type == TYPEC_PORT_DRP ||
tcfg->type == TYPEC_PORT_UFP)
dev_err(tcpci->dev, "Failed to read snk setting!\n");
return ret;
}
static int tcpci_ss_mux_control_init(struct tcpci *tcpci)
{
struct device *dev = tcpci->dev;
struct gpio_desc *gpiod_reset;
gpiod_reset = devm_gpiod_get_optional(dev, "reset", GPIOD_OUT_HIGH);
if (IS_ERR(gpiod_reset)) {
dev_err(dev, "Failed to request reset gpio.");
return PTR_ERR(gpiod_reset);
}
if (gpiod_reset)
usleep_range(700, 1000);
tcpci->ss_sel_gpio = devm_gpiod_get_optional(dev, "ss-sel",
GPIOD_OUT_HIGH);
if (IS_ERR(tcpci->ss_sel_gpio)) {
dev_err(dev, "Failed to request super speed mux sel gpio.");
return PTR_ERR(tcpci->ss_sel_gpio);
}
return 0;
}
static int tcpci_probe(struct i2c_client *client,
const struct i2c_device_id *i2c_id)
{
struct tcpci *tcpci;
int err;
tcpci = devm_kzalloc(&client->dev, sizeof(*tcpci), GFP_KERNEL);
if (!tcpci)
return -ENOMEM;
tcpci->client = client;
tcpci->dev = &client->dev;
i2c_set_clientdata(client, tcpci);
tcpci->regmap = devm_regmap_init_i2c(client, &tcpci_regmap_config);
if (IS_ERR(tcpci->regmap))
return PTR_ERR(tcpci->regmap);
tcpci->tcpc.init = tcpci_init;
tcpci->tcpc.get_vbus = tcpci_get_vbus;
tcpci->tcpc.set_vbus = tcpci_set_vbus;
tcpci->tcpc.set_cc = tcpci_set_cc;
tcpci->tcpc.get_cc = tcpci_get_cc;
tcpci->tcpc.set_polarity = tcpci_set_polarity;
tcpci->tcpc.set_vconn = tcpci_set_vconn;
tcpci->tcpc.start_drp_toggling = tcpci_start_drp_toggling;
tcpci->tcpc.vbus_detect = tcpci_vbus_detect;
tcpci->tcpc.vbus_discharge = tcpci_vbus_force_discharge;
tcpci->tcpc.get_vbus_vol = tcpci_get_vbus_vol;
tcpci->tcpc.bist_mode = tcpci_bist_mode;
tcpci->tcpc.ss_mux_sel = tcpci_set_ss_mux;
tcpci->tcpc.set_pd_rx = tcpci_set_pd_rx;
tcpci->tcpc.set_roles = tcpci_set_roles;
tcpci->tcpc.pd_transmit = tcpci_pd_transmit;
/* Allocate extcon device */
tcpci->edev = devm_extcon_dev_allocate(&client->dev,
tcpci_extcon_cable);
if (IS_ERR(tcpci->edev)) {
dev_err(&client->dev, "failed to allocate extcon dev.\n");
return -ENOMEM;
}
err = devm_extcon_dev_register(&client->dev, tcpci->edev);
if (err) {
dev_err(&client->dev, "failed to register extcon dev.\n");
return err;
}
err = tcpci_parse_config(tcpci);
if (err < 0)
return err;
tcpci->port = tcpm_register_port(tcpci->dev, &tcpci->tcpc);
if (IS_ERR(tcpci->port))
return PTR_ERR(tcpci->port);
err = tcpci_ss_mux_control_init(tcpci);
if (err)
goto err1;
err = devm_request_threaded_irq(tcpci->dev, client->irq, NULL,
tcpci_irq,
IRQF_ONESHOT | IRQF_TRIGGER_LOW,
dev_name(tcpci->dev), tcpci);
if (err < 0)
goto err1;
device_set_wakeup_capable(tcpci->dev, true);
return 0;
err1:
tcpm_unregister_port(tcpci->port);
return err;
}
static int tcpci_remove(struct i2c_client *client)
{
struct tcpci *tcpci = i2c_get_clientdata(client);
tcpm_unregister_port(tcpci->port);
return 0;
}
static int tcpci_suspend(struct device *dev)
{
struct tcpci *tcpci = dev_get_drvdata(dev);
if (device_may_wakeup(dev))
enable_irq_wake(tcpci->client->irq);
return 0;
}
static int tcpci_resume(struct device *dev)
{
struct tcpci *tcpci = dev_get_drvdata(dev);
if (device_may_wakeup(dev))
disable_irq_wake(tcpci->client->irq);
return 0;
}
static const struct dev_pm_ops tcpci_pm_ops = {
SET_SYSTEM_SLEEP_PM_OPS(tcpci_suspend, tcpci_resume)
};
static const struct i2c_device_id tcpci_id[] = {
{ "tcpci", 0 },
{ }
};
MODULE_DEVICE_TABLE(i2c, tcpci_id);
#ifdef CONFIG_OF
static const struct of_device_id tcpci_of_match[] = {
{ .compatible = "usb,tcpci", },
{},
};
MODULE_DEVICE_TABLE(of, tcpci_of_match);
#endif
static struct i2c_driver tcpci_i2c_driver = {
.driver = {
.name = "tcpci",
.pm = &tcpci_pm_ops,
.of_match_table = of_match_ptr(tcpci_of_match),
},
.probe = tcpci_probe,
.remove = tcpci_remove,
.id_table = tcpci_id,
};
module_i2c_driver(tcpci_i2c_driver);
MODULE_DESCRIPTION("USB Type-C Port Controller Interface driver");
MODULE_LICENSE("GPL");